
Modular Properties of Algebraic Type Systems

Gilles Barthe 1 *
gilles©cwi.nl

1 CWI, Amsterdam, The Netherlands

Herman Geuvers 2•3

herman©win.tue.nl

2 Faculty of Mathematics and Informatics, University of Nijmegen, The Netherlands
3 Fae. of Math. and Informatics, Techn. Univ. of Eindhoven, The Netherlands

Abstract. We introduce the framework of algebraic type systems, a
generalisation of pure type systems with higher order rewriting a la
Jouannaud-Okada, and initiate a generic study of the modular prop
erties of these systems. We give a general criterion for one system of this
framework to be strongly normalising. As an application of our crite
rion, we recover all previous strong normalisation results for algebraic
type systems.

1 Introduction

Algebraic-functional languages, introduced by Jouannaud and Okada in [19],
are based on a very powerful paradigm combining type theory and higher-order
rewriting systems. These languages embed in typed >.-calculi higher-order rewrit
ing and hence allow the definition of abstract data types as it is done in equa
tional languages such as OBJ. Examples of such languages which have been
studied in the literature include the algebraic simply typed >.-calculus ([19]),
algebraic type assignments systems ([2]) and the algebraic calculus of construc
tions ([3]). In this paper, we introduce a very general framework to study the
combination of type theories with higher-order rewriting systems. The combina
tion is based on pure type systems ([4]); the resulting framework of algebraic type
systems covers in particular the systems of the algebraic >.-cube, a generalisation
of Barendregt's cube studied in [3, 19]. A particular interest of algebraic type
systems is to offer the possibility to initiate a generic study of the meta-theory of
the combination between type theory and rewriting. First, basic meta-theoretic
results, such as the substitution lemma or the generation lemma ([4, 16]) can be
proved for arbitrary algebraic type systems. Second, one can address modularity
results in a very abstract way, as it has been successfully done in term-rewriting
(some striking examples can be found in [21, 26]). The main contribution of this
paper is to give a general criterion for an algebraic type system to be strongly
normalising. As an application of our criterion, we obtain a new proof of the
modularity of strong normalisation for the algebraic cube ([2, 3, 10, 11, 19] for

* This work was performed while working at the University of Nijmegen (The Nether
lands) and visiting the University of Manchester (United Kingdom).

38

subsystems). We also derive a strong normalisation result for algebraic higher
order logic (the algebraic extension of >..HOL [16]) and the algebraic calculus of
constructions with universes (with left-linear and confluent rewriting systems).
In our view, the distinctive features of our approach are its generality (all the
known results on modularity of termination for algebraic type systems can be
obtained as a corollary of our result), its simplicity (the complexity of the proof
is similar to the corresponding strong normalisation argument for pure type sys
tems) and its flexibility (it is easy to adapt the proof to variants of pure type
systems).

The paper is organised as follows: in the next section, we introduce algebraic
type systems. In section 3, we give an alternative syntax in which variables
come labelled with a potential type and show the 'equivalence' between the
two formulations. Besides we formulate a general criterion for an algebraic type
system to be strongly normalising. In section 4, we prove strong normalisation for
those systems satisfying the criterion by a general model construction. Section
5 focuses on the applications of the result to existing systems. The last section
contains some final remarks about the work as well as directions for future
research. We assume the reader to be reasonably familiar with pure type systems
and their basic meta-theory, as presented for example in [15], [4] or [16].

2 Combining higher-order rewriting systems and pure
type systems

2.1 Higher-order rewriting systems

In this section, we introduce higher-order rewriting systems. The framework we
consider is slightly less general than the one of (3, 12, 19] and has been chosen
for clarity of presentation. For examples and applications of the general schema,
the reader is refered to [12, 19].

Let A be a set. Elements of A are called base data2 • The set of data is defined
inductively as follows:

- every base datum is a datum;

- if 0"1, • · ·, O"n are data and Tisa base datum, then (u1 , ..• , O"n)-+ Tisa datum.

For convenience and without loss of generality, we can always assume the type
of a function symbol to be of the form (o-1 , ... , O"m, Ti, ..• , Tn) -+ Tn+i where
the o-/s are data of arrow type and the r;'s are base data. Such data are called
higher~order data .. The set of first-order data is the subset of higher-order data
for which m = 0, i.e. a first-order datum is one of the form (Ti , ..• , T n) -+ T n+ 1

where the r;'s are base data. The set of higher-order data is denoted by A*.
When there is no risk of confusion, we will simply talk about data.

Definition I A higher-order signature 2) over A consists of an indexed family
of (pairwise disjoint) sets (Fw)wEA•.

2 Usually elements of A are called sorts. We prefer to keep this name for the sorts of
the pure type system.

39

Elements of the :Fw 's are called function symbols. A function symbol is first-order
if it belongs to :Fw for some first-order datum w and higher-order otherwise. For
every datum a, the set Tu::,a) of terms of datum a is defined inductively. As
usual, we start from a countably infinite set Va for each datum a. The rules are:

- elements of Va are terms of datum a;
- if x E V{a1 , ... ,u,,)-+r and ti has datum a-; for i = 1, ... , n, then x t1

datum r;
- if f E :F(a1 ,. . .,a,,}-+r and t; has datum O"i for i = 1, ... ,n, then f t1

datum r.

tn has

tn has

A term is first-order if all variables occurring in it are of base datum and all
function symbols occurring in it are of first-order datum and is higher-order
otherwise. In other words, first-order terms are of the form f t1 ... tn where f
is a first-order function symbol and the t/s are first-order terms. Higher-order
terms are of the form F X 1 ... Xm. t 1 ... tn where the Xi's are higher-order
variables and the t;'s are terms of base datum. Note that all terms are fully
applied in the sense that only variables can be of higher-order datum 3 . The set
var of variables of a term, occurences and substitutions are defined as usual.

Definition 2 A rewrite rule is a pair (s, t) {written s -+ t) of terms of the
same datum such that var(t) s:;; var(s) and s is not a variable. A rewrite rule is
first-order if the terms are and higher-order otherwise.

In (19], Jouannaud and Okada define a general schema for higher-order rewrite
rules.

Definition 3 ((3, 19]) A higher-order rewrite rule F X1 ... Xm. ti ... tn -+
v satisfies the general schema if

1. F is a higher-order function symbol;
2. F does not occur in any of the t; 's;
3. the higher-order variables occuring in the t; 's belong to {X1, ... , Xm}i
4. for every subterm of v of the form F Xf ... x:.,, r1 ... rn, one has t C>m.ul r

where C>mu! is the multiset extension of the strict subterm ordering.

Condition 3 is not essential but ensures that F X 1 ... Xm t1 ... , tn is rewritable
in the sense of (12]. Note that as a consequence of the definition, F does not occur
in any subterm of v of the form F Xf ... x:r, r 1 ... rn except in head position.
Higher-order rewrite rules are a mild generalisation of the rules of primitive
recursion.

Definition 4 A higher-order rewriting system is a set of rewrite rules such that:

- first-order rules are non-duplicating4 ;

3 Using fully applied terms is important if one wants to consider type systems with
17-reduction, see [6].

4 Recall that a rewrite rule s -+ t is non-duplicating if the number of occurences of
each variable x in t is lesser or equal to the number of occurences of x in s.

40

- higher-order rules satisfy the general schema;
- there are no mutually recursive definitions of higher-order function symbols.

The last requirement is not essential but has been added to simplify proofs. In
the sequel, we let --+ R denote the algebraic reduction relation.

2.2 Algebraic type systems

In this paragraph, we extend the framework of pure type systems with higher
order rewriting a la Jouannaud-Okada. The resulting framework of algebraic
type systems covers a large class of algebraic-functional languages and provides
a suitable basis to study modular properties of these languages.

Definition 5 An algebraic type system (or apts for short) is specified by a
quintuple).S = ("R-, S, sortax, rules, datax) where

- 'R, is a finite list of higher-order rewriting systems 'R. = (Ai, Ei, Ri)5 for
i = 1, ... ,n;

- S is a set of sorts;
- sortax : S S, rules : S x S S are partial functions;
- datax: {Ai, ... ,An} Sis a total function.

Note that the definition implicitely requires the algebraic type system to be
functional in the sense of [16] (such systems are called singly-sorted in (4]). This
is not a real restriction as one can hardly imagine a non-functional pure type
system of interest.

Definition 6 Let V be an arbitrary infinite set of variables. The set of pseudo
terms Pseudo of an algebraic type system).S = ("R-, S, sortax, rules, datax) is de
fined as follows:

- elements of V, sorts and data are pseudo-terms;

- if A, B are pseudo-terms and x E V, then A B, .Ax : A.B and II x : A.B are
pseudo-terms;

- if f is a function symbol of some signature Ei of datum (r 1 , ... , T n) --+ r and
t1, ... , tn are pseudo-terms, then f ti · · · tn is a pseudo-term.

There are two notions of reduction on pseudo-terms: algebraic reduction --+ R

inherited from the term-rewriting systems and ,8-reduction. The combined re
duction is denoted by -+miz· The rules for derivation for .AS are:

5 That is, A, is a set of {base) data, E, is a higher-order signature over A, and n,, is
a higher-order rewriting system over E,.

Axiom

Function

Start

Weakening

Product

Application

41

I- c: s

r I- t; : O'i for i = 1, ... 'n
I' I- f ti . · · tn ; T

I'l-A:s
I',x:Al-x:A

I'l-t:A I'l-B:s
I',x:Bl-t:A

r I- A : S1 r, x : A I- B : s2
I' I- Ilx : A.B : s3

r I- t : II x : A.B r I- u : A
I' I- tu: B[u/x]

Abt t" I',x: A I- t: B I' I- Ilx: A.B: s
s rac ion r I- AX : A.t: Ilx: A.B

I'l-u:A I'l-B:s
Exp/Red

I'l-u:B

if datax A = s and c E A
or sortax c = s

if f is a function symbol
with arity (0'1, ... , O'n) - r

if x rt. r

ifxlif.I'

if A -mi:i: B or B -,.,.. • ., A

In an algebraic type system, the reduction relation is not confluent on the set
of pseudo-terms; as a result, the usual proofs of subject reduction and of other
results relying on subject reduction, such as strengthening cannot be extended.
This motivates the following definition (see Section 6 for a longer discussion on
subject reduction).

Definition 7 An algebraic type system A.S = ("R.., S, sortax, rules, datax) has the
subject reduction property if for all pseudo-terms M, N, A with M -/3 N and
pseudo-context r'

I'l-M:A ~ I'l-N:A

As subject reduction for R-reduction holds in an arbitrary algebraic type system,
it is easy to conclude that in an algebraic type system with the subject reduction
property,

I'l-M:A ~ I'l-N:A

for every pseudo-context I' and all pseudo-terms M, N, A with M -mi:t N.

Terminology For the sake of exposition, we conclude this paragraph by intro-
ducing some terminology. ·

Definition 8 An algebraic type system A.S = ("R.., S, sortax, rules, datax) is 'R
confluent (resp. 'R-terminating, resp. R.-canonical, resp. R.-left-linear) if all its
rewriting systems are confluent (resp. terminating, resp. canonical, resp. left
linear).

In order to name algebraic type systems, it is useful to consider their underlying
pure type systems. In the sequel, we will sometimes refer to an algebraic type
system A.S = ("R.., S, sortax, rules, datax) as an algebraic extension of the pure type
system A.S' = (S, sortax, rules).

42

3 A criterion for strong normalisation

In [25], Terlouw gives a general criterion for a type system to _be strong~y nor
malising. We adapt his criterion to algebraic type systems and give an equivalent
criterion in terms of algebraic type systems with labelled variables. The advan
tage of the second characterisation is that it eliminates the need to reason on
contexts.

3.1 Stratified algebraic type systems

Recall that an environment is a family r = (xi : Ai)iEN where for every i, Xi is
a variable and Ai is a pseudo-term such that for some sort Si+i, xo : Ao, . .. , Xi :

Ai I- A;+I : Si+l ·

Definition 9 Let r = (xi : Ai)iEN be an environment.

- A pseudo-term Mis a prototype w.r.t I' if there exists a natural i, a sorts and
pseudo-terms P1, ... , Pn such that xo: Ao, ... , x; : A; I- M P1 ... Pn : s.

- The relation -<r on pseudo-terms is defined as the smallest relation such that
for all M, N E Pseudo, if MN is a prototype w. r. t. I', then N -< M and
MN-<M.

- An algebraic type system is stratified if the relation -<r is well-founded for
every environment r.

The main result of the paper is the following criterion for strong normalisation.

Theorem 10 Every stratified 'R-terminating algebraic type system with the sub
ject reduction property is strongly normalising.

As a corollary, we recover the standard results on strong normalisation of alge
braic type systems as well as some new results.

Corollary 11 - 'R-terminating extensions of systems of the >..-cube are strongly
normalising ([3, 19}}.

- n-terminating extensions of higher-order logic are strongly normalising.
- 'R-canonical and 'R-left-linear extensions of the algebraic calculus of construc-

tions with universes are strongly normalising.

Note that for the first result, we use the fact that algebraic extensions of systems
of the A-cube have subject reduction ([3]). For the third result, note that left
linearity of n (i.e. variables may only occur once in a left hand side of a rewrite
rule) is a real restriction. However, there are interesting examples of higher-order
rewrite rules that are left-linear, e.g.

Maplist X nil --+ R nil,

Map list X (cons al) --+ R cons (X a) (Maplist X l).

!he restriction to left-linearity is made, because if n is left-linear, then --+mfa:

is confluent, hence we have the subject reduction property for the system and
hence Theorem 10 applies.

43

3.2 Labelled variables

In this section, we introduce a technical variant of (algebraic) type systems in
which variables are "typed". This is reminiscent of some presentations of simply
typed >.-calculus in which each type r comes equipped with a set of variables of
type r. In algebraic type systems, terms and types are defined simultaneously
so the naive approach taken for simply typed >.-calculus cannot be used any
longer. Our solution is to assign to every variable a pseudo-term, which will
be its unique type if the variable is well-typed. In the sequel, we consider a
fixed algebraic type system >.S = (R, S, sortax, rules, datax); as usual, its set of
pseudo-terms is denoted by T.

Definition 12 A variable labelling is a map € : V -+ T such that the set
{x E Vjfx = t} is infinite for every t ET.

Of course, such maps always exist if V is sufficiently large (the cardinal of V is
determined by the cardinal of S). One nice aspect of variable labelling is that
it eliminates the need to manipulate contexts. In the sequel, we assume we are
given a fixed labelling €. We can define a notion of derivation w.r.t. €; the rules
are

Axiom

Function

Start

Product

Application

Abstraction

Conversion

f-,c:s
if datax A = s and c E A or sortax c = s

f-, ti : u i for i = 1, ... , n f f b l --------"'----- i is a function sym o
f- < f tl . . . tn : T • h . ()

f-, A: s
f-, x: A

f-,A:s1 f-,B:s2
f-, Ilx: A.B: s3

f-, t: Ilx: A.B f-, u: A
f-, tu: B[u/x]

f-, t: B f-, Ilx: A.B: s
f-, ,\x: A.t: Ilx: A.B

f-,u:A f-,B:s
f-, u: B

wit anty cr1 1 •• • ,O"n -+ T

if c:x = A and x is fresh in A

if rules(s1 , s2) = s3 and €X =A

if A ->mix B or B ->mix A

It is not difficult to check that algebraic type systems with variable labelling
are essentially equivalent to algebraic type systems for systems with subject
reduction.

Proposition 13 Assume the algebraic type system has subject reduction.

lf f-, A1: A, then I' f- M: A for some context I'.
If I' f- M : A, then f-, pM : pA. for some variable renaming p.

Proof sketch: The proof of the second part is by first renaming the bound
and free variables in I', Mand A in such a way that, if x: B occurs in I', Mor

44

A, then EX = B. The statement we obtain, say I'' I- M' : A1 , is still derivable.
Now one proves I'' I- M' : A1 ::::> I-< M' : A' by induction on the derivation.
For the proof of the first part, we first have to prove that, if subject reduction
holds, then we have strengthening, which is the following property

If I', x: A, L11- M: B, x ~ FV(Ll, M, B), then I', L1 I- M : B.

Using the fact that the underlying pure type system is functional, we can use
the 'standard' proof (e.g. in [16]) prove strengthening. Using strengthening, one
also proves a permutation property, which states the following.

If I',x: A,y: C, L1 I- M: B, x ~ FV(C), then I',y: C,x: A, L1 I- M: B.

Now, the following slight extension of the first result above can be proved by
induction on the derivation (using strengthening and the permutation property).

If h M : A, then I' I- M : A

for all I' such that I' respects E and dom(I') = FV(M, A).

Here, I'(= Xi : Ci' ... 'Xn : Cn) respects € means that EXi = ci and Xi+l ~
FV(Ci, ... , Ci) for all i. Furthermore, dom(I') denotes the set { x1, ... , Xn}.D

It follows that strong normalisation and subject reduction of the system with
labelled variables (or labelled system for short) is equivalent to strong normalisa
tion and subject reduction of the original system. Besides, one can reformulate
the criterion for systems with labelled variables.

Definition 14 Let >..S be an algebraic type system with a variable labelling E. A
prototype is a pseudo-term M for which there exist Ni, ... , Np E Pseudo and
s E S such that

r. M Ni ... Np: s

The set of prototypes is denoted by Proto. As before, we consider the relation -<
defined as the smallest relation such that

VM, NE Pseudo[(M N) E Proto==> N-< M /\ (M N) -< M]

Definition 15 >..S is stratified if the relation -< is well-founded.

Theorem 10 can now be rephrased as:

Theorem 16 Every R-terminating stratified labelled type system with the sub
ject reduction property is strongly normalising.

Theorem 10 follows easily from Theorem 16.

4 The proof of the main theorem

In this section, we prove Theorem 16. The proof is divided in two parts: in the
first part, we prove that algebraic reduction is strongly normalising on legal
terms. In the second part, we give a model-construction for stratified algebraic
type systems. Strong normalisation is derived easily from the model construction.

45

4.1 Strong normalisation of algebraic reduction

Strong normalisation of algebraic reduction on legal terms is established directly
by advocating modularity results from [13] for example.

Proposition 17 - R is strongly normalising on legal terms.

Proof: the technique is inspired from [5] and consists of viewing .A-calculus
as an algebraic signature. In this way, we define for every 'R.-algebraic type
system .AS = ('R.., S, sortax, rules, datax) an algebraic signature E>.s extending
the signatures of the rewrite systems and upon which algebraic reduction is
terminating. Then we show that all legal terms can be obtained from the terms
of E>.s by an erasure map f.l which reflects reduction. Strong normalisation of
algebraic reduction on legal terms follows easily. In the sequel, we consider a
finite sequence of terminating higher-order rewriting systems 'R.i = (Ai, Ei, Ri)
for i = 1, ... , n. Let A = LJi=l, ... ,n Ai and let E>.s = (LJi=l, ... ,n Ei) U Eo where
Eo is the signature with function symbols:

- Sr : r for s E S and r a datum,
- <fr: r for r;, r data,
- Ilx,r1 ,r.,r3 , 'X.,,r1 ,r2,r3 : T1 X r2-> r3 for every variable x and T1,r2,r3 data,
- Applr1 ,r2,r3 : T1 x r2 - T3 for every r1, r2, T3 data.

The union Ro of the Ri's is a higher-order rewriting system over Exs. By hy
pothesis, its first-order reduction relation is terminating, so Ro is terminating
(see [13]).

To conclude the proof of the Proposition, first note that by subject reduction
for -R, we only need to prove that there is no infinite reduction through legal
terms. To this end, we define a map from the terms of E>.s to pseudo-terms.
For the sake of simplicity, we assume that the set of variables for every sort r is
{xT Ix E V}. The map r.1 is defined as follows:

rxrl = x

fj(t1, ... ,tn)l = Jft1l ··· ftnl

fllz,r1 ,r2 ,r3 (ti,t2)l = Ilx: ft1lft2l

f'Xz,r1 ,r2,rs(t1,t2)l =AX: ft1lft2l

fApplr1 ,r2,r3 (t1,t2)l = ft1l ft2l

The map is surjective on the set of legal terms. Moreover, every infinite R
reduction sequence on legal terms can be lifted to an infinite Ro-reduction se
quence on the terms of E>.s.D

4.2 The model construction

In this section, we present a model construction for stratified algebraic type
systems with the subject reduction property. The construction is based on sat
urated sets and is a generalisation of strong normalisation proofs for pure type
systems, such as the polymorphic >..-calculus ([18, 24, 14]) or the calculus of con
structions ([17, 25]). The model is heavily inspired by [25]. Before giving a proof
of Theorem 16, we need some preliminaries on saturated sets.

46

Saturated sets Traditionally, saturated sets are defined as sets of ,B-strongly

normalisable untyped >.-terms. Here we consider a slightly different notion of

saturated sets, more adapted to our framework: we define saturated sets as sets

of pseudo-terms rather than as sets of >.-terms. This is not really important but

makes the proof slightly more elegant. Moreover, we consider typed saturated

sets as in (20, 25] rather than untyped saturated sets. This means that the

notion of saturated sets is defined relative to a set of pseudo-terms. This is not

important for pure type systems but turns out to be crucial for algebraic type

systems (otherwise, we cannot use the results of the principal case).
Recall that a pseudo-term Mis strongly normalising if all reduction sequences

starting from M are finite. The set of strongly normalising terms is denoted

by SN. Saturated sets will be defined as subsets of SN with certain closure
properties.

Definition 18 A base term is a term of the form x P1 ... Pn where x E V and

P1, ... ,Pn E SN.

The set of base terms is denoted by Base. Note that all base terms are strongly
normalising.

Definition 19 Key-reduction ->k is the smallest relation on pseudo-terms such

that for all pseudo-terms M, N, 0, P1 , ... , Pn

(>.x: M.N) 0 P1 ... Pn ->k N[O/x] P1 ... Pn

Note that a term has at most one key-redex. The term obtained from M by
contracting its key redex is denoted by kred(M).

Definition 20 Let U ~ Pseudo. A set X of pseudoterms is saturated in U if

{i) X ~SN n U;
{ii) Base n U ~ X;
{iii) If kred(M) EX and ME SN n U, then ME X.

The collection of all saturated sets in U is denoted by SAT(U). For ME Pseudo,

we use SAT(M) to denote the set of saturated sets in {NE Pseudo I f-, N: M}.
If X E SAT(M), we say X is a M-saturated set.

We list some closure properties of saturated sets.

Fact 21 Let U, U' ~ Pseudo.

- SN(U) =SN n U is a saturated set in U.

- The set of saturated sets in U is closed under arbitrary non-empty intersec-
tions.

- If X is saturated in U and Y is saturated in U', then X _. Y defined by

X-tY={MEWIVNEX.M NEY}

is saturated in W provided that Base n W c X -t Y {i. e. for every w E
Basen Wand x EX, wx E Y).

47

- If X is saturated in U and Yx is saturated in U~ for x EX, then Ilx E X.Yx
defined by

llx E X.Yx ={ME WjVN EX.MN E YN}

is saturated in W provided Base n W C Ilx E X.Y., (i.e. for every w E
Basen Wand x EX, wx E Y.,).

If M E Pseudo, then SN(M) is the saturated set of strongly normalising terms
of type M.

The principal case The key fact in the model construction for algebraic type
systems is that the sets of strongly normalising terms of base datum enjoy suit
able closure properties.

Proposition 22 Let f be a function symbol of datum (cr1, ... , crn) --t T. Then
for all pseudo-terms t 1 , ... , tn,

tiESN(cri) fori=l, ... ,n =t-- ft1···tnESN(r)

The proof is an adaptation of [19, 2]. This key fact ensures that the model
construction for algebraic type systems can be carried out in exactly the same
way as for pure type systems.

Intuition behind the proof The idea of the proof is to give a model con
struction in which types are interpreted as (saturated) sets and legal terms as
pseudo-terms such that the following soundness condition is satisfied:

1-. M: A =t-- QMD E ((A))

where ((A)) is the saturated set interpretation of A and QMD is the pseudo-term
interpretation of M. For simple systems, such as the (algebraic) simply typed
A-calculus).__,., the definition of ((A)) can be given inductively on the structure of
A and the soundness condition can be proved by induction on the derivation. For
the polymorphic A-calculus A2, one is forced to parameterise interpretations by
valuations. One then has to prove that if a valuation p satisfies certain properties,
then

1-. M: A =t-- QMDP E ((A))p

In a system with dependent types such as AP or APw, terms might occur in types
so one cannot any longer define ((A)) by induction on A. The standard solution
is to define ((A)) as a partial interpretation and show that i.t is well-defined on
legal types. This requires the introduction of a new interpretation a(M) which
assigns to a term its possible values. (In this context valuations are of the form
(p, () where p assigns to every variable (in some domain) a pseudo-term and (
assigns to every variable (in some domain) a saturated set.) The idea is that
a(M) should be defined for every type M and be a set of saturated sets such
that under suitable conditions

1-. M: s =t-- ((M))p,C E a(M)

48

Here we see that dependent types introduce a new difficulty: we have indexed

families of types, i.e. terms of type B _... *6 • These terms, which we have defined

earlier as prototypes, will also need to be intepreted. To interpret them as families
of types, we use induction on their structure: if M is of type B _... C _... *, we

want to define a(M) as the set of families of maps {(fb)b:B J fb: a(b) _... a(M b)}.
This requires a(b) and a(M b) to be already defined. This requirement matches

exactly the definition of -<: the assumption that -< is well-founded enables us

to define the interpretation a(M) by -<-induction. The other two interpretations

will be defined as usual by induction on the structure of the terms.

Convention From now on, we drop the subscript in f-,.

The construction The set Data of data is defined as the union of the set of
base data of the rewriting systems. The set Type of types is defined by

Type= {ME Pseudo J f-- M: s for some s E S}

Definition 23 The map a : Pseudo _... Set is defined by case distinction as
follows.

- if M E Type\ Data, a(M) = SAT(M);
- if ME Proto, a(M) = {(fs)BEcone(M)lfs: a(B) _... a(M B)};
- if M E Data, a(M) = {SN(M)};
- otherwise, a(M) = {{0}};

where cone(M) ={BE. Pseudol(M B) E Proto}. Define A= LJMEPseudo a(M).

Definition 24 A valuation is a pair (p, () such that p : V Pseudo and (:
V----+A.

The extension [.DP : Pseudo ----+ Pseudo of p is defined as the unique capture
avoiding substitution extending p.

Definition 25 The map (is extended to terms by defining a map ((.))µ(:
Pseudo ----+ A as follows.

((x))p(= ((x) if x E V, p(x) E Proto
((Ilx: A.B))p(={PE Pseudoj'v'(N, Q) E Ep<(A).

'(M)) PN E ((B))p(m:=N),((m:=Q))} if QJix: A.EDP E Type
\ N P(= {((M))p<)QNDp ((N))p(if QMNDP E Proto

((>..x: A.b))p(= (,\c E a(B).((b))p(:i::=B),((m:=c))BECOne(Q>,.,:A.bDp) if Q>..x: A.bDP E Proto
((M}) P(= SN(M) if M E Data
((M}) p(= { 0} otherwise

where for every ME Pseudo,

Ep((M) = {(N, Q) E Pseudo x A I f- N: QMDP, NE ((M))p(, Q E a(N)}

6 !his is n~t only true for dependent types but also for higher-order polymorphism as
1t occurs m >..w.

49

The following lemma is easily established by induction on the structure of
M.

Lemma 26 Let M, N E Pseudo. Let (p, () and (p', (') be two valuations.

- If px = p'x and (x = ('x for every x E FV(M), then ((M))pt; = ((M))p'('·
- ((M[N/x]))p(= ((M))p(x:=QND.),t;(x:=((N))pc)

As a consequence of Lemma 26 and of the subject reduction property, we con
clude that ((.)) p(is invariant under reduction on legal terms.

Corollary 27 For every valuation (p, () and terms M, N such that M ->mi:c N
and QMDp, aNDp E Proto, we have ((M))p(= ((N))p(·

In order to prove the main theorem, we must establish that the model behaves
as expected. It requires a standard soundness argument. In the sequel, we call
a context a finite list of variables Ll = y1 , ... , Yn such that for i = 1, ... , n,
Yi (/. FV(cYi) (Vj ::; i). One can check that for every term M, FV(M) can be
ordered into a context.

Definition 28 Let Ll be a context. A valuation (p, () satisfies Ll (notation (p, () f=
Ll) if for every x E Ll,

(iJ f- px : acxDp,
(ii) px E ((cx))p(,
(iii) ((x)}p(E a(axDp)·

We say that f= M : A if for every valuation (p, () satisfying FV(M) U FV(A),

(i) f- aMDp : aADp,
(ii) aMDP E ((A))p,,
(iii) ((M))p(E a(aMDp),

Fact 29 Let (p, () be a valuation satisfying Ll. Let x (/. Ll and x (/. FV(cy) for
ally E Ll. Then for every C E a(x), p(x := x), ((x := C) satisfies Ll U {x}.

As a(x) :j:. 0, valuations can always be extended to a larger context while pre
serving satisfaction. We can now prove the main technical result of this paper.

Proposition 30 (Soundness) f- M: A =? f= M: A.

Proof: by induction on the length of derivations.

- Axiom: if f- s1 : s 2 is an axiom, then it is easy to show f= s1 : s 2 .

- Start: assume f- x : A is deduced from f- A : s by a start rule. Then EX = A.
Assume (p, () satisifies FV(A)U{ x }. By definition of satisfaction, f- px : QADp,
px E ((A))p(and ((x))p(E a(px), so we are done.

50

- Function symbol: assume I- f t 1 · · · tn : r is deduced by a function rule from I
t; : ai for i = 1, ... , n where f is a function symbol of datum (a1, ... , an) -+

7. Assume (p, () I= FV(ft1 · · · tn)·
I- Qf t1 · · · tnDp : r follows immediately from the induction hypothesis.
Next one has to prove that Qft1 • · ·tnDp E ((r))p(· This is an immediate
consequence of Lemma 22.
Finally, we need to prove ((f t 1 · · · tn}} p(E a(Uf t1 · · · tnD p). This is easy be-
cause Qi ti · · · tnDp rJ. Proto.

- Product: assume I- II x : A.B : 83 is deduced by a formation rule from I- A : s1

and I- B: 8 2 • Let (p, ()be a valuation such that(p, ()I= FV(IIx: A.B).
We prove I- QIIx: A.EDP: 83 . By induction hypothesis, 1-- QADp: s1. By fact
29,

p(x := x),((x := C) I= FV(Jix: A.B) U {x}

for every C E a(x). Hence I- QBDp,(:z::=:z:) : 82 by induction hypothesis. By
the product rule, I- Ilx: QADp·UBDp,(:z::=:z:) : 83. As Ilx: QADp·UBDp,(:z::=:z:) =
QJix: A.EDP, we conclude (i) holds.
Next we show Qll x: A.EDP E ((s3))p(· By definition of((.)) PC, it is equivalent
to show that QIIx: A.EDP is strongly normalising (we already know that
(i) holds). By induction hypothesis, QADP E ((81})p(<;;;; SN and QBDP' E
((82))p'(' <;;;;SN for every valuation (p',(') satisfying FV(B). Let C E a(x).
Then p(x := x),((x := C) I= FV(llx: A.B) U {x}. Hence QBDp(:z::=x) E SN
and Qllx: A.EDP E SN.
Finally, we show ((llx: A.B))p<: E a(UJix: A.BDp)· By (i), we know that
Qllx: A.EDP E Type, so we have to prove that ((llx: A.B))p<: is a
Qllx: A.BDµ-saturated set. As QADp is a type, it follows by induction hy
pothesis that ((A))µi;, is a QADµ-saturated set. Besides, QBDp(x:=x) is a type
and by the substitution lemma, QBDp(:z::=N) is a type whenever I- N : Ex.
Hence ((B))p(:z::=N),((x:=Q) is a QBDp(z:==N)-saturated set whenever p(x :=
N), ((x := Q) I= FV(B) (equivalently for every (N, Q) E Epc(A)). We con
clude ((llx: A.B))p<: is a Qllx: A.BDp-saturated set.

- Application: assume I- MN : B[N/x] is deduced from I- M : llx : A.B
and I- N : A by an application rule. Let (p, () be a valuation satisfying
FV(M) U FV(B[N/x]).
First, we show that I- QMNDP: QB[N/xJDP. Consider the valuation (p1,(1)

defined by

and

p,y = {PY if y E ~V(M) U FV(B[N/x])
y otherwise

(,y = { (y if y E FV(M) U FV(B[N/x])
Cy otherwise

where Cy is an arbitrary element of a(y). Then

(p',(') I= FV(MN) u FV(llx: A.B)

By induction hypothesis, we have

51

- 1- QMDp' : Qllx: A.BDp•;
- I- QNDp' : QADp'.

Hence I- QMNDP' : QBDp',(z:=z)laNDp•/x]. In other words, I- QAfNDP' :
QB[N/xJDp•· As p and p' coincide on FV(Af) U FV(B[N/xj), we conclude
that (i) holds.

Next, we show that QM NDP E ((B[N / x]}) p(. Note that it is equivalent to
show QMNDP' E ((B[N/x]))p'(' where (p1,(1) is defined as above. By in
duction hypothesis, we know that I- QNDP' : QADp', Qlv'DP' E ((A)}p'(' and
((N))p'(' E a(QNDp1). Hence, (QNDP'•((N))p'(') E l'p'('(A). By induction hy
pothesis, QMDP' E ((llx: A.B))p'('- Hence

By Lemma 26,
done.

QM NDp1 E ({B)} p1 (z:=QNDP'),('(x:=((N))p•cil

((B[N/xJ)}p'(' = ((B)}p'(:r:=QNDp•),('(:r:=((N)),,,,, So we are

Finally, we prove that ((MN}) p(E a(Q M ND P). There are two cases two
distinguish. If QMNDP r:/. Proto, then a(QMNDp) = {{0}} and ((MN))p(=
{0}, so we are done. Otherwise, QMDp E Proto. By induction hypothesis,
((M))pt. E a(QMDp) and ((N))p(E a(QNDP). Hence (((M))PdUND,((N))p(E
a(QMNDp)·

- abstraction: assume I- ,\x : A.t : II x : .4.B is deduced by an abstraction
rule from I- t : B and 1- II x : A.B : s. Let (p, () be a valuation satisfying
FV(,\x: A.t) u FV(IIx: A.B).We prove I- Q,\x: A.tDP: Qllx: A.BDp·
By induction hypothesis, I- QII x : A.EDP : s. By Fact 29 we find that p(x :=
x),((x := C) f= FV(t) for every C E a(x). Hence I- QtDp(:r:=x): QA.Dp(x:=x)·
As x is not free in A., we have QADp(:r:=:r) = QADp· We can apply the abstrac
tion rule to conclude.
Next we prove that Q>.x: A.tDP E ((IIx: A.B})p(· This amounts to showing
that for every (N, Q) E £pc(A.), we have

Q,\x: A.tDP NE ((B))p(z:=N),t.(:r:=Q)

By definition of saturated sets, this follows from

QtDp(x:=N) E ((B})p(x:=N),((x:=Q)

which is a direct consequence of the induction hypothesis.
Finally we prove ((,\x : A.t)) p(E a(Q,\x : A.tDP). There are two cases to dis
tinguish. If Q>.x : A.tDP r:j. Proto, this is an easy consequence of the defini
tions. Otherwise, we have to prove that for every B E conern>.x : A.tDp) and
c E a(B), ((t)) p(:r:=B),((:r:=c) E a(Q,\x : A.tDpB). By the generation lemma, it
follows that I- B: QADp, hence (p(x := B),((x := c)) satisfies FV(t). The
result is a consequence of the induction hypothesis.

- expansion/reduction: assume I- M : B is deduced from I- M : A and 1-
B : s using the expansion/reduction rule. Let (p, () be a valuation satisfying
FV(M)U FV(B). As before, we can extend the valuation into a new valuation
(p', (1) such that (p1 , (1) satisfies FV(M) U FV(B) U FV(A) and coincides with
(p, () on FV(M) u FV(B).

52

To prove f-- QMDp• : UBDp•, note that QADp1 -t QBDp1 or QBDp1 -t QBDp'·
Besides, it follows from the induction hypothesis that:
- f-- QMDp1 : UADP1 j

- 1- QBDp' : s.
We conclude by the conversion rule.
To prove QMDp E ((B}}p(, we just apply Corollary 27.
Finally, {(M}}p(E a(QMDp) is immediate from the induction hypothesis.0

Corollary 31 f-- M: A => ME SN.

Proof: for every derivation I- M : A, consider the valuation (p, () such that
p(x) = x for every x E V and ((x) = max(x) where maxis defined on pseudo
terms by -<-induction:

- if M E Type, max(M) = SN(M);
- if ME Proto, max(M) = (>.x: a(B).max(M B))Becone(M)i
- otherwise, max(M) = {0}.

Then (p, () f= FV(M) U FV(A). It follows from Proposition 30 that ME ((A))p,(·
As ((A}}p,(~SN, we conclude.

5 Applications of the main theorem

5.1 Strong normalisation results

As stated in Corollary 11, Theorem 10 has several important consequences.
For 'R-terminating extensions of the .A-cube, we know from [3] that subject

reduction holds; so we are left to prove that the systems are stratified. To do so,
notice that, if Mis a prototype, then M: A with A a kind and kinds are of the
form7:

- *,
- II x : A.B where A and B are kinds,
- II x : A.B where B is a kind and A is a type.

One can define a measure v on kinds as follows:

- 11(*) = 1,
- 11(Ilx: A.B) = 11(A) + v(B) + 1 if A and Bare kinds,
- v(Ilx: A.B) = 11(B) + 1 if Bis a kind and A is a type.

Note that the measure is preserved by conversion. By uniqueness of types, this
yields a measureµ on prototypes: define µ(M) = n if f-- M: A and v(A) = n for
some A. Extendingµ to all pseudo-terms by letting µ(P) = O if P ~ Proto, we
obtain the following result. For every P, Q,

p-< Q => µ(P) < µ(Q)

7 Below we are implicitely assuming tha.t algebra.ic da.ta. live in * a.s in [3]; it is easy to
ada.pt the proof to the other ca.se.

53

Hence the systems of the algebraic .\-cube are stratified. A similar technique
applies to algebraic higher-order logic.

For 'R.-canonical and 'R.-left-linear extensions of the calculus of constructions
with universes, the proof is more involved and requires a quasi-normalisation
argument, as developed in [20]. The quasi-normalisation theorem shows that
every type has a weak head normal form. This enables us to give a measure on
types. As before, we can invoke uniqueness of types to turn this measure into a
measureµ for prototypes with the property that P-< Q => µ(P) < µ(Q) for all
pseudo-terms P, Q. Note that in this case it is crucial to know subject reduction
and confluence of reduction on normal terms before the strong normalisation
proof so we must restrict ourselves to confluent and left-linear rewriting systems.
For such systems, the combined reduction is confluent on the set of pseudo-terms
of the algebraic type system (this follows from [22]).

5.2 Confluence results

As noticed in [10], the combined reduction relation ->mi:r of an algebraic type
system is in general not confluent on the set of pseudo-terms. However, it is
straightforward to check that ->mix is locally confluent on pseudo-terms. Us
ing Newman's Lemma, one can lift Theorem 10 to 'R.-canonical algebraic type
systems.

Proposition 32 Every R-canonical algebraic type system with the subject re
duction property is strongly normalising and confluent w.r.t. ->mix·

The results of Corollary 11 can all be lifted to 'R.-canonical algebraic type sys
tems.

6 Conclusion

We have introduced in the unified framework of algebraic type systems a large
class of algebraic-functional languages which includes all the systems considered
in the literature so far. In this general framework, we have been able to ad
dress modularity questions. We have given a general criterion for algebraic type
systems to be strongly normalising and shown that all the usual algebraic type
systems satisfy this criterion. One nice aspect of the proof is that it gives a uni
form treatment of all the usual algebraic type systems and emphasizes the fact
that proving strong normalisation for algebraic type systems is not essentially
more difficult than proving strong normalisation for pure type systems. It would
be interesting to extend the present work to more powerful type systems: pos
sible extensions to be considered are first-order inductive types (i.e. inductive
types generated by first-order signatures, see for example [23]) or congruence
types (an extension of algebraic type systems in which data come equipped with
an elimination principle, see [8]). However, we feel more enclined to focus on two
important problems which have remained unsolved so far:

54

- subject reduction: it is an open problem whether algebraic type systems have
subject reduction. This is a serious gap in the theory of algebraic type sys
tems. Even for systems with subject reduction, such as the algebraic Calculus
of Constructions, the situation is unsatisfactory because the proof of subject
reduction is long and intricate. One possible approach to solve the problem
would be to consider a labelled syntax for algebraic type systems in which
all the usual properties of functional pure type systems (especially subject
reduction, unicity of types and classification) hold and use these properties
to prove strong normalisation of the labelled syntax (for stratified systems).
Then, assuming the labelled syntax to be strongly normalising, one would
transfer these results to the traditional syntax by proving the equivalence
between the labelled and traditional syntaxes. This approach, introduced by
T. Altenkirch to prove strong normalisation for the Calculus of Construc
tions with ,871-reduction ([1]), is currently investigated by P-A. Mellies and
the first author.

- modular proofs: our approach to prove strong normalisation is uniform in
the sense that algebraic type systems are treated simultaneously with pure
type systems. Yet in practice, one would like to know that an algebraic type
system is strongly normalising if its underlying pure type system is. Note
that such a result would require a purely syntactic proof as no assumption
is made on the algebraic type system. See [7] for some preliminary work in
this direction.

Another interesting direction for future research is to study the strength of the
criterion for pure(and algebraic) type systems. Although every pure type system
of interest is stratified, one can easily find pure type systems which are strongly
normalising without being stratified. The easiest example is probably obtained
by adding to the polymorphic A-calculus a new sort !:::. and an axiom !:::. : *· It
would be instructive to compare our criterion with other strong normalisation
criteria for pure type systems. It is easy to prove that any pure type system which
can be embedded in the calculus of constructions with universes is stratified. The
converse is not true: consider the pure type system with set of sorts N and with
axioms i + 1 : i (and no rules). This is a stratified pure type system, yet it
cannot be embedded in the calculus of constructions with universes. However,
we might hope that every stratified pure type system with finitely many sorts
can be embedded in the calculus of constructions with universes.

Acknowledgements

Special thanks to the anonymous referees for suggesting significant improvements
to the paper. This work was partially supported by the Esprit BRA project
"TYPES" (Types for Proofs and Programs).

55

References

1. T. Altenkirch. Constructions, inductive types and strong normalisation. PhD the
sis, Laboratory for the Foundations of Computer Science, University of Edinburgh,
1994.

2. F. Barba.nera. and M. Fernandez. Combining first and higher order rewrite systems
with type assignment systems. In M.Bezem and Groote [9], pages 60-74.

3. F. Barbanera., M. Fernandez, and H. Geuvers. Modularity of strong normalisation
and confluence in the algebraic >.-cube. In Proceedings of LICS'94, pages 406--415.
IEEE Press, 1994.

4. H.P. Ba.rendregt. Lambda. calculi with types. In S. Abra.msky, D. M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
117-309. Oxford Science Publications, 1992.

5. G. Barthe. Combining dependent type theories with equational term-rewriting.
Manuscript, 1995.

6. G. Barthe. 77-reduction and algebraic rewriting in >.-calculus. Manuscript, 1995.
7. G. Barthe. Towards modular proofs of termination for algebraic type systems.

Manuscript, submitted for publication, 1995.
8. G. Barthe and H. Geuvers. Congruence types. Presented at CSL'95. Submitted

for publication in the proceedings, 1995.
9. M. Bezem and J-F. Groote, editors. Proceedings of TLCA '99, volume 664 of Lec

ture Notes in Computer Science. Springer-Verla.g, 1993.
10. V. Brea.zu-Tannen. Combining algebra. and higher-order types. In Proceedings of

LICS'BB, pages 82-90. IEEE Press, 1988.
11. V. Brea.zu-Ta.nnen and J. Gallier. Polymorphic rewriting conserves algebraic

strong normalisation. Theoretical Computer Science, 83:3-28, 1990.
12. M. Fernandez. Modeles de calcul multiparadigmes fondes sur la reecriture. PhD

thesis, Universite Paris-Sud Orsa.y, 1993.
13. M. Fernandez and J-P.Jouannaud. Modularity of termination of term-rewriting

systems revisited. In Recent Trends in Data Type Specification, volume 906 of
Lecture Notes in Computer Science, pages 255-272. Springer-Verlag, 1994.

14. J. Gallier. On Girard's "ca.ndidats de reducibilite". In P. Odifreddi, editor, Logic
and Computer Science, pages 123-203. Academic Press, 1990.

15. H. Geuvers and M.J. Nederhof. A modular proof of Strong Normalization for the
Calculus of Constructions, Journal of Functional Programming 1, 2 (1991), 155-
189.

16. H. Geuvers. Logics and type systems. PhD thesis, University of Nijmegen, 1993.
17. H. Geuvers. A short and flexible proof of strong normalisation for the calculus

of constructions. In P. Dybjer, B. Nordstrom, and J. Smith, editors, Proceedings
of TYPES'94, volume 996 of Lecture Notes in Computer Science, pages 14-38.
Springer-Verlag, 1995.

18. J-Y. Girard. Interpretation fonctionelle et elimination des cov.pv.res dans
l'arithmetique d'ordre sv.perieur. PhD thesis, Universite Paris 7, 1972.

19. J-P. Joua.nna.ud and M. Okada. Executable higher-order algebraic specification
languages. In Proceedings of LICS'91, pages 350-361. IEEE Press, 1991.

20. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Num
ber 11 in International Series of Monographs on Computer Science. Oxford Uni
versity Press, 1994.

21. A. Middeldorp. Modular properties of term-rewriting systems. PhD thesis, De
partment of Computer Science, Vrije Universiteit, Amsterdam, 1990.

56

22. F. Millier. Confluence of the lambda calculus with left-linear algebraic rewriting.
Information Processing Letters, 41:293-299, 1992.

23. C. Paulin-Mohring. Inductive definitions in the system Coq. Rules and properties.
In Bezem and Groote [9], pages 328-345.

24. W. Tait. A realisability interpretation of the theory of species. In R. Parikh,
editor, Logic Colloquium 13, volume 453 of Lectures Notes in Mathematics, pages
240-251, 1975.

25. J. Terlouw. Strong normalisation in type systems: a model-theoretical approach.
In Dirk van Dalen Festschrijt, pages 161-190. University of Utrecht, 1993. To
appear in Annals of Pure and Applied Logic.

26. Y. Toyama.. On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM, 34(1):128-143, 1987.

