Skip to main content

Proof-search in intuitionistic logic based on constraint satisfaction

  • Contributed Papers
  • Conference paper
  • First Online:
Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX 1996)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1071))

Abstract

We characterize provability in intuitionistic predicate logic in terms of derivation skeletons and constraints and study the problem of instantiations of a skeleton to valid derivations. We prove that for two different notions of a skeleton the problem is respectively polynomial and NP-complete. As an application of our technique, we demonstrate PSPACE-completeness of the prenex fragment of intuitionistic logic. We outline some applications of the proposed technique in automated reasoning.

Supported by a TFR grant

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.V. Anufriev and Z.M. Aselderov. The algorithm of evidence (in Russian). Kibernetika, (5):29–60, 1972.

    Google Scholar 

  2. A. Degtyarev and A. Voronkov. Equality control methods in machine theorem proving. Cybernetics, 22(3):298–307, 1986.

    Google Scholar 

  3. A.I. Degtyarev, A.P. Zhezherun, and A.V. Lyaletski. Deductive tools of a mathematical text processing system (in Russian). Kibernetika, (5):105–108, 1978.

    Google Scholar 

  4. A. Degtyarev and A. Voronkov. Skolemization and decidability problems for fragments of intuitionistic logic. To appear in LICS'96, 10 pages, 1996.

    Google Scholar 

  5. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 57:795–807, 1992.

    Google Scholar 

  6. M. Gabbrielli, G.M. Dore, and G. Levi. Observable semantics for constraint logic programs. Journal of Logic and Computation, 5(2):133–171, 1995.

    Google Scholar 

  7. M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco, 1979.

    Google Scholar 

  8. J. Hudelmaier. An O(n log n)-space decision procedure for intuitionistic propositional logic. Journal of Logic and Computation, 3(1):63–75, 1993.

    Google Scholar 

  9. S. Kanger. Provability in Logic, volume 1 of Studies in Philosophy. Almqvist and Wicksell, Stockholm, 1957.

    Google Scholar 

  10. S. Kanger. A simplified proof method for elementary logic. In J. Siekmann and G. Wrightson, editors, Automation of Reasoning. Classical Papers on Computational Logic, volume 1, pages 364–371. Springer Verlag, 1983. Originally appeared in 1963.

    Google Scholar 

  11. H. Kirchner. On the use of constraints in automated deduction. In A. Podelski, editor, Constraint Programming: Basics and Tools, volume 910 of Lecture Notes in Computer Science, pages 128–146. Springer Verlag, 1995.

    Google Scholar 

  12. P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic implication. In Proc. IEEE Conference on Logic in Computer Science (LICS), pages 51–62, 1991.

    Google Scholar 

  13. M.J. Maher. A CLP view of logic programming. In Proc. Conf. on Algebraic and Logic Programming, volume 632 of Lecture Notes in Computer Science, pages 364–383, October 1992.

    Google Scholar 

  14. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Programming Languages and Systems, 4(2):258–282, 1982.

    Google Scholar 

  15. S.Yu. Maslov. An invertible sequential variant of constructive predicate calculus (in Russian). Zapiski Nauchnyh Seminarov LOMI, 4, 1967. English Translation in: Seminars in Mathematics: Steklov Math. Inst. 4, Consultants Bureau, NY-London, 1969, p.36–42.

    Google Scholar 

  16. P. Miglioli, U. Moscato, and M. Ornaghi. An improved refutation system for intuitionistic predicate logic. Journal of Automated Reasoning, 13:361–373, 1994.

    Google Scholar 

  17. R. Nieuwenhuis and A. Rubio. AC-superposition with constraints: no AC-unifiers needed. In A. Bundy, editor, Automated Deduction — CADE-12. 12th International Conference on Automated Deduction., volume 814 of Lecture Notes in Artificial Intelligence, pages 545–559, Nancy, France, June/July 1994.

    Google Scholar 

  18. J. Otten and C. Kreitz. A connection based proof method for intuitionistic logic. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Theorem Proving with Analytic Tableaux and Related Methods, number 918 in Lecture Notes in Computer Science, pages 122–137, Schloß Rheinfels, St. Goar, Germany, May 1995.

    Google Scholar 

  19. D. Prawitz. An improved proof procedure. In J. Siekmann and G. Wrightson, editors, Automation of Reasoning. Classical Papers on Computational Logic, volume 1, pages 162–201. Springer Verlag, 1983. Originally appeared in 1960.

    Google Scholar 

  20. D. Prawitz. A proof procedure with matrix reduction. In M. Laudet, L. Lacombe, L. Nolin, and M Schutzenberger, editors, Symp. on Automatic Demonstration, volume 125 of Lecture Notes in Mathematics, pages 207–213. Springer Verlag, 1970.

    Google Scholar 

  21. N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor, 11th International Conference on Automated Deduction, volume 607 of Lecture Notes in Artificial Intelligence, pages 522–536, Saratoga Springs, NY, USA, June 1992. Springer Verlag.

    Google Scholar 

  22. R. Statman. Intuitionistic logic is polynomial-space complete. Theoretical Computer Science, 9, 1979.

    Google Scholar 

  23. T. Tammet. A resolution theorem prover for intuitionistic logic. Submitted.

    Google Scholar 

  24. N.N. Vorob'ev. The derivability problem in the constructive propositional calculus with strong negation. Dokl. Akad. Nauk SSSR (in Russian), 58:689–692, 1952.

    Google Scholar 

  25. N.N. Vorob'ev. A new derivability algorithm in the constructive propositional calculus. In Trudy Math. Inst. Steklov, volume 52. Moscow, 1958.

    Google Scholar 

  26. A. Voronkov. Theorem proving in non-standard logics based on the inverse method. In D. Kapur, editor, 11th International Conference on Automated Deduction, volume 607 of Lecture Notes in Artificial Intelligence, pages 648–662, Saratoga Springs, NY, USA, June 1992. Springer Verlag.

    Google Scholar 

  27. A. Voronkov. On proof-search in intuitionistic logic with equality, or back to simultaneous rigid E-Unification. UPMAIL Technical Report 121, Uppsala University, Computing Science Department, January 1996.

    Google Scholar 

  28. A. Voronkov. Proof-search in intuitionistic logic based on the constraint satisfaction. UPMAIL Technical Report 120, Uppsala University, Computing Science Department, January 1996.

    Google Scholar 

  29. L.A. Wallen. Automated Deduction in Nonclassical Logics. MIT Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Miglioli U. Moscato D. Mundici M. Ornaghi

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Voronkov, A. (1996). Proof-search in intuitionistic logic based on constraint satisfaction. In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds) Theorem Proving with Analytic Tableaux and Related Methods. TABLEAUX 1996. Lecture Notes in Computer Science, vol 1071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61208-4_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-61208-4_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61208-7

  • Online ISBN: 978-3-540-68368-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics