
Approximation and Normalization Results
for Typeable Term Rewriting Systems

(HOA’95, LNCS 1074, pages 17-36, 1996)

Steffen van Bakel and Maribel Fernández

Department of Computing,
Imperial College,

180 Queens Gate, London SW7 2BZ,
svb@doc.ic.ac.uk

DMI - LIENS (CNRS URA 1327)
École Normale Supérieure

45 Rue d’Ulm, 75005 Paris, France
maribel@dmi.ens.fr

Abstract

We consider an intersection type assignment system for term rewriting systems extended
with application, and define a notion of (finite) approximation on terms. We then prove
that for typeable rewrite systems satisfying a general scheme for recursive definitions, every
typeable term has an approximant of the same type. This approximation result, and the proof
technique developed to obtain it, allow us to deduce in a direct way a head-normalization, a
normalization, and a strong normalization theorem, for different classes of typeable terms.

1 Introduction

Term rewriting systems (TRS) can be seen as a model of computation, as programming or
specification languages, or as formulae manipulating systems that can be used in various
applications such as program optimization or automated theorem proving. Confluence and
termination (also called strong normalization) are the most important properties of these sys-
tems: confluence ensures determinacy, whereas termination ensures that all rewrite sequences
are finite. For some applications, in particular when TRS are used as a programming lan-
guage, weaker properties than termination suffice. For instance, during computation head-
normalization is a useful property: a system is head-normalizing if every term can be reduced
to a term which will never reduce at the root.

In this paper we focus on normalization properties of TRS. We consider a class of systems,
called Curryfied Term Rewriting Systems (CuTRS), that are first-order TRS with a binary function
symbol Ap that allows for partial application of function symbols. This function symbol can be
used to define Curryfied versions of other function symbols. An advantage of having Ap in
the language is that it makes it easy to code higher-order languages, like Combinator Systems
and λ-calculus (LC), as CuTRS (i.e. first-order rewrite systems).

It is well-known that in the study of normalization of reduction systems, the notion of types
plays an important role. The type system used in this paper, the intersection type discipline [10]
(see also [8, 9, 2]) is an extension of Curry’s type assignment system for LC [11]. The extension
consists of that terms and term-variables are (essentially) allowed to have more than one type.
Intersection types are constructed by having, in addition to the type constructor ‘→’, the
type constructor ‘∩’ and the type constant ‘ω’. Using intersection types a characterization of
typeable λ-terms can be given:

• the set of terms typeable without using ω is the set of strongly normalizable terms,
• the set of terms typeable with type σ from a basis B, such that ω does not occur in B and

σ, is the set of normalizable terms, and

HOA’95, LNCS 1074, pages 17-36, 1996 2

• the set of terms typeable with type σ �= ω is the set of terms having a head-normal form.

(see, for instance, [19, 2]). Perhaps less well-known is the fact that the notion of approximant
can be useful in the study of the relation between typeability and normalization. Intuitively,
an approximant of a term is a finite description of its (possibly infinite) normal forms (see,
e.g., [23] for a definition of approximants for LC). The aim of this paper is to investigate the
relation between normalization and typeability through the use of approximants within the
framework of CuTRS.

In [6] and [7] we presented an intersection type assignment system for CuTRS and showed
that, provided the rewrite rules are typeable and satisfy a general scheme of recursion (inspired
by the scheme of Jouannaud and Okada [16]):

• if ω is not used, typeable terms are strongly normalizable,
• non-Curryfied terms (i.e. terms without Curryfied functions and Ap) typeable with type

σ from a basis B, such that ω does not occur in B and σ, are normalizable, and
• terms typeable with type σ �= ω have a head-normal form.

Each of the above properties was proved separately. In this paper we will show that these
properties can in fact be derived from one result. To that aim, we first present the formal
construction needed to show that any typeable term in a typeable CuTRS has an approximant
of the same type (the approximation theorem), and then show that all of the above properties
can be derived from this result in a straightforward manner. This then confirms our initial
claim that the notion of approximant is a useful tool in the study of the relations between
typeability and normalization in the rewriting framework.

In order to define approximants of terms in CuTRS, we introduce a special symbol ⊥ (bottom)
into our systems, and follow the ideas of Thatte [22], which in turn are based on the definition
of Ω-normal forms of Huet and Lévy [15]. As shown by Thatte, it is possible to define a fully
abstract model of a term rewriting language by interpreting terms by sets of approximants.
Our approximation theorem shows the connections between the intersection type system and
the semantics of the language: any typeable term has a “meaning” in the model (i.e. an
approximant different from ⊥). In [1] (see also [17]), Ariola et al. discuss several notions of
“undefined” (or “meaningless”) terms. It turns out that our meaningless terms (which, as a
consequence of the approximation theorem are untypeable) do not have a head-normal form.
In the terminology of [1], the set of terms without head-normal form is the set Urs (terms
without a root stable form). Hence, our notion of undefined terms can be seen as an extension
to typeable systems of the latter one.

In order to prove the approximation theorem, we define a rewrite relation on type deriva-
tions (called derivation reduction), and prove that under some restrictions on the use of recur-
sion in the rewrite rules (the general scheme) this relation is strongly normalizing. We use the
technique of Computability Predicates for this proof (see, e.g., [14]). We then show that an
approximant of t can be obtained simply by replacing untypeable subterms by ⊥ in the nor-
mal form of the derivation for t. The strong normalization of the standard rewrite relation on
typeable terms when ω is not used, is an immediate consequence of the strong normalization
theorem for derivation reduction, whereas the head-normalization and the normalization the-
orems are direct consequences of the approximation theorem. These results hold in particular
for Combinator Systems, as a particular case of CuTRS that satisfies the required conditions.

This paper is organized as follows: in Section 2 we recall the definition of CuTRS, and in
Section 3 the intersection type assignment system for CuTRS. Section 4 deals with derivation
reduction and strong normalization of type derivations. In Section 5 we define approximants,
prove the approximation theorem, and then the head-normalization, normalization and strong

HOA’95, LNCS 1074, pages 17-36, 1996 3

normalization theorems. Section 6 contains the conclusions and directions for future work.

2 Curryfied Term Rewriting Systems

Roughly speaking, Curryfied Term Rewriting Systems (CuTRS) are first-order TRS with a bi-
nary function symbol Ap that allows for partial application of function symbols. CuTRS extend
the function-constructor systems used in most functional programming languages, in that not
only constructor symbols can be used in the operand space of the left-hand side of rewrite
rules, but all function symbols. In the following we assume familiarity with the basic notions
and notations of term rewriting systems; we refer the reader to the surveys [18, 12] for a
detailed account and examples.

We consider a signature Σ consisting of a denumerable set X of variables, a finite set F
of function symbols (each equipped with an arity, which is a natural number), and a binary
operator Ap for application. The set T(F,X) of terms is defined inductively as usual, but from
X and F ∪ {Ap}. Var (t) denotes the set of variables that appear in t.

We will call ‘term-substitution’ the operation that replaces term-variables by terms (we re-
serve the word ‘substitution’ for the operation that replaces type-variables by types). To de-
note a term-substitution, we will use capital characters like ‘R’, instead of Greek characters
like ‘σ’, which will be used to denote types. The application of the term-substitution R to
the term t will be denoted by tR. We will use the notation {x1 �→ t1, . . . , xn �→ tn} to denote a
term-substitution.

Definition 2.1 i) Given a signature Σ with a set X of variables and a set F of function sym-
bols, a rewrite rule in Σ is a pair (l,r) of terms in T(F,X). Often a rewrite rule will get a
name, e.g. r, and we write r : l → r. As usual, two conditions are imposed:
a) l is not a variable.
b) The variables occurring in r are contained in l.

If r : F(t1, . . . , tn) → r and, for 1≤ i≤n, either ti is not a variable, or ti is variable and
there is a 1≤ i �= j≤n such that ti = tj, then ti is called a pattern of r.

ii) A Curryfied Term Rewriting System (CuTRS) is a pair (Σ,R) of a signature Σ = (F ,X) and a
set R of rewrite rules in Σ, such that, for every F ∈ F of arity n> 0, there exist n additional
function symbols Fn−1, . . . , F1, F0 in F , the Curryfied-versions of F , and R contains the n
rewrite rules:

Ap (Fn−1 (x1, . . . , xn−1), xn) → F (x1, . . . , xn)
...

Ap (F1 (x1), x2) → F2 (x1, x2)
Ap (F0, x1) → F1 (x1)

If Fi is a Curryfied version of a function symbol F, then its Curryfied versions coincide
with the corresponding Curryfied versions of F: Fi−1, . . . , F0. Moreover, we assume that
for any rule r : l → r in R, if Ap occurs in l, then r is of the shape:

Ap (Fi−1 (x1, . . . , xi−1), xi) → Fi (x1, . . . , xi)

for some Curryfied version Fi−1, and that Curryfied versions do not appear in the root of
any left-hand side of a rule in R.

iii) A rewrite rule r : l → r determines a set of reductions lR → rR for all term-substitutions R.
The term lR is called a redex; it may be replaced by its contractum rR inside a context C[];
this gives rise to rewrite steps: C[lR] →r C[rR]. We write t →R t′, if there is a r ∈ R such
that t →r t′. Concatenating rewrite steps we have (possibly infinite) rewrite sequences t0 →

HOA’95, LNCS 1074, pages 17-36, 1996 4

t2 → ·· ·. If t0 → ·· · → tn (n ≥ 0) we also write t0 →∗ tn, and tn is a reduct of t0.

Terms that do not contain Curryfied versions of function symbols or Ap will be called non-
Curryfied terms.

Because of the extra rules for Fn−1, . . . , F1, F0, etc., the rewrite systems are called Curry-
closed. When presenting a rewrite system sometimes we will omit the rules that define the
Curryfied versions.

Example 2.2 Curryfied Combinatory Logic (CCL) is the CuTRS with function symbols F = {S, S2,
S1, S0, K, K1, K0, I, I0}, and rewrite rules

S (x,y,z) → Ap (Ap (x,z), Ap (y,z))
K (x,y) → x
I (x) → x

Because CCL is Curry-closed, it inherits combinatory completeness from Combinatory Logic
(every lambda term can be translated into a term in CCL).

Definition 2.3 i) A term is in normal form if it is irreducible.
ii) A term t is in head-normal form if for all t′ such that t →∗ t′:

a) t′ is not itself a redex, and
b) if t′ = Ap (v,u) then v is in head-normal form.

The notions (head-)normalizable and strongly normalizing are defined as usual.

Our definition of head-normal form is an extension to systems with Ap of the notion of root
stable form defined by Ariola et al. [1] (see also [17]). Note that the head of a term of the form
Ap (v,u) is in v, since we can think of Ap as an invisible symbol.

Example 2.4 Take the CuTRS F (G, H) → A, B (C) → G, then F (B (C), H) and Ap (F (B (C), H))
are not redexes, but are neither head-normal forms since F (B (C), H) reduces to F (G, H)
which is a redex.

In a rewrite rule, the leftmost, outermost symbol in the left-hand side that is not an Ap, is
called the defined symbol of that rule; the set F of function symbols can be divided into defined
symbols, and other symbols, the constructors.

We will assume that rules are not mutually recursive.

Definition 2.5 A symbol F depends on G if G occurs in the right-hand side of a rule that defines
F. A CuTRS whose dependency-graph is an ordered a-cyclic graph, is called hierarchical.

The rewrite rules of a hierarchical CuTRS can be regrouped in such a way that they are
incremental definitions of the defined symbols F1, . . . , Fk, so that the rules defining Fi only
depend on F1, . . . , Fi−1.

Example 2.6 Since Ap is never a defined symbol, D (x) → Ap (x, x) is not considered a recur-
sive system. Notice that, for example, the term D (D0) has no normal form (this term plays
the role of (λx.xx)(λx.xx) in LC). This means that, in the formalism of this paper, there exist
non-recursive CuTRS that are not normalizing.

HOA’95, LNCS 1074, pages 17-36, 1996 5

3 Type assignment in CuTRS

In this section we recall a variant of the intersection type assignment system for CuTRS pre-
sented in [3]. This notion of type assignment is partial in the sense of [20]: not only will we
define how terms and rewrite rules can be typed, but we will also assume that every function
symbol already has a type, provided by an environment (i.e. a mapping from function symbols
to types).

3.1 Bases, Types, and Operations

We consider a set of sorts (names of domains), the constant types of our system. When sorts
are not taken into account, the strict intersection types defined below are the representatives for
equivalence classes of the types considered in the system of [8]. We will define the type ω as
an intersection of zero types: if n = 0, then σ1∩· · ·∩σn = ω.

Definition 3.1 i) Ts, the set of strict types, and TS, the set of strict intersection types, are defined
through mutual induction by:
a) 1) All type-variables ϕ0, ϕ1, . . . ∈ Ts.

2) All sorts s1, s2, . . . ∈ Ts.
3) If τ ∈ Ts and σ ∈ TS, then σ→τ ∈ Ts.

b) If σ1, . . . ,σn ∈ Ts (n ≥ 0), then σ1∩· · ·∩σn ∈ TS.
ii) On TS, the relation ≤S is defined by:

a) ∀ 1≤ i≤n (n ≥ 1) [σ1∩· · ·∩σn ≤S σi].
b) ∀ 1≤ i≤n (n ≥ 0) [σ ≤S σi] ⇒ σ ≤S σ1∩· · ·∩σn.
c) σ ≤S τ ≤S ρ ⇒ σ ≤S ρ.

iii) We define the relation ≤ on TS like the relation ≤S , but we add an extra alternative:
d) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.

iv) On TS, the relation ∼ is defined by: σ ∼ τ ⇐⇒ σ ≤ τ ≤ σ.

TS will be considered modulo ∼ , then ≤ becomes a partial order.

Notice that ω does not occur in an intersection subtype. Moreover, intersection types (so
also ω) occur in strict types only as subtypes at the left-hand side of an arrow type. In general,
according to the previous definition, if σ1∩· · ·∩σn is used to denote a type, then all σ1, . . . ,σn
are strict. Notice also that Ts is a proper subset of TS.

A statement is an expression of the form t:σ, where t ∈ T(F,X) and σ ∈ TS. t is the subject
and σ the predicate of t:σ. A basis is a set of statements with only distinct variables as subjects.
If σ1∩· · ·∩σn is a predicate in a basis, then n ≥ 1. The relations ≤ and ∼ are extended to
bases by: B ≤ B′ ⇐⇒ ∀ x:σ′ ∈ B′ ∃ x:σ ∈ B [σ ≤ σ′], and B ∼ B′ ⇐⇒ B ≤ B′ ≤ B.

If B1, . . . Bn are bases, then Π{B1, . . . Bn} is the basis defined as follows:
x:σ1∩· · ·∩σm ∈ Π{B1, . . . Bn} if and only if {x:σ1, . . . , x:σm} is the set of all statements whose
subject is x that occur in B1 ∪ . . . ∪ Bn. If n = 0, then Π{B1, . . . Bn} = ∅. Often B∪ {x:σ} (or
B, x:σ) will be written for the basis Π{B,{x:σ}}, when x does not occur in B.

We will use three different operations on types (that extend to pairs of 〈basis,type〉), namely
substitution, expansion, and lifting. These were first defined in [4] to show that the strict type
assignment system of [2] has the principal type property. Substitution is the operation that
instantiates a type (i.e. that replaces type variables by types). The operation of expansion
replaces types by the intersection of a number of copies of that type. The operation of lifting

HOA’95, LNCS 1074, pages 17-36, 1996 6

replaces basis and type by a smaller basis and a larger type, in the sense of ≤. See [3] for
formal definitions.

Definition 3.2 A chain Ch is a sequence [O1, . . . ,On], where each Oi is an operation of expan-
sion, substitution, or lifting, and

[O1, . . . ,On] (〈B,σ〉) = On (· · ·(O1 (〈B,σ〉))· · ·).

3.2 Intersection type assignment in CuTRS

Definition 3.3 Let (Σ,R) be a CuTRS. A mapping E : F ∪{Ap} → Ts is called an environment
if E (Ap) = (ϕ1→ϕ2)→ϕ1→ϕ2, and for every F ∈ F with arity n, E (F) = E (Fn−1) = · · · = E (F0).

Since E maps all F ∈ F to types in Ts, no function symbol is mapped to ω.

The notion of type assignment on CuTRS will be defined in two stages. In the next definition
we consider type assignment on terms, in Def. 3.6 we will define type assignment on term
rewrite rules.

Definition 3.4 i) Type assignment and derivations are defined by the following natural deduc-
tion system (where all types displayed are in Ts, except for σ in rule (≤), and σ1, . . . ,σn in
rule (→E)):

x:σ ∈ B σ ≤ τ
(≤):

B �E x:τ

B �E t:σ1 . . . B �E t:σn
(∩I): (n ≥ 0)

B �E t:σ1∩· · ·∩σn

B �E t1:σ1 . . . B �E tn:σn
(→E): (∃Ch [Ch (E(F)) = σ1→·· ·→σn→σ])

B �E F(t1, . . . , tn):σ

ii) We write B �E t:σ if and only if there is a derivation that has B �E t:σ as conclusion. A
derivation D for B �E t:σ will be denoted by D:: B �E t:σ (or simply D when the conclu-
sion B �E t:σ is clear from the context).

Notice that, by (∩I), for every B and t, B �E t:ω. However, we will limit the expression typeable
terms to those terms that have a type different from ω.

Note that the types that can be assigned to occurrences of function symbols or Ap are obtained
from the type provided by the environment by using a chain of operations. The use of an
environment in rule (→E) introduces a notion of polymorphism into our system.

To guarantee the subject reduction property, as shown in [3], it is sufficient to define type
assignment on rewrite rules using a notion of principal pairs.

Definition 3.5 〈P,π〉 is called a principal pair for t with respect to E , if P �E t:π and, if B �E t:σ,
there is a chain Ch such that Ch (〈P,π〉) = 〈B,σ〉.

Definition 3.6 Let (Σ,R) be a CuTRS, and E an environment. We say that l → r ∈ R with de-
fined symbol F is typeable with respect to E , if there are basis P, type π ∈ Ts, and an assignment
of types to l and r such that:

i) 〈P,π〉 is a principal pair for l with respect to E , and P �E r:π.
ii) In P �E l:π and P �E r:π, the type actually used for each occurrence of F (or Curryfied

versions of F) is E (F).

We say that (Σ,R) is typeable with respect to E if every r ∈ R is.

HOA’95, LNCS 1074, pages 17-36, 1996 7

Theorem 3.7 Subject Reduction. ([3]) Let (Σ,R) be a typeable CuTRS with respect to an environ-
ment E . If B �E t:σ and t →∗

R t′, then B �E t′ :σ.

The type assignment system we have presented is undecidable, but its restriction to inter-
section types of Rank 2 is decidable, as shown in [5]. The properties we will show in the
following sections hold also in the decidable Rank 2 system.

4 Strong normalization of derivation reduction

In this section, we will define the notion of reduction on derivations (here called derivation
reduction) as a generalization of cut-elimination: reductions on a derivation D:: B �′

E t:σ will
follow standard reduction, by contracting redexes that have a type different from ω in D,
and replacing the derivation for the redex by the derivation for the right-hand side of the
rewrite rule. Derivation reduction has an interesting property: it is strongly normalizing when
the rewrite rules are typeable and satisfy certain syntactical conditions (a general scheme of
recursion). This property will be used in the following section to prove the approximation
theorem (for the full system), as well as to deduce the properties of head-normalization,
normalization, and strong normalization of terms according to the set of assignable types.

To prove strong normalization of derivation reduction, however, we will restrict the def-
inition of type assignment: for technical reasons, the derivation rule (≤) of Def. 3.4 is too
powerful, and we will limit its use to that of a rule (∩E), thus defining a notion �′

E .

Definition 4.1 i) Strict type assignment and strict derivations are defined by the following nat-
ural deduction system (where all types displayed are in Ts, except for σ1, . . . ,σn in rule
(→E)):

x:σ1∩· · ·∩σn ∈ B
(∩E): (1≤ i≤n)

B �′
E x:σi

B �′
E t:σ1 . . . B �′

E t:σn
(∩I): (n ≥ 0)

B �′
E t:σ1∩· · ·∩σn

B �′
E t1:σ1 . . . B �′

E tn:σn
(→E): (∃Ch [Ch (E(F)) = σ1→·· ·→σn→σ])

B �′
E F(t1, . . . , tn):σ

ii) We write B �′
E t:σ if and only if there is a derivation that has B �′

E t:σ as conclusion. A
derivation D for B �′

E t:σ will be denoted by D:: B �′
E t:σ, or simply D if the conclusion

B �′
E t:σ is clear from the context.

The relation between the two notions of type assigment is formulated by:

Lemma 4.2 i) If B �E t:σ, then there is a B′ such that B ≤ B′, and B′ �′
E t:σ.

ii) If B �′
E t:σ, and B′ is such that B′ ≤ B, then B′ �E t:σ.

Rewriting preserves types also in the strict type assignment system:

Theorem 4.3 Strict Subject Reduction. Let (Σ,R) be a typeable CuTRS with respect to an environ-
ment E . If B �′

E t:σ, and t →∗
R t′, then B �′

E t′ :σ.

Definition 4.4 We will use a short-hand notation for strict derivations.
i) We write 〈∩E〉 :: B �′

E x:σ to denote the derivation of B �′
E x:σ that consists of nothing but

an application of rule (∩E).

HOA’95, LNCS 1074, pages 17-36, 1996 8

ii) We write D = 〈D1, . . . ,Dn,∩I〉, if there are t, σ1, . . . ,σn such that Di :: B �′
E t:σi, for every

1≤ i≤n, and D is obtained from D1, . . . , Dn by applying rule (∩I).
iii) We write D = 〈D1, . . . ,Dn,→E〉, if there are F ∈ F ∪{Ap}, t1, . . . , tn, and σ1, . . . ,σn such that

Di :: B �′
E ti:σi, for every 1≤ i≤n, and D is obtained from D1, . . . , Dn by applying rule

(→E).

We can prove the following properties, that are needed further on:

Lemma 4.5 i) If D:: B �′
E x:τ, then there is x:σ ∈ B such that σ ≤S τ.

ii) B �′
E Fn(t1, . . . , tn):σ & σ ∈ Ts ⇒ ∃ α ∈ TS, β ∈ Ts [σ = α→β].

In order to define derivation reduction, we need a notion of substitution on derivations (for
lack of space, we do not give a formal definition):

Definition 4.6 Let B′ = {x1:σ1, . . . , xn:σn}, D :: B′ �′
E t:τ, and let R, B be such that, for every

1≤ i≤n, there is a Di :: B �′
E xiR:σi. Each leaf of the form xi:σi ∈ B′ that appears in D is the

premise for a (∩E)-rule. More precisely, for each of those leaves there is a subderivation

xi:σi ∈ B′
Di,j :: (∩E)

B′ �′
E xi:ρi

j

in D, where, by Lem. 4.5-(i), σi ≤S ρi
j. Now, there are two possibilities: either σi = ρi

j, or σi =
ρi

1∩· · ·∩ρi
mi

and hence the last step in the derivation Di has to be (∩I), i.e. Di is of the shape:

�
��

Di
1

�
��

B �′
E xiR:ρi

1

· · ·
�
��

Di
mi

�
��

B �′
E xiR:ρi

mi (∩I)
B �′

E xiR:σi

The derivation D [Di/xi:σi] is defined as the derivation obtained from D by replacing all oc-
currences of Di,j such that σi = ρi

j by Di, and the others by the corresponding Di
j, and making

in t the corresponding replacement of xi by xiR.

We now give the definition of reduction on derivations.

Definition 4.7 The derivation reduction relation, denoted by D:: B �′
E t:σ →D D′ :: B �′

E t′ :σ,
is defined as follows: Suppose there is a rewrite rule l → r where Var (l) = {x1, . . . , xn},
and a subterm of t at position p (denoted t|p) such that: t|p = lR = F(t1, . . . , tm) where R =
{x1 �→u1, . . . , xn �→un}. Assume moreover that for t|p, D contains at least one subderivation D0
of the form:

�
��

D1
�

��
B �′

E u1:σ1
· · ·

�
��

Dn
�
��

B �′
E un:σn

�
��

D0
�

��
B �′

E F(t1, . . . , tm):τ

HOA’95, LNCS 1074, pages 17-36, 1996 9

such that τ �= ω, and the root of D0 is the first occurrence of the statement t|p:τ in a path from
the root of D to a leaf. Then by the Strict Subject Reduction Theorem (Thm. 4.3), there exists
D′

0 ::{x1:σ1, . . . , xn:σn} �′
E r:τ. Let D′ be obtained from D by replacing each subderivation D0

of t|p satisfying the previous conditions by the corresponding

D′
0 [D1/x1:σ1, . . . ,Dn/xn :σn] :: B �′

E rR:τ,

and propagating the replacement of t|p by rR along all the derivation tree. Let t′ be obtained
from t by replacing t|p with rR. Then we write D:: B �′

E t:σ →D D′ :: B �′
E t′:σ.

The reflexive and transitive closure of →D is denoted by →∗
D , and we write SN (D) to

indicate that D is strongly normalizable with respect to →D .

Lemma 4.8 i) If D:: B �′
E t:σ →D D′ :: B �′

E t′ :σ, then t → t′.
ii) Let D:: B �′

E Ap (t,u):σ = 〈D1, D2,→E〉, where D1 :: B �′
E t:τ→σ and D2 :: B �′

E u:τ, then:
SN (D) ⇒ SN (D1) & SN (D2).

iii) Let D:: B �′
E t:σ1∩σ2 = 〈D1, D2,∩I〉, where D1 :: B �′

E t:σ1 and D2 :: B �′
E t:σ2. Then D →D

D′ :: B �′
E t′:σ1∩σ2 if and only if D1 →D D′

1 :: B �′
E t′ :σ1, or D2 →D D′

2 :: B �′
E t′ :σ2.

iv) If D:: B �′
E t:σ1∩σ2 = 〈D1, D2,∩I〉, where D1 :: B �′

E t:σ1 and D2 :: B �′
E t:σ2, then SN (D1) and

SN (D2), if and only if SN (D).
Note that in part (iii) we have an ‘or’ because the redex might appear only in one of the
derivations with a type different from ω.

It is easy to see that in the presence of recursive rules, →D is not strongly normalizing
in general. Therefore, as in [6] and [7], we will control the use of recursion in the rewrite
rules by imposing syntactical conditions inspired by the general scheme of Jouannaud and
Okada [16] (a generalization of primitive recursion). The scheme defined in [6] ensures strong
normalization of typeable terms when the constant ω is not included in the type assignment
system. The version of the recursive scheme that we will use here takes also the presence of
the type constant ω into account.

In a type system with ω, there are two kinds of typeable recursion: the one explicitly
present in the syntax, as well as the one obtained by the so-called fixed-point combinators. Take,
for example, the rewrite system

F (C (x)) → F (x), A (x,y) → Ap (y, Ap (Ap (x, x),y)),

that satisfies the general recursive scheme of [6], and is typeable with respect to

E (F) = ω→σ, E (C) = ω→σ, E (A) = ((α→µ→β)∩α)→((β→ρ)∩µ)→ρ.

Then we can derive �′
E F (A (A0,C0)):σ, but notice that we also have the reduction F (A (A0,C0))→∗

R

F (C (A (A0,C0)))→R F (A (A0,C0)). Hence this rewrite system is not strongly normalizing on
typeable terms (and not even head-normalizing). The underlying problem is that A is acting
as a fixed-point combinator: for every G that has type ω→σ, the term A (A0, G0) has type
σ, and A (A0, G0) →∗

R G (A (A0, G0)). To avoid this problem we will demand that patterns are
never typed using the type constant ω. The general scheme defined in [7] ensures that patterns
are not typed using ω: it requires constructor patterns, with sorts as types. The variant of
the Jouannaud-Okada scheme used in this paper generalizes the one in [7] (still requiring
that patterns are such that they cannot be assigned the type ω, but taking into account type
derivations). It is defined as follows:

Definition 4.9 Safety scheme. Let Σ be a signature with a set of function symbols Fn = C ∪ {F1,

HOA’95, LNCS 1074, pages 17-36, 1996 10

. . . , Fn}, where F1, . . . , Fn will be the defined symbols that are not Curryfied-versions, and C
the set of constructors and Curryfied versions of symbols. Assume that F1, . . . , Fn are defined
incrementally, by rules that satisfy the general scheme:

Fi (C[x],y) → C′[Fi (C1[x],y), . . . , Fi (Cm[x],y), x,y],

where x, y are sequences of variables, and x ⊆ y. Also, C[], C′[], C1[], and Cm[] are sequences
of contexts in T(Fi−1,X), and, for 1≤ j≤m, C[x] >mul Cj[x] where � is the strict subterm
ordering (> denotes strict superterm), and mul denotes multiset extension.

If, moreover, patterns cannot be typed with ω (i.e. for any typing of Fi (C[x],y), no variable
typed with ω occurs twice in Fi (C[x],y), and no non-variable subterm of C[x] can be typed
with ω), and in any typing the derivations for the arguments Cj[x] of the recursive calls in the
right-hand side are subderivations of those of C[x], then the rewrite system is called safe.

Note that the rewrite system of the example above is not safe: the pattern C (x) in the first
rule can be typed with ω in a derivation of F (C (x)) : σ. However, the system containing only
the second rule is safe.

Example 4.10 Combinator Systems are safe by definition, since all left-hand sides of rules have
the form C (x1, . . . , xn), where x1, . . . , xn are different variables, and right-hand sides contain
only variables and Ap. In particular, CCL (see Ex. 2.2) is typeable in the environment ECL:

ECL (S) = (ϕ1→ϕ2→ϕ3)→(ϕ4→ϕ2)→ϕ1∩ϕ4→ϕ3,
ECL (K) = ϕ5→ω→ϕ5,
ECL (I) = ϕ6→ϕ6.

We could also use the standard environment with arrow types only, but more types are ty-
peable using ECL.

More examples of safe systems can be found in [7]. The definition of safe system given
in [7] is a particular case of this one: if patterns are constructor terms, and constructors have
ground types (with sorts only), then the conditions of the previous definition are asatisfied.
Hence, all the systems that are safe in the sense of [7] are also safe according to the previous
definition.

The rest of this section will be devoted to the proof of strong normalization of →D for all
typeable rewrite systems that are safe. We will use the well-known method of Computability
Predicates [21] (see also [14]), adapted to the rewriting framework. The proof will have two
parts; in the first one we define the predicate Comp on derivations, and prove that if Comp (D)
holds, then SN (D). In the second part Comp is shown to hold for each derivation (this second
part differs from the usual proofs for LC in that the structure of the rewrite rules can vary;
here is where the general scheme plays an important role).

Definition 4.11 i) Let B be a basis, t ∈ T(F,X), σ a type, and D:: B �′
E t:σ a derivation. We

define the Computability Predicate Comp (D:: B �′
E t:σ) recursively on σ by:

a) If σ = ϕ, or σ = s, then Comp (D) ⇐⇒ SN (D).
b) If σ = α→β, then Comp (D) ⇐⇒ ∀D′ :: B′ �′

E u:α [Comp (D′) ⇒
[Comp (〈D,D′,→E〉 :: Π{B, B′} �′

E Ap (t,u):β)]].
c) If σ = σ1∩· · ·∩σn, then D = 〈D1, . . . ,Dn,∩I〉, and Comp (D) ⇐⇒

∀ 1≤ i≤n [Comp (Di :: B �′
E t:σi)].

ii) We say that a term-substitution R is computable in a basis B with respect to a basis B′ if for

HOA’95, LNCS 1074, pages 17-36, 1996 11

every x:σ ∈ B, there is D:: B′ �′
E xR:σ, such that Comp (D).

Note that a derivation D:: B �′
E t:ω is trivially computable, by Def. 4.11- (i.c).

The class of neutral terms plays a crucial role in strong normalization proofs. A notion of
neutrality can be defined for derivations as well:

Definition 4.12 i) A term is neutral if it is not of the form Fi (t1, . . . , ti), where Fi is a Curryfied
version of a function symbol F.

ii) A derivation D:: B �′
E t:σ is neutral if t is a neutral term.

We will prove that Comp satisfies the standard properties of computability predicates. First
we need a lemma:

Lemma 4.13 Let D :: B �′
E t:σ be a derivation, and u be a subterm of t that is only typed with ω in

D. Let D′ be a derivation obtained from D by replacing the subderivations of the form B′ �′
E u:ω by

B′ �′
E u′:ω, for u′ an arbitrary term (and propagating the replacements of u by u′ along the derivation).

Then Comp (D) ⇒ Comp (D′).

Property 4.14 (C1) : If Comp (D), then SN (D).

(C2) : If Comp (D) and D →D D′, then Comp (D′).

(C3) : Let D:: B �′
E t:σ be a neutral derivation. Then for all D′ such that D →D D′, Comp (D′)

holds, then Comp (D).

In order to prove the Strong-Normalization Theorem we shall prove a stronger property, for
which we will need the following ordering.

Definition 4.15 Let >· stand for the well-founded encompassment ordering, i.e. u>· v if u �=
v modulo renaming of variables, and u|p = vR for some position p ∈ u and term-substitution
R. The subderivation relation (as well as the subterm ordering) will be denoted by �, i.e. we
write D′ :: B′ �′

E t′ :σ′ � D:: B �′
E t:σ if D′ is a derivation for a strict subterm t′ of t, contained in

D. Let (Σ,R) be a CuTRS. We define the ordering � on triples – consisting of a pair of natural
numbers, a term, and a multiset of derivations – as the object

((>IIN,>IIN)lex ,>· , (→D ∪>)mul)lex

where >IIN denotes the standard ordering on natural numbers, and lex, mul denote respectively
the lexicographic and multiset extension of an ordering.

We now come to the main theorem of this section, in which we show that for any derivation
D:: B �′

E t:σ and computable term-substitution R in B = {x1:σ1, . . . , xn:σn}, also the derivation
D′ :: B′ �′

E tR:σ obtained by substituting the computable derivations Di :: B′ �′
E xiR:σi in D is

computable. The strong normalization result then follows, using Prop. C1, for any derivation
for t, taking for R the identity.

Property 4.16 Let R a computable term-substitution in B = {x1:σ1, . . . , xn:σn}, i.e. for 1≤ i≤n, Comp (Di :: B′ �′
E xiR:σi),

and D:: B �′
E t:σ. Let D′ be the derivation

D′ = D[D1/x1:σ1, . . . ,Dn/xn :σn] :: B′ �′
E tR:σ.

Then Comp (D′).

HOA’95, LNCS 1074, pages 17-36, 1996 12

Proof: We will interpret D′ by the triple I(D′ :: B′ �′
E tR:σ) = 〈(i, j), t,{R}〉 where i is the max-

imal super-index of the function symbols belonging to t, j is the minimum of the differ-
ences arity(Fi) - arity(Fi

k) such that Fi
k occurs in t, and {R} is the multiset of derivations

{Dij :: B′ �′
E xiR:ρij} that are substituted for the xi:σi in the leaves of D to obtain D′. These

triples are compared in the ordering �.
When R is computable, then by Def. 4.11- (i.c) and Def. 4.6, the derivations in {R} are all

computable, and hence by Prop. C1 they are strongly normalizable, so →D is well-founded
on {R}. Also, it is easy to see that the union of > with the terminating relation →D is
well-founded. Hence, when restricted to computable term-substitutions, � is a well-founded
ordering. With the help of this ordering, we can prove the property by noetherian induction.

We will assume that σ �= ω, since otherwise the property is trivial. If σ = σ1∩· · ·∩σn, then, by
Def. 4.11- (i.c), we have to prove Comp (D′

i :: B′ �′
E tR:σi) for very 1≤ i≤n. So, without loss of

generality we can consider σ ∈ Ts.
We distinguish the cases:

i) D:: B �′
E t:σ is a neutral derivation.

If t is a variable then, by Lem. 4.5-(i), there is a τ such that x:τ ∈ B, and
τ ≤S σ. Comp (D′′ :: B′ �′

E tR:τ) holds by assumption, and then, by Def. 4.11- (i.c),
Comp (D′ :: B′ �′

E tR:σ).
If t is not a variable, then also tR is neutral, and we can use Prop. C3: If D′ :: B′ �′

E tR:σ
is irreducible, then Comp (D′) holds by C3. Otherwise, let D′ :: B′ �′

E tR:σ →D D′′

:: B′ �′
E w:σ at position p in tR. In the following we will prove either Comp (D′ :: B′ �′

E tR:σ)
itself, or prove Comp (D′′ :: B′ �′

E w:σ) and apply C3.
a) p = qp′, t|q = xi ∈ X , so the rewriting takes place in a subterm of tR that is introduced

by the term-substitution. Let τ1, . . . ,τn be the types of t|q in D. Let z be a new term-
variable.

Take R′ = R∪ {z �→w|q}, and note that D′ has a subderivation D′
j such that

D′
j :: B′ �′

E tR|q:τj →D D′′
j :: B′ �′

E w|q:τj at position p′. Since t|q = xi, and R is as-
sumed to be computable, Comp (D′

j :: B′ �′
E tR|q:τ j) holds for each subderivation of

D that has root t|q:τj. So Comp (D′′
j :: B′ �′

E w|q :τ j) holds by Prop. C2, hence R′ is
computable in B∪{z:τ1∩ · · · ∩τn}.

Now, if the variable xi (= t|q) has exactly one occurrence in t, then t = t[z]q mod-
ulo renaming of term-variables, and otherwise t>· t[z]q . In the first case (since {R}
contains a derivation that is rewritten to get {R′}) we have I(D′ :: B′ �′

E tR:σ) �3
I(D′′ :: B′ �′

E t[z]qR′:σ), and I(D′ :: B′ �′
E tR:σ) �2 I(D′′ :: B′ �′

E t[z]qR′:σ) in the sec-
ond case. Both cases yield, by induction, Comp (D′′ :: B′ �′

E t[z]qR′:σ) and note that
t[z]qR′ ≡w.

b) Now assume that p is a non-variable position in t. We analyze separately the cases:
1) p is not the root position. Then t >· t|p. Let τ1, . . . ,τn be the types assigned to t|p in

the derivation D:: B �′
E t:σ. Since I(D′ :: B′ �′

E tR:σ) �2 I(D′′
j :: B′ �′

E t|pR:τ j) then
Comp (D′′

j :: B �′
E t|pR:τ j) holds by induction.

Let z be a new variable, and R′ = R∪ {z �→ tR|p}, then R′ is computable
in B∪{z:τ1∩ · · · ∩τn}, and B∪{z:τ1∩ · · · ∩τn} �′

E t[z]p :σ. Now t>· t[z]p, hence
I(D′ :: B′ �′

E tR:σ) �2 I(D′ :: B′ �′
E t[z]pR′:σ), hence Comp (D′ :: B′ �′

E tR:σ) by in-
duction.

2) p is the root position. Then the possible cases for t are:
A) t≡ F(t1, . . . , tn), where at least one of the ti is not a variable, and F is either

a defined symbol of arity n or F≡ Ap and n = 2. Take R′ = R∪ {z1 �→ t1R, . . . ,

HOA’95, LNCS 1074, pages 17-36, 1996 13

zn �→ tnR}. Then if Di :: B �′
E ti:σi is a subderivation of D, Comp (D′

i :: B′ �′
E tiR:σi)

holds by induction, since t >· ti. Hence, R′ is computable in B∪ {z1:σ1,
. . . , zn:σn}, and B∪ {z1:σ1, . . . , zn:σn} �′

E F (z1, . . . ,zn):σ. But, since t >·
F (z1, . . . ,zn), I(D′ :: B′ �′

E tR:σ) �2 I(D′ :: B′ �′
E F (z1, . . . ,zn)R′:σ). Hence

Comp (D′ :: B′ �′
E tR:σ).

B) t≡ Fk (z1, . . . ,zn) where z1, . . . ,zn are different term-variables. (If zi = zj for some
i �= j, we can reason as in part (i.a).) Then tR must be an instance of the left-
hand side of a rule defining Fk, that is, there is a rule

Fk (C[x],y) → C′[Fk (C1[x],y), . . . , Fk (Cm[x],y), x,y],
such that tR = Fk (z1, . . . ,zn)R = Fk (C[M], N)→R C’[Fk (C1[M], N), . . . , Fk (Cm[M],
N), M, N] = w, where C[M], N are all terms in the image of R hence they have
computable derivations by assumption.
Now, we will deduce Comp (D′′ :: B′ �′

E w:σ) in three steps:
(Step I) : Let R′ be the term-substitution that maps the left-hand side of the

rewrite rule into tR, so xR′ = M, yR′ = N. Since x ⊆ y and R is
computable, by Def. 4.11- (i.c), also R′ is computable. For every 1≤
j≤m, Fk does not occur in Cj (by definition of the general scheme),
hence I(D′ :: B′ �′

E Fk (z1, . . . ,zn)R:σ) �1 I(Dj :: B′ �′
E Cj[x]R′:σj), so also the

derivations Dj :: B′ �′
E Cj[x]R′:σj are computable.

(Step II) : Let, for 1≤ j≤m, Rj be the computable term-substitution such that tRj

= Fk (Cj[x],y)R′. Since C[x] >mul Cj[x], and by Def. 4.9, the derivation for
CjR

′[x] is a subderivation of the one for CR′[x], also Dl :: B′ �′
E C[x]R′:τ >mul

Drj :: B′ �′
E Cj[x]R

′:τ, hence
I(D′ :: B′ �′

E Fk (z1, . . . ,zn)R:σ) �3 I(D′
j :: B′ �′

E Fk (z1, . . . ,zn)
Rj :σj),

and therefore the derivation D′
j :: B′ �′

E Fk (z1, . . . ,zn)
Rj :σj is computable.

(Step III) : Let v be the term obtained by replacing, in the right-hand side of the
rule, the terms Fk (C1[M], N), . . . , Fk (Cm[M], N), M, N by fresh variables.
Let R′′ be the term-substitution such that C′[Fk (C1[M], N), . . . , Fk (Cm[M],
N), M,N] = vR′′, then tR →R vR′′, and since σ �= ω, D′ :: B′ �′

E tR:σ →D
D′′ :: B′ �′

E vR′′:σ. Notice that above we have shown that R′′ is computable.
When an Fj occurs in v, then by definition of the general scheme j ¡ k, and
therefore D′�1 D′′, hence D′′ is computable, and since w = vR′′, we get
Comp (D′′ :: B′ �′

E w:σ).
C) t = Ap (z1,z2) where z1,z2 ∈ X . By assumption, the derivations for z1R and z2R

are computable, and since t is well-typed, z1 must have an arrow type. Then,
by Def. 4.11, D′ :: B′ �′

E Ap (z1R,z2R):σ is computable. But Ap (z1R,z2R) is the
same as Ap (z1,z2)R.

ii) D:: B �′
E t:σ is not neutral. Let t≡ Fn(t1, . . . , tn). There are two cases:

a) Assume that at least one of the ti is not a term-variable. Since t>· ti
for 1≤ i≤n, by induction, for each subderivation Di of D with root ti :
τi, we have Comp (D′

i :: B′ �′
E tiR:τi). Hence, also the term-substitution R′

= {z1 �→ t1R, . . . ,zn �→ tnR} is computable. Since t>· Fn (z1, . . . ,zn), we have
I(D′ :: B′ �′

E tR:σ) �2 I(D′′ :: B′ �′
E tR′:σ), and D′′ is computable by induction. Note

that tR′ = tR, and D′′ = D′.
b) All ti are variables. Since B �′

E t:σ, by Lem. 4.5-(ii) σ = α→β. We
have to prove Comp (D′ :: B′ �′

E tR:α→β), that is, if Comp (D′′ :: B′′ �′
E u:α), then

Comp (〈D′,D′′,→E〉 :: Π{B′, B′′} �′
E Ap (tR,u):β), for every D′′. Take D0 =

HOA’95, LNCS 1074, pages 17-36, 1996 14

〈D′,D′′,→E〉 :: Π{B′, B′′} �′
E Ap (tR,u):β. Since Ap (tR,u) is neutral, by Prop. C3, it

is sufficient to prove that, if D0 →D D′′′ :: Π{B′, B′′} �′
E v:β, then Comp (D′′′).

This will be proved by induction on the sum of the lengths of the rewrite sequences
out of D′′ :: B′′ �′

E u:α and out of the substitution. Note that since both are com-
putable, by Prop. C1, SN (D′′ :: B′′ �′

E u:α), and SN ({R}).
(Base) : If the type-derivations for u and {R} are in normal form, the only reduction step

out of D0 could be:
〈D′,D′′,→E〉 :: Π{B′, B′′} �′

E Ap (Fn (z1, . . . ,zn)R,u):β →D
D′′′ :: Π{B′, B′′} �′

E Fn+1 (z1R, . . . ,znR,u):β,
then I(D′ :: B′ �′

E tR:σ) �1 I(D′′′) is computable.
(Induction step) : If the reduction out of D0 takes place inside u or inside tR (in the last

case it must be inside {R} since the rewrite system is safe) then D′′′ is computable
by induction. If 〈D′,D′′,→E〉 →D D′′′ :: Π{B′, B′′} �′

E Fn+1 (z1R, . . . ,znR,u):β, we
proceed as in the base case.

Theorem 4.17 Strong Normalization of Derivation Reduction. If (Σ,R) is typeable in �′
E and

safe, then for every D:: B �′
E t:σ, SN (D).

Proof: From Prop. 4.16 and C1, taking R such that xR = x.

Note that for the strong normalization property to hold, it is not enough to define a re-
duction relation that considers only typeable redexes in a term. It is crucial to preserve the
derivations, as the following example shows:

Example 4.18 Consider the CuTRS with rules:

E (x,y) → Ap (y, Ap (Ap (x, x),y)),
C (x,y) → y,

This rewrite system is typeable and safe with respect to

E(E) = ω→(ω→(α→α)) →(α→α),
E(C) = ω→α→α.

Notice that the term E (E0,C0) is typeable by α→α in this environment. If instead of reduc-
ing derivations we would allow to reduce a redex whenever it has a type different from ω, then
there is an infinite reduction sequence out of this term: E (E0,C0) →R Ap (C0, Ap (Ap (E0, E0),C0))
→R C1 (Ap (Ap (E0, E0),C0)) →∗

R C1 (E (E0,C0)) . . .
However, any derivation for �′

E E (E0,C0) : α→α is strongly normalizable according to
→D . Take for instance the derivation that assigns ω to E0 and ω→α→α to C0 (we will

annotate function symbols with types instead of writing the type-derivation):

�′
E E (E0:ω,C0:ω→α→α):α→α →D

�′
E Ap (C0:ω→α→α, Ap (Ap (E0, E0),C0):ω):α→α →D

�′
E C1 (Ap (Ap (E0, E0),C0):ω):α→α

and the last derivation is in normal form, since the type assigned in this derivation to Ap (Ap (E0, E0),C0)
is ω.

HOA’95, LNCS 1074, pages 17-36, 1996 15

5 Approximation and normalization properties

In this section, the results of the previous section will be used to prove four theorems. The
first is an approximation theorem; our definition of approximants is a combination of the one
given by Wadsworth for the Lambda Calculus [23], and the approximants for Term Rewrit-
ing Systems defined by Thatte [22], based on the notion of Ω-normal forms of Huet and
Lévy [15]. The last three theorems will formulate a relation between assignable types and
head-normalization, strong normalization and normalization properties, respectively.

In order to define approximants of terms, we start by introducing a special symbol ⊥
(bottom) into the language (so ⊥ is not in X , and neither in F), that is intended to repre-
sent meaningless terms. (The definition of this new set of terms T(F,X,⊥) is straightforward.)
To define type assignment on T(F,X,⊥), the type assignment rules given in Def. 3.4 need not
be changed, it suffices that terms are allowed to be in T(F,X,⊥). Since ⊥ �∈ F ∪{Ap}, this
implies that ⊥ can only be given the type ω, or appear in subterms that are given the type ω.

Terms in T(F,X,⊥) can be ordered using the relation � :

Definition 5.1 i) t � u is inductively defined by:
a) For every u ∈ T(F,X,⊥), ⊥� u.
b) For every t ∈ T(F,X,⊥), t � t.
c) F(t1, . . . , tn)� F(u1, . . . ,un), if and only if, for all 1≤ i≤n, ti � ui.

ii) We write t↑u (and say that t and u are compatible) if there is a v ∈ T(F,X,⊥) such that t �
v and u � v. We write t↑V if there is an l ∈ V such that t↑ l.

By abuse of notation, we will use the symbol ⊥ also for the term-substitution that replaces
term-variables by ⊥: ⊥ = {x �→ ⊥ | x ∈ X}. In the following we consider a given CuTRS (Σ,R),
and Lhs⊥ = {l⊥ | ∃r [l → r ∈ R]}.

We will now develop the notion of approximant of a term with respect to a given CuTRS.
A particular difference with the definition of approximant for lambda terms [23] is that our
definition is ‘static’, whereas the other notion was defined as normal forms with respect to an
extended notion of reduction. This approach would not be appropriate for our paper, because,
to name just one problem, we would not be able to prove a subject reduction result for such
a notion of reduction. Instead, we will recursively replace redexes by ⊥. While doing this, it
can be that a term is created that itself is not a redex, but looks like one, in the sense that is
compatible to a left-hand side of a rewrite rule (where variables are replaced by ⊥). Also such
‘possible redexes’ will be replaced by ⊥.

Definition 5.2 DA (t), the direct approximant of t with respect to (Σ,R) is defined by:
i) t = x. DA (x) = x.

ii) t = F(t1, . . . , tn); let, for 1≤ i≤n, ai = DA (ti).
DA (t) = ⊥, if F (a1, . . . , an)↑Lhs⊥; otherwise, DA (t) = F (a1, . . . , an).

iii) t = Ap (t1, t2); let a1 = DA (t1), and a2 = DA (t2).
DA (t) = ⊥, if a1 = ⊥, or a1 = Fi (a1, . . . , ai); otherwise, DA (t) = Ap (a1, a2).

Approximants of terms are obtained by taking direct approximants of their reducts (and
making a downward closure).

Definition 5.3 i) DA, the set of approximate normal forms is defined as
DA = {a ∈ T(F,X,⊥) | DA (a) = a}.

HOA’95, LNCS 1074, pages 17-36, 1996 16

ii) A (t), the set of approximants of t, is defined by:
A (t) = {a ∈ DA | ∃ u [t →∗ u & a �DA (u)]}.

Intuitively, the terms whose only approximant is ⊥ are undefined (i.e. meaningless). We
will see below (Cor. 5.7) that typeable terms cannot be undefined. We will also see that this
implies that typeable terms are head-normalizable. We introduce more notation now:

Definition 5.4 For any derivation D:: B �E t:σ, we denote by tD the term obtained from t by
replacing all its subterms that do not have a type different from ω in D, by ⊥.

In other words, tD is obtained by replacing any subterm u of t such that in D we only have
B′ �E u:ω, by ⊥.

Lemma 5.5 i) Let D:: B �E t:σ. Then there exists a derivation D′ :: B �E tD:σ.
ii) If D:: B �E t:σ is irreducible with respect to →D then tD ∈ A (t).

iii) If DA (t) �=⊥, then t is in head-normal form.

With Thm. 4.17 and Lem. 5.5 we are able to prove:

Theorem 5.6 Approximation Theorem. If (Σ,R) is typeable in �E and safe, then for every t such
that B �E t:σ there is an a ∈ A (t) such that B �E a:σ.

Proof: Let B �E t:σ, then by Lem. 4.2-(i) there is a B′ such that B ≤ B′ and B′ �′
E t:σ. Let D be a

derivation for this last result, then by Thm. 4.17, SN (D). Let D′ :: B′ �′
E t′:σ be the normal form

of D with respect to →D and let a = t′D′ . Then, by Lem. 5.5-(ii), a ∈ A (t′), and by Lem. 4.8-(i),
t →R t′. Hence a ∈ A (t). By Lem. 5.5-(i), B′ �′

E a:σ, and by Lem. 4.2-(ii), B �E a:σ.

Corollary 5.7 Let (Σ,R) be typeable with respect to E and safe. If B �E t:σ, and σ �= ω, then there
exists a ∈ A (t) such that a �=⊥.

In other words, all typeable terms are meaningful.

Theorem 5.8 Head Normalization Theorem. If B �E t:σ, and σ �= ω, then t has a head-normal
form.

Proof: If B �E t:σ, then by Cor. 5.7, there exists a ∈ A (t) such that a �= ⊥. Since a ∈ A (t),
there is a v such that t →∗ v and a �DA (v). Hence DA (v) �=⊥. Then, by Lem. 5.5-(iii), v is in
head-normal form, so, in particular, t has a head-normal form.

We have seen that typeable terms have an approximant different from ⊥, and a head-normal
form. Ariola et al. [1] define a notion of meaningless terms as terms without a root stable form;
the set of undefined terms according to this notion is called Urs. Untypeable terms are the
meaningless terms in our system. Let Ut be the set of untypeable terms. By Thm. 5.8, Urs ⊆ Ut.

Theorem 5.9 Strong Normalization Theorem. Let (Σ,R) be a safe rewrite system, typeable without
using ω at all. If B �E t:σ, and ω is not used to derive this result, then t is strongly normalizable.

Proof: Let D:: B �E t:σ. By Thm. 4.17, D is strongly normalizable. Since ω is not used, and
the system without ω has the Subject Reduction Property [6], by definition of →D and
Lem. 4.8-(i), we obtain strong normalization of t.

HOA’95, LNCS 1074, pages 17-36, 1996 17

Notice that the converses of the two previous theorems do not hold because the environment
is given (and fixed).

In the intersection system for LC, it is well-known that terms that are typeable without ω in
base and type are normalizable. This is not true for CuTRS, even if one considers safe recursive
systems only. Then, as in [7], we will restrict the study of normalization properties of CuTRS
to non-Curryfied terms. Actually, to get a normalization result similar to that of LC we also
need to impose the following condition on the CuTRS:

Definition 5.10 A CuTRS is complete if whenever a non-Curryfied term t that is assigned the
ω-free type σ is reducible at a position p such that t|p can be assigned a type containing ω,
there exists q < p such that t|q can be assigned an ω-free type and t|q[x]p is not in head-normal
form.

Intuitively, in a complete CuTRS a non-Curryfied term F (t1, . . . , tn) that has an ω-free type,
and where there is a redex ti that has a type containing ω, will be reducible either at the root
(without taking ti into account), or in some tj with an ω-free type. This means that the rules
defining F cannot have patterns that can be assigned types with ω, and also that constructors
cannot accept arguments having a type which contains ω. Moreover, if a defined function
accepts arguments having types with ω then its definition must be exhaustive.

Defined functions of safe systems satisfy the first condition. So, a safe system is complete
whenever constructors have ground types without ω, and for all defined function F that
accepts arguments with types that contain ω, the patterns of the rules defining F cover all
possible cases.

Example 5.11 Combinator Systems are complete, since there is a rule for each combinator.

Theorem 5.12 Normalization Theorem. Let t be a non-Curryfied term in a typeable, safe, and
complete CuTRS. If B �E t:σ and ω does not appear in B, σ, then t is normalizable.

Proof: By Thm. 4.17, SN (D:: B �E t:σ). Let D′ be a normal form of D, i.e. D′ :: B �E t′ :σ, and
B,σ are ω-free. We prove that t′ is in normal form by case analysis.

Since t′ is a non-Curryfied term, two cases are possible:

i) t′ is a variable, hence it is in normal form.
ii) t′ = F (t1, . . . , tn) In this case, t′ cannot be a redex itself, because the derivation B �E t′:σ

is in normal form and σ �= ω. Moreover, only subterms that are typed with ω can be
reducible. But since the system is complete, the existence of redex of type ω implies the
existence of redex of type different from ω, which leads to a contradiction. Then t′ is in
normal form.

6 Conclusions and future work

Combinator Systems are CuTRS that are trivially safe and complete (see Ex. 4.10, 5.11), hence
all the results presented in this paper hold in particular for these systems. Dezani and Hind-
ley presented a type assignment system for Combinator Systems that are combinatory com-
plete [13]. Our system can be seen as an extension of this one, since we do not require the
systems to be combinatory complete. The results we showed also apply to the type assignment
system of Dezani and Hindley.

Approximants can be used to characterize equality in models of term rewriting languages,
as shown by Thatte [22]: a fully abstract model can be built by interpreting terms as sets of

HOA’95, LNCS 1074, pages 17-36, 1996 18

approximants (more precisely, the interpretation of t is A (t)). Our approximation theorem
shows the connection between the intersection type assignment system and the semantics of
the language: any typeable term has an interpretation different from ⊥ in the model (i.e. it
has a “meaning”). Approximants can be used to characterize equality in lambda models as
well [23]. In the future, we will look at these properties in the setting of the combination of
TRS and LC.

References

[1] Z. Ariola, R. Kennaway, J.W. Klop, R. Sleep, and F-J. de Vries. Syntactic definitions of undefined:
on defining the undefined. In TACS ’94, LNCS, 789, pages 543–554, 1994.

[2] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer Science,
102:135–163, 1992.

[3] S. van Bakel. Partial Intersection Type Assignment in Applicative Term Rewriting Systems. In
TLCA ’93, LNCS 664, pages 29–44, 1993.

[4] S. van Bakel. Principal type schemes for the Strict Type Assignment System. Logic and Computation,
3(6):643–670, 1993.

[5] S. van Bakel. Rank 2 Intersection Type Assignment in Term Rewriting Systems. Fundamenta
Informaticae, 1996. To appear.

[6] S. van Bakel and M. Fernández. Strong Normalization of Typeable Rewrite Systems. In HOA ’93,
LNCS 816, pages 20–39, 1994.

[7] S. van Bakel and M. Fernández. (Head-)Normalization of Typeable Rewrite Systems. RTA ’95,
LNCS 914, pages 279–293, 1995.

[8] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[9] F. Cardone and M. Coppo. Two Extensions of Curry’s Type Inference System. In Logic and Computer
Science, pages 19–75, 1990.

[10] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

[11] H.B. Curry and R. Feys. Combinatory Logic, volume 1, 1958.
[12] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In Handbook of Theoretical Computer Science,

volume B, chapter 6, pages 245–320, 1990.
[13] M. Dezani-Ciancaglini and J.R. Hindley. Intersection types for combinatory logic. Theoretical Com-

puter Science, 100:303–324, 1992.
[14] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer

Science, 1989.
[15] G. Huet and J.J. Lévy. Computations in Orthogonal Rewriting Systems. In Computational Logic.

Essays in Honour of Alan Robinson, 1991.
[16] J.P. Jouannaud and M. Okada. Executable higher-order algebraic specification languages. In LiCS

’91, pages 350–361, 1991.
[17] R. Kennaway, V. van Oostrom, and F.J. de Vries. Meaningless terms in rewriting. Submitted for

publication. Obtainable as: http://wwwbroy.informatik.tu-muenchen.de/ oostrom, 1996.
[18] J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science, volume 2, chapter 1,

pages 1–116, 1992.
[19] D. Leivant. Typing and computational properties of lambda expressions. Theoretical Computer

Science, 44:51–68, 1986.
[20] F. Pfenning. Partial Polymorphic Type Inference and Higher-Order Unification. In LISP and Func-

tional Programming Languages ’88, pages 153–163, 1988.
[21] W.W. Tait. Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic,

32(2):198–223, 1967.

HOA’95, LNCS 1074, pages 17-36, 1996 19

[22] S.R. Thatte. Full Abstraction and Limiting Completeness in Equational Languages. Theoretical
Computer Science, 65:85–119, 1989.

[23] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s D∞-
models of the lambda-calculus. SIAM J. Comput., 5:488–521, 1976.

