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Abst rac t .  A method for matching image primitives through a sequence 
is described, for the purpose of acquiring 3D geometric models. The 
method includes a novel robust estimator of the trifocal tensor, based 
on a minimum number of token correspondences across an image triplet; 
and a novel tracking algorithm in which corners and line segments are 
matched over image triplets in an integrated framework. The matching 
techniques are both robust (detecting and discarding mismatches) and 
fully automatic. 
The matched tokens are used to compute 3D structure, which is ini- 
tialised as it appears and then recursively updated over time. The ap- 
proach is uncalibrated - camera internal parameters and camera motion 
are not known or required. 
Experimental results are provided for a variety of scenes, including out- 
door scenes taken with a hand-held camcorder. Quantitative statistics 
are included to assess the matching performance, and renderings of the 
3D structure enable a qualitative assessment of the results. 

1 I n t r o d u c t i o n  
The aim of this work is to recover 3D models from long uncalibrated monocular 
image sequences. These models will be used for graphics and virtual reality 
applications. The sequences are generated by circumnavigating the object of 
interest (e.g. a house) acquiring images with a camcorder. Neither the internal 
calibration of the camera nor the motion of the camera are known. In particular 
the motion is unlikely to be smooth. The focus of this paper is on the matching 
and tracking of image primitives which underpins the structure recovery. 

We build on the work of a number of previous successful systems which have 
recovered structure and motion from tracked image primitives (tokens). Coarsely 
these systems can be divided into those that use sequential [1, 3, 4, 10, 19, 28], 
and those that use batch updates [13, 15, 23]. Here the matching and structure 
update are sequential. However, the basic unit is an image triplet, rather than 
the more usual image pair. It is in this area of tracking technology [26, 27] that  
we have made the most significant innovations. A finite displacement (several 
cms) between views prohibits the utilisation of simple nearest neighbour token 
matching strategy between consecutive images. In this work: 

1. Corner and line segments are matched simultaneously over image triplets in 
an integrated framework, by employing the trifocal tensor [14, 21, 22]. 

2. A robust estimator for the trifocal tensor is developed, with the tensor in- 
stantiated over three views using a minimal set (six) of point matches and 
a RANSAC scheme. 
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The use of a robust scheme provides protection against mismatches [6, 24] and 
independently moving objects [25]. 

Two important advantages of the method described here are that  the camera 
model covers a full perspective projection, not its affine approximation (weak or 
para-perspective) as in [23], and no knowledge of camera internal parameters 
or relative motion is required. However, a consequence is that  the 3D structure 
recovered is up a projective transformation, rather than Euclidean [7, 12]. 

Results are presented for a variety of real scenes, with an assessment of 
matching performance (lifetime of tracked tokens, total number of matches), and 
examples of the recovered structure. All of the processing (matching, structure 
recovery etc), is automatic, involving no hand picked points. 

N o t a t i o n  a n d  mu l t i p l e  view g e o m e t r y  

The representations of multiple view geometry are based on [3, 7, 8, 12, 14, 16]. 
J 

For a triplet of images the image of a 3D point X is x, x and x"  in the 
first, second and third images respectively, and similarly the image of a line is 
1, 1' and 1", where x = (xl, x2 ,  X3) T and 1 = (11,12, 13) T a r e  homogeneous three 
vectors. 

Image pairs - bilinear relations Corresponding points in two images satisfy the 
epipolar constraint 

x'TFx = 0 (i) 

where F is the 3 x 3 fundamental matrix, with maximum rank 2. This is the 
bilinear relation in the homogeneous coordinates of the corresponding points in 
two images. 

Image triplets - trilinear relations Corresponding points in three images, and 
corresponding lines in three images, satisfy trilinear relations which are encap- 
sulated in the trifocal tensor, T, a 3 x 3 x 3 homogeneous tensor. Using the tensor 
a point can be transferred to a third image from correspondences in the first and 
second: 

k=3 k=3 
I I  I 1 

xt = x~ ~ =kTk~l -- xj ~ x~T~., 
k = l  k = l  

for all i, j = 1 . . .  3. Similarly, a line can be transferred as 

j----3 k=3  
ts  

l, : ZZI I  ,. 
j = l  k = l  

i.e. the same tensor can be used to transfer both points and lines. 
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2 Matching strategies 

Simple matching based only on similarity of image primitive attributes will in- 
evitably produce mismatches. For image pairs, the fundamental matrix provides 
a constraint for identifying mismatches between image corners: corresponding 
corners are constrained to lie on (epipolar) lines. For triplets of images, the tri- 
focal tensor provides a more powerful constraint for identifying mismatches for 
both points and lines: a primitive matched in two images defines the position 
of the corresponding primitive in the third image. It is a more powerful con- 
straint because the position of a match is completely constrained, rather than 
just restricted to a line, and also because it applies to both corners and lines, 
rather than just corners. There is a natural symbiosis between a 2-image match- 
ing scheme and the robust computation of the fundamental matrix, and also 
between a 3-image matching scheme and the robust computation of the trifocal 
tensor. 

In the following subsections we describe three robust matching schemes ap- 
plicable to a camera moving through a scene that  is largely static. No a priori 
information on camera internal parameters or motion is assumed, other than 
a threshold on the maximum disparity between images. The methodology for 
matching is essentiMly the same for all three schemes and involves three distinct 
stages. The stages are motivated in the description of the first matching scheme. 

2.1 M a t c h i n g  c o r n e r s  b e t w e e n  image pairs 
1. S e e d  c o r r e s p o n d e n c e s  by  u n g u i d e d  m a t c h i n g  

The aim is to obtain a small number of reliable seed correspondences. Given 
a corner at position (x, y) in the first image, the search for a match consid- 
ers all corners within a region centred on (x, y) in the second image with 
a threshold on maximum disparity. The strength of candidate matches is 
measured by cross-correlation. The threshold for match acceptance is delib- 
erately conservative at this stage to minimise incorrect matches. 

2. R o b u s t  c o m p u t a t i o n  o f  a g e o m e t r i c  c o n s t r a i n t  
There is potentially a significant presence of mismatches amongst the seed 
matches. Correct matches will obey a geometric constraint, in this case the 
epipolar geometry. The aim then is to obtain a set of "inliers" consistent with 
the geometric constraint using a robust technique - -  RANSAC has proved 
the most successful [6, 9, 17]: A putative fundamental matrix (up to three so- 
lutions) is computed from a random set of seven corner correspondences (the 
minimum number required to compute a fundamental matrix). The support  
for this fundamental matrix is determined by the number of correspondences 
in the seed set within a threshold distance of their epipolar lines. This is re- 
peated for many random sets, and the fundamental matr ix with the largest 
support is accepted. The outcome is a set of corner correspondences consis- 
tent with the fundamental matrix, and a set of mismatches (outliers). The 
fundamental matrix is then re-estimated using all of its associated inliers to 
improve its accuracy. 
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3. Guided matching 
The aim here is to obtain additional matches consistent with the geometric 
constraint. The constraint provides a far more restrictive search region than 
that used for unguided matching. Consequently, a less severe threshold can 
be used on the matching attributes. In this case, matches are sought for 
unmatched corners searching only epipolar lines. This generates a larger set 
of consistent matches. 

The final two steps are repeated until the number of matches stabilises. 
Typically the number of corners in a 512 x 512 image of an indoor scene is 

about 300, the number of seed matches is about 100, and the final number of 
matches is about 200. Using corners computed to sub-pixel accuracy, the typical 
distance of a point from its epipolar line is ,,,0.2-0.4 pixels. 

2.2 Matching points and lines between image triplets 
The same three steps are used over image triplets, with the geometric constraint 
provided by the trifocal tensor. 

1. S e e d  c o r r e s p o n d e n c e s  by  u n g u i d e d  matching 
For lines, seed correspondences over the three images are obtained by match- 
ing on a number of attributes (see [2]). For corners, seed correspondences 
between images 1 & 2, and 2 & 3 are obtained using the fundamental matr ix 
as described above. 

2. R o b u s t  c o m p u t a t i o n  o f  a g e o m e t r i c  constraint 
A full description of this method is given in section 3. Briefly, a putative trifo- 
cal tensor (up to three solutions) is computed from a random set of six seed 
point correspondences. The putative tensor is evaluated by measuring its 
support in the seed set, utilising both corners and lines. The tensor with the 
greatest support is chosen, and re-estimated using its consistent point and 
line correspondences. Inconsistent matches are assumed to be mismatches 
and are marked as unmatched. 

3. G u i d e d  m a t c h i n g  
Corner and line matching is resumed, but  now with a far more restrictive 
search area - -  for a putative match between a pair of tokens, only a re- 
gion about the predicted position in the third image need be searched. This 
generates a larger set of consistent matches. 

Here, both points and lines contribute to the estimate of the geometric con- 
straint, and in turn the one constraint is used to search for both corner and 
line correspondences. In this manner matched corners provide support for line 
segment matching and vice-versa. 

Typically the number of seed matches over a triplet is about 100 corners, 
and 10-20 lines. The final number of matches is about 150 and 10-50 respec- 
tively. Using corners computed to sub-pixel accuracy, the typical distance of a 
corner/line from its transferred position is ~,1.0 pixel. 
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2.3 M a t c h i n g  b e t w e e n  image  p r i m i t i v e s  a n d  3D s t r u c t u r e  
The previous two matching schemes were for image to image matching. Once 
an estimate of 3D structure is available however (at any stage in the image 
sequence after the initialisation phase is completed) then it is possible to use 
the 3D structure to aid the matching. This augmented scheme is carried out 
whenever a new image arrives, to obtain matches between the last image of the 
sequence and the new image. The result provides both token matches in the 
images, and also a correspondence between existing 3D structure and tokens in 
the new image. 

1. S e e d  c o r r e s p o n d e n c e s  by  u n g u i d e d  m a t c h i n g  
As in the matching of corners between image pairs, section 2.1. 

2. R o b u s t  c o m p u t a t i o n  o f  a g e o m e t r i c  c o n s t r a i n t  

a. R o b u s t  c o m p u t a t i o n  of  t h e  f u n d a m e n t a l  m a t r i x  
As in the matching of corners between image pairs, section 2.1. 
b. R o b u s t  c o m p u t a t i o n  o f  t h e  c a m e r a  m a t r i x  
The set of matches obtained above provide a correspondence between the 
existing 3D point structure and the new image corners: RANSAC is used to 
compute the 3 • 4 camera matrix P, which projects the 3D points onto their 
correspondences in the new image. A putative projection matr ix is computed 
from a random sample of six correspondences. Support for this matr ix is 
given by those correspondences whose projection lies within a threshold dis- 
tance of the associated image primitive. The projection matrix with greatest 
support is re-estimated using all consistent point and line matches. Inconsis- 
tent matches are assumed to be mismatches and are marked as unmatched. 

3. G u i d e d  m a t c h i n g  
Corner matching is resumed. P is used to project any unmatched 3D points 
and lines onto the new image, and a match is searched for around the pro- 
jected position. This generates a larger set of consistent matches. 

Typically, we find that the majority of matches are obtained in the initial 
matching stage when the fundamental matrix is used. However, the use of the 
camera matr ix computation can add 5-10 matches in a total of 200. The r.m.s. 
error between projected 3D structure and actual image tokens in the new image 
is ~0.2-0.5 pixels. 

2.4 I m p l e m e n t a t i o n  de ta i l s  
Two types of image primitives are used - corners and line segments - extracted 
independently in each image. Corners are detected to sub-pixel accuracy using 
the Harris corner detector [11]. Lines are detected by the standard procedure 
of: Canny edge detection [5]; edge linking; segmentation of the chain at high 
curvature points; and finally, straight line fitting to the resulting chain segments. 
The straight line fitting is by orthogonal regression, with a tight tolerance to 
ensure that only actual line segments are extracted, i.e. that  curves are not 
piecewise linear approximated. Further implementation details are given in [2]. 
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2.5 C o m p a r i s o n  o f  p a i r w i s e  a n d  t r i p l e t  b a s e d  m a t c h i n g  
We compare two schemes for matching between images: 

1. M e t h o d  1: P a i r w i s e  b a s e d  Corners are matched between image pairs 1 
& 2 and 2 & 3 as in section 2.1; 3D point structure is instantiated from the 
matches between 1 & 2; based on the 2 & 3 matches, the matr ix  P which 
projects the 3D structure to image 3 is computed as in section 2.3. 

2. M e t h o d  2: T r i p l e t  b a s e d  This is the matching scheme described in section 
2.2. In this scheme both corners and lines are matched. 

E x p e r i m e n t  I: N u m b e r  o f  m a t c h e s / m i s m a t c h e s  fo r  i m a g e  t r i p l e t s  We 
assess and compare the two matching schemes by two measures - -  the number 
of matches, and the number of mismatches. 

Figure 1 shows three consecutive images of a model house, processed by the 2- 
image and 3-image schemes, with matched corners superimposed on the images. 
For the 2-image scheme, only those points which survived over all three images 
are shown, to enable a proper comparison with the 3-image approach. There is 
little difference in the distribution of the matches found. Furthermore, there are 
no mismatches under either scheme. Figure 2 shows the same information for an 
outdoor scene. In this case, there are a few mismatches under both  schemes. 

Fig. 1. Three images from a sequence of a model house. Camera motion is a lateral 
displacement of about 3-4cm between frames. The image size is 760x550 pixels, and 
about 400 corners are detected in each image. U p p e r  3 images-" In the 2-image 
scheme, about 200 matches are obtained between each pair. The r.m.s, perpendicular 
distance of points from epipolar lines is about 0.4 pixels. About 160 matches survive 
across all three frames. R.m.s. error between projected 3D points and corresponding 
image corners is about 0.5 pixels. Lower 3 images-" In the 3-image scheme, about 
180 matches are obtained across all three images. The r.m.s, error between transferred 
points (using the trifocal tensor) and actual points in the third image is about 1.0 pixel. 
R.m.s. projected error is again about 0.5 pixels. 

The 2-image matching scheme gives rise to some image matches which exist 
only between image 1-2, or image 2-3. This can be because a number of the 
proposed matches (actually mismatches) accidentally agree with the epipolar 
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Fig. 2. Three images from a sequence of a chapel, acquired by a hand-held camcorder. 
(~Lmera motion is lateral and a few centimetres between frames. Image size and corner 
count as in Figure 1. U p p e r  3 images:  In the 2-image scheme, about 150-200 matches 
are obtained between each pair, with r.m.s, distance of points to epipolar lines about 
0.4 pixels. About 80 matches survive across all three frames. Lower  3 images :  In the 
3-image scheme, the number of tokens matched across all three images is again about 
80. The r.m.s, error between transferred points (using the trifocal tensor) and actual 
points in the third image is about 1.5 pixels. R.m.s. projected error is about 0.5 pixels. 

geometry.  (Other  reasons for matches existing only between image 1-2 or image 2- 
3 are tha t  the corner detector does not continue to find the point,  or the physical 
point  moves out of  view.) A mismatch which accidentally agrees with the epipolar  
geometry  generates a meaningless 3D point,  which cannot  project  to a potent ia l  
match  in the third image, so the corner is not  matched across the triplet. Figure 
3 shows the full set of  matches for images 1-2 of the ou tdoor  scene (a superset of  
the matches  in Figure 2, all consistent with the es t imated fundamenta l  matr ix) ,  
and the mismatches  present in this set. Epipolar  mismatches of  this type  occur 
part icular ly in an area of texture which gives many  corners of  similar appearance  
along the epipolar line (such as trees and bushes in ou tdoor  scenes). 

Fig.  3. For the sequence in Figure 2 under the 2-image matching scheme, the left image 
shows the full set of matches obtained between the first two images. The right image 
shows those matches which are in actuality outliers. They are congregated mainly on 
the ambiguous texture area created by the trees in the background, and are accepted 
by the 2-image matching because they accidentally agree with the epipolar geometry. 
Only one of these outliers survives when a third image is processed, however - see 
Figure 2. 

Figure 4 indicates how the robust  trifocal tensor computa t ion  in the 3-image 
match ing  scheme enables direct identification of mismatches  in the set of  seed 
point  and line matches.  
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Fig. 4. Results for matching a triplet of images using the trifocal tensor, superimposed 
onto the last image. Top left: point correspondences over the three images, with small 
squares indicating the previous positions, centre:  matches consistent with the com- 
puted trifocal tensor, right: outlying matches (mismatched points). At bottom, the 
same information for line matches. In all, there are 101 seed point correspondences 
over the three images, 76 are indicated as inliers, and 25 as outliers. There are 15 seed 
line correspondences, 11 are indicated as inliers, and 4 as outliers. 

In summary, the experimental results do not suggest that  the 3-image match- 
ing scheme produces a marked improvement over the 2-image scheme. There are 
still good reasons for favouring the 3-image approach, however. Firstly, it is 
computationally much more elegant and efficient to use the trifocal tensor to 
match over three images and eliminate mismatches, rather than creating 3D 
structure from the first two images and then projecting it to the third. Secondly, 
mismatches in the 2-image scheme which accidentally agree with the epipolar 
geometry are only detected after processing has moved to the third image. By 
this stage, it is cumbersome to return to the first two images, remove the mis- 
match and at tempt  to rematch the points. Furthermore, the mismatches may 
have adversely affected the computation of the fundamental matrix, leading to 
missed matches. In contrast, the 3-image scheme offers the possibility of detect- 
ing suspect pairwise matches immediately by using the trifocal tensor. Finally, 
the 3-image approach and the trifocal tensor allow the integrated use of points 
and lines, unlike the 2-image approach where corners drive the processing. 
E x p e r i m e n t  II :  T r a c k  L i f e t i m e  The image matches are extended over a se- 
quence as follows. For the 2-image scheme, the method for images 2 & 3 described 
above is extended naturally to images n & n + 1 using the structure computed 
from n images. For the 3-image scheme, matches between images images n - 1, 
n & n + 1 are generated using the robust estimation of the trifocal tensor for 
this triplet. 

Figure 5 shows two comparisons of the 2-image and 3-image schemes, in terms 
of overall matching statistics along a sequence. As expected, the total number of 
matches is generally higher for the 2-image scheme because it includes transient 
corners which only appear for 2 images, as well as a small number of mismatches 
which accidentally agree with the epipolar geometry. The 2-image scheme also 
has more long surviving matches; this is because the 3-image scheme applies a 
stronger geometric constraint, and so is less tolerant of localisation errors in the 
features. 
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Fig. 5. Three images from a sequence of twenty, taken as the camera moves while 
fixating a set of objects. The left graph shows the total number of matches at each 
stage, as an indicator of overall performance. The right graph shows the number of 
matches which have been tracked continuously from the start of the sequence at each 
point. 

3 R o b u s t  c o m p u t a t i o n  o f  t h e  t r i f o c a l  t e n s o r  

In this section we describe the robust computation of the trifocal tensor from a 
set of putat ive corner and line correspondences over three images, obtained as 
described in the previous section. The trifocal tensor has 27 elements, but only 
their ratio is significant, leaving 26 that  must be specified. Each triplet of point 
correspondences provides four independent linear equations for the elements of 
the tensor, and each triplet of line correspondences provides two linear equations. 
Therefore provided that  2nz + 4np >_ 26 (where nz is the number of lines, and nv 
is the number of points), the tensor can be determined uniquely (up to scale) 
using a linear algorithm. Consequently, the tensor can be computed linearly from 
a minimum of 7 points or 13 lines or a combination of the two. However, the 
tensor has only 18 independent degrees of freedom, which means tha t  it can be 
computed from 6 point correspondences, though not uniquely - -  there are 1 or 
3 solutions, according to the number of real roots of an associated cubic. 

For random sampling methods, such as Least Median Squares (LMS) [20] or 
RANSAC it is extremely important  that  the minimum number of correspon- 
dences are used, so as to reduce the probability of a mismatch being included 
in the random sample of correspondences, furthermore a six point solution will 
be exact, having only 18 degrees of freedom in the coefficients. This is why the 
novel six point solution used here is important .  It  is not a problem that  there are 
three solutions, since the correct solution of the three is identified when measur- 
ing support  for the solution from the full set of putative matches. The method 
for finding the trifocal tensor from six points uses the theory of Quan [18] for 
computing an invariant of six points from 3 views, and is described in [2]. 
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3.1 C o m p a r i s o n  o f  six a n d  seven  p o i n t  r o b u s t  s c h e m e s  

Ideally every possible subsample of the full set of putative matches would be 
considered, but this is usually computationally infeasible, so m the number of 
samples, is chosen sufficiently high to give a probability T in excess of 95% that  
a good subsample is selected. The expression for this probability T is [20] 

T = I - ( 1 - ( 1 - e ) P )  m, (2) 

where e is the fraction of contaminated data, and p the number of tokens in 
each sample. Table 1 gives some sample values of the number m of subsamples 
required to ensure 7" > 0.95 for given p and e. It can be seen that  the smaller the 
data  set needed to instantiate a model, the less samples are required for a given 
level of confidence. If the fraction of data that  is contaminated is unknown, as 
is usual, an educated worst case estimate of the level of contamination must be 
made in order to determine the number of samples to be taken. It can be seen 
that  as the proportion of outliers increases many more samples need to be taken 
for the seven point algorithm then for the six point method. 

Features Fraction of Contaminated Data, e ]1 
p s% 10 % 20 %25 % 3o %40 % 50 %11 
6 3 4 10 16 24 63 191 I 
7 3 5 13 21 35 106 382 

Table 1. The number m o] subsamples required to ensure :F > 0.95 ]or given p and 
~, where T is the probability that all the data points selected in one subsample are 
non-outliers. 

The six point algorithm gives better results than the seven point algorithm 
described in [25], when tested on both real data and synthetic data  (where the 
ground truth is known). This is for two reasons, the first being that  that  the 
six point algorithm requires fewer correspondences, and so has less chance of 
including an outlier as evinced by Table 1; the second, and perhaps more im- 
portant,  is that the six point algorithm exactly encodes the constraints on the 
parameters of the trifocal tensor. The seven point algorithm on the other hand 
has too many degrees of freedoms, 27, when there should only be 18. This means 
that  the tensor is over parameterised and a least squares solution will usually 
give a result that violates the constraints on its coefficients leading to a solution 
that  is implicitly incorrect. 

The six point algorithm is also considerably faster. In the case of the seven 
point algorithm the eigenvector of a 27 x 27 matrix must be found, which is 
slower than the solution of a cubic. Furthermore far fewer six point samples 
need to be taken to get a given degree of confidence in the result. 
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4 Structure  Recovery 

Camera  matrices are generated at the start  of a sequence, using either the fun- 
damental  matr ix  in a 2-image scheme, or the trifocal tensor in a 3-image scheme, 
and matched corners and line segments are then used to instantiate estimates 
of 3D point and line structure. An update  process is subsequently employed for 
each new image added to the sequence. Matching between the last image and 
the new image provides a correspondence between existing 3D structure and the 
new image primitives, enabling computat ion of the camera matr ix  P for the new 
image. Once P is known, existing estimates of 3D structure are updated from 
the new observations using an Extended Kalman Filter. Then, P is recomputed 
using a non-linear computation which minimises the squared distance between 
the projection of the updated 3D structure and the actual image observations 
on the image plane for the new image. New points and line segments in 3D are 
initialised whenever new structure becomes visible in the course of the sequence. 

4 . 1  R e s u l t s  

This section contains experimental results for the estimated 3D structure. The 
structure is "Quasi-Euclidean" (a form which is close to being true Euclidean) 
which can be obtained given approximate knowledge of the camera internal 
parameters  as described in [3]. 

Figures 6 and 7 show results for the sequence of a model house, and the out- 
door scene of a chapel. Point and line structure is shown. The recovered structure 
is best illustrated by using Delaunay triangulation to obtain image connectivity 
of the structure, and then mapping image intensity onto the triangular facets in 
3D. Lines significantly improve the rendering since they often mark boundaries 
of object planes. 

Fig. 6. At top is the point and line structure recovered for the model house of figure 
1. Top-right shows the front wall and roof viewed edge on. The bottom images are 
obtained by rendering image intensity onto the 3D structure and viewing it from novel 
viewpoints (viewpoints which were never seen in the original sequence). 
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Fig. 7. Results for the outdoor scene of a chapel of Figure 2. Details axe as for the 
previous figure. The dappling effect on the front of the chapel is sunshine through trees. 
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