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Abstract. We introduce the framework of algebraic type systems, a 
generalisation of pure type systems with higher order rewriting a la 
Jouannaud-Okada, and initiate a generic study of the modular prop­
erties of these systems. We give a general criterion for one system of this 
framework to be strongly normalising. As an application of our crite­
rion, we recover all previous strong normalisation results for algebraic 
type systems. 

1 Introduction 

Algebraic-functional languages, introduced by Jouannaud and Okada in [19], 
are based on a very powerful paradigm combining type theory and higher-order 
rewriting systems. These languages embed in typed >.-calculi higher-order rewrit­
ing and hence allow the definition of abstract data types as it is done in equa­
tional languages such as OBJ. Examples of such languages which have been 
studied in the literature include the algebraic simply typed >.-calculus ([19]), 
algebraic type assignments systems ([2]) and the algebraic calculus of construc­
tions ([3]). In this paper, we introduce a very general framework to study the 
combination of type theories with higher-order rewriting systems. The combina­
tion is based on pure type systems ([4]); the resulting framework of algebraic type 
systems covers in particular the systems of the algebraic >.-cube, a generalisation 
of Barendregt's cube studied in [3, 19]. A particular interest of algebraic type 
systems is to offer the possibility to initiate a generic study of the meta-theory of 
the combination between type theory and rewriting. First, basic meta-theoretic 
results, such as the substitution lemma or the generation lemma ([4, 16]) can be 
proved for arbitrary algebraic type systems. Second, one can address modularity 
results in a very abstract way, as it has been successfully done in term-rewriting 
(some striking examples can be found in [21, 26]). The main contribution of this 
paper is to give a general criterion for an algebraic type system to be strongly 
normalising. As an application of our criterion, we obtain a new proof of the 
modularity of strong normalisation for the algebraic cube ([2, 3, 10, 11, 19] for 

* This work was performed while working at the University of Nijmegen (The Nether­
lands) and visiting the University of Manchester (United Kingdom). 
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subsystems). We also derive a strong normalisation result for algebraic higher­
order logic (the algebraic extension of >..HOL [16]) and the algebraic calculus of 
constructions with universes (with left-linear and confluent rewriting systems). 
In our view, the distinctive features of our approach are its generality (all the 
known results on modularity of termination for algebraic type systems can be 
obtained as a corollary of our result), its simplicity (the complexity of the proof 
is similar to the corresponding strong normalisation argument for pure type sys­
tems) and its flexibility (it is easy to adapt the proof to variants of pure type 
systems). 

The paper is organised as follows: in the next section, we introduce algebraic 
type systems. In section 3, we give an alternative syntax in which variables 
come labelled with a potential type and show the 'equivalence' between the 
two formulations. Besides we formulate a general criterion for an algebraic type 
system to be strongly normalising. In section 4, we prove strong normalisation for 
those systems satisfying the criterion by a general model construction. Section 
5 focuses on the applications of the result to existing systems. The last section 
contains some final remarks about the work as well as directions for future 
research. We assume the reader to be reasonably familiar with pure type systems 
and their basic meta-theory, as presented for example in [15], [4] or [16]. 

2 Combining higher-order rewriting systems and pure 
type systems 

2.1 Higher-order rewriting systems 

In this section, we introduce higher-order rewriting systems. The framework we 
consider is slightly less general than the one of (3, 12, 19] and has been chosen 
for clarity of presentation. For examples and applications of the general schema, 
the reader is refered to [12, 19]. 

Let A be a set. Elements of A are called base data2 • The set of data is defined 
inductively as follows: 

- every base datum is a datum; 

- if 0"1, • · ·, O"n are data and Tisa base datum, then (u1 , ..• , O"n)-+ Tisa datum. 

For convenience and without loss of generality, we can always assume the type 
of a function symbol to be of the form (o-1 , ... , O"m, Ti, ..• , Tn) -+ Tn+i where 
the o-/s are data of arrow type and the r;'s are base data. Such data are called 
higher~order data .. The set of first-order data is the subset of higher-order data 
for which m = 0, i.e. a first-order datum is one of the form (Ti , ..• , T n) -+ T n+ 1 

where the r;'s are base data. The set of higher-order data is denoted by A*. 
When there is no risk of confusion, we will simply talk about data. 

Definition I A higher-order signature 2) over A consists of an indexed family 
of (pairwise disjoint) sets (Fw)wEA•. 

2 Usually elements of A are called sorts. We prefer to keep this name for the sorts of 
the pure type system. 
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Elements of the :Fw 's are called function symbols. A function symbol is first-order 
if it belongs to :Fw for some first-order datum w and higher-order otherwise. For 
every datum a, the set Tu::,a) of terms of datum a is defined inductively. As 
usual, we start from a countably infinite set Va for each datum a. The rules are: 

- elements of Va are terms of datum a; 
- if x E V{a1 , ... ,u,,)-+r and ti has datum a-; for i = 1, ... , n, then x t1 

datum r; 
- if f E :F(a1 ,. . .,a,,}-+r and t; has datum O"i for i = 1, ... ,n, then f t1 

datum r. 

tn has 

tn has 

A term is first-order if all variables occurring in it are of base datum and all 
function symbols occurring in it are of first-order datum and is higher-order 
otherwise. In other words, first-order terms are of the form f t1 ... tn where f 
is a first-order function symbol and the t/s are first-order terms. Higher-order 
terms are of the form F X 1 ... Xm. t 1 ... tn where the Xi's are higher-order 
variables and the t;'s are terms of base datum. Note that all terms are fully 
applied in the sense that only variables can be of higher-order datum 3 . The set 
var of variables of a term, occurences and substitutions are defined as usual. 

Definition 2 A rewrite rule is a pair (s, t) {written s -+ t) of terms of the 
same datum such that var(t) s:;; var(s) and s is not a variable. A rewrite rule is 
first-order if the terms are and higher-order otherwise. 

In (19], Jouannaud and Okada define a general schema for higher-order rewrite 
rules. 

Definition 3 ((3, 19]) A higher-order rewrite rule F X1 ... Xm. ti ... tn -+ 
v satisfies the general schema if 

1. F is a higher-order function symbol; 
2. F does not occur in any of the t; 's; 
3. the higher-order variables occuring in the t; 's belong to {X1, ... , Xm}i 
4. for every subterm of v of the form F Xf ... x:.,, r1 ... rn, one has t C>m.ul r 

where C>mu! is the multiset extension of the strict subterm ordering. 

Condition 3 is not essential but ensures that F X 1 ... Xm t1 ... , tn is rewritable 
in the sense of (12]. Note that as a consequence of the definition, F does not occur 
in any subterm of v of the form F Xf ... x:r, r 1 ... rn except in head position. 
Higher-order rewrite rules are a mild generalisation of the rules of primitive 
recursion. 

Definition 4 A higher-order rewriting system is a set of rewrite rules such that: 

- first-order rules are non-duplicating4 ; 

3 Using fully applied terms is important if one wants to consider type systems with 
17-reduction, see [6]. 

4 Recall that a rewrite rule s -+ t is non-duplicating if the number of occurences of 
each variable x in t is lesser or equal to the number of occurences of x in s. 
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- higher-order rules satisfy the general schema; 
- there are no mutually recursive definitions of higher-order function symbols. 

The last requirement is not essential but has been added to simplify proofs. In 
the sequel, we let --+ R denote the algebraic reduction relation. 

2.2 Algebraic type systems 

In this paragraph, we extend the framework of pure type systems with higher­
order rewriting a la Jouannaud-Okada. The resulting framework of algebraic 
type systems covers a large class of algebraic-functional languages and provides 
a suitable basis to study modular properties of these languages. 

Definition 5 An algebraic type system (or apts for short) is specified by a 
quintuple ).S = ("R-, S, sortax, rules, datax) where 

- 'R, is a finite list of higher-order rewriting systems 'R. = (Ai, Ei, Ri)5 for 
i = 1, ... ,n; 

- S is a set of sorts; 
- sortax : S ....... S, rules : S x S ....... S are partial functions; 
- datax: {Ai, ... ,An} ....... Sis a total function. 

Note that the definition implicitely requires the algebraic type system to be 
functional in the sense of [16] (such systems are called singly-sorted in (4]). This 
is not a real restriction as one can hardly imagine a non-functional pure type 
system of interest. 

Definition 6 Let V be an arbitrary infinite set of variables. The set of pseudo­
terms Pseudo of an algebraic type system ).S = ("R-, S, sortax, rules, datax) is de­
fined as follows: 

- elements of V, sorts and data are pseudo-terms; 

- if A, B are pseudo-terms and x E V, then A B, .Ax : A.B and II x : A.B are 
pseudo-terms; 

- if f is a function symbol of some signature Ei of datum ( r 1 , ... , T n) --+ r and 
t1, ... , tn are pseudo-terms, then f ti · · · tn is a pseudo-term. 

There are two notions of reduction on pseudo-terms: algebraic reduction --+ R 

inherited from the term-rewriting systems and ,8-reduction. The combined re­
duction is denoted by -+miz· The rules for derivation for .AS are: 

5 That is, A, is a set of {base) data, E, is a higher-order signature over A, and n,, is 
a higher-order rewriting system over E,. 



Axiom 

Function 

Start 

Weakening 

Product 

Application 

41 

I- c: s 

r I- t; : O'i for i = 1, ... 'n 
I' I- f ti . · · tn ; T 

I'l-A:s 
I',x:Al-x:A 

I'l-t:A I'l-B:s 
I',x:Bl-t:A 

r I- A : S1 r, x : A I- B : s2 
I' I- Ilx : A.B : s3 

r I- t : II x : A.B r I- u : A 
I' I- tu: B[u/x] 

Abt t" I',x: A I- t: B I' I- Ilx: A.B: s 
s rac ion r I- AX : A.t: Ilx: A.B 

I'l-u:A I'l-B:s 
Exp/Red 

I'l-u:B 

if datax A = s and c E A 
or sortax c = s 

if f is a function symbol 
with arity (0'1, ... , O'n) - r 

if x rt. r 

ifxlif.I' 

if A -mi:i: B or B -,.,.. • ., A 

In an algebraic type system, the reduction relation is not confluent on the set 
of pseudo-terms; as a result, the usual proofs of subject reduction and of other 
results relying on subject reduction, such as strengthening cannot be extended. 
This motivates the following definition (see Section 6 for a longer discussion on 
subject reduction). 

Definition 7 An algebraic type system A.S = ("R.., S, sortax, rules, datax) has the 
subject reduction property if for all pseudo-terms M, N, A with M -/3 N and 
pseudo-context r' 

I'l-M:A ~ I'l-N:A 

As subject reduction for R-reduction holds in an arbitrary algebraic type system, 
it is easy to conclude that in an algebraic type system with the subject reduction 
property, 

I'l-M:A ~ I'l-N:A 

for every pseudo-context I' and all pseudo-terms M, N, A with M -mi:t N. 

Terminology For the sake of exposition, we conclude this paragraph by intro-
ducing some terminology. · 

Definition 8 An algebraic type system A.S = ("R.., S, sortax, rules, datax) is 'R­
confluent (resp. 'R-terminating, resp. R.-canonical, resp. R.-left-linear) if all its 
rewriting systems are confluent (resp. terminating, resp. canonical, resp. left­
linear). 

In order to name algebraic type systems, it is useful to consider their underlying 
pure type systems. In the sequel, we will sometimes refer to an algebraic type 
system A.S = ("R.., S, sortax, rules, datax) as an algebraic extension of the pure type 
system A.S' = (S, sortax, rules). 
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3 A criterion for strong normalisation 

In [25], Terlouw gives a general criterion for a type system to _be strong~y nor­
malising. We adapt his criterion to algebraic type systems and give an equivalent 
criterion in terms of algebraic type systems with labelled variables. The advan­
tage of the second characterisation is that it eliminates the need to reason on 
contexts. 

3.1 Stratified algebraic type systems 

Recall that an environment is a family r = (xi : Ai)iEN where for every i, Xi is 
a variable and Ai is a pseudo-term such that for some sort Si+i, xo : Ao, . .. , Xi : 

Ai I- A;+I : Si+l · 

Definition 9 Let r = (xi : Ai)iEN be an environment. 

- A pseudo-term Mis a prototype w.r.t I' if there exists a natural i, a sorts and 
pseudo-terms P1, ... , Pn such that xo: Ao, ... , x; : A; I- M P1 ... Pn : s. 

- The relation -<r on pseudo-terms is defined as the smallest relation such that 
for all M, N E Pseudo, if MN is a prototype w. r. t. I', then N -< M and 
MN-<M. 

- An algebraic type system is stratified if the relation -<r is well-founded for 
every environment r. 

The main result of the paper is the following criterion for strong normalisation. 

Theorem 10 Every stratified 'R-terminating algebraic type system with the sub­
ject reduction property is strongly normalising. 

As a corollary, we recover the standard results on strong normalisation of alge­
braic type systems as well as some new results. 

Corollary 11 - 'R-terminating extensions of systems of the >..-cube are strongly 
normalising ([3, 19}}. 

- n-terminating extensions of higher-order logic are strongly normalising. 
- 'R-canonical and 'R-left-linear extensions of the algebraic calculus of construc-

tions with universes are strongly normalising. 

Note that for the first result, we use the fact that algebraic extensions of systems 
of the A-cube have subject reduction ([3]). For the third result, note that left­
linearity of n (i.e. variables may only occur once in a left hand side of a rewrite 
rule) is a real restriction. However, there are interesting examples of higher-order 
rewrite rules that are left-linear, e.g. 

Maplist X nil --+ R nil, 

Map list X (cons al) --+ R cons (X a) (Maplist X l). 

!he restriction to left-linearity is made, because if n is left-linear, then --+mfa: 

is confluent, hence we have the subject reduction property for the system and 
hence Theorem 10 applies. 
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3.2 Labelled variables 

In this section, we introduce a technical variant of (algebraic) type systems in 
which variables are "typed". This is reminiscent of some presentations of simply 
typed >.-calculus in which each type r comes equipped with a set of variables of 
type r. In algebraic type systems, terms and types are defined simultaneously 
so the naive approach taken for simply typed >.-calculus cannot be used any 
longer. Our solution is to assign to every variable a pseudo-term, which will 
be its unique type if the variable is well-typed. In the sequel, we consider a 
fixed algebraic type system >.S = (R, S, sortax, rules, datax); as usual, its set of 
pseudo-terms is denoted by T. 

Definition 12 A variable labelling is a map € : V -+ T such that the set 
{x E Vjfx = t} is infinite for every t ET. 

Of course, such maps always exist if V is sufficiently large (the cardinal of V is 
determined by the cardinal of S). One nice aspect of variable labelling is that 
it eliminates the need to manipulate contexts. In the sequel, we assume we are 
given a fixed labelling €. We can define a notion of derivation w.r.t. €; the rules 
are 

Axiom 

Function 

Start 

Product 

Application 

Abstraction 

Conversion 

f-,c:s 
if datax A = s and c E A or sortax c = s 

f-, ti : u i for i = 1, ... , n f f b l --------"'----- i is a function sym o 
f- < f tl . . . tn : T • h . ( ) 

f-, A: s 
f-, x: A 

f-,A:s1 f-,B:s2 
f-, Ilx: A.B: s3 

f-, t: Ilx: A.B f-, u: A 
f-, tu: B[u/x] 

f-, t: B f-, Ilx: A.B: s 
f-, ,\x: A.t: Ilx: A.B 

f-,u:A f-,B:s 
f-, u: B 

wit anty cr1 1 •• • ,O"n -+ T 

if c:x = A and x is fresh in A 

if rules(s1 , s2) = s3 and €X =A 

if A ->mix B or B ->mix A 

It is not difficult to check that algebraic type systems with variable labelling 
are essentially equivalent to algebraic type systems for systems with subject 
reduction. 

Proposition 13 Assume the algebraic type system has subject reduction. 

lf f-, A1: A, then I' f- M: A for some context I'. 
If I' f- M : A, then f-, pM : pA. for some variable renaming p. 

Proof sketch: The proof of the second part is by first renaming the bound 
and free variables in I', Mand A in such a way that, if x: B occurs in I', Mor 
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A, then EX = B. The statement we obtain, say I'' I- M' : A1 , is still derivable. 
Now one proves I'' I- M' : A1 ::::> I-< M' : A' by induction on the derivation. 
For the proof of the first part, we first have to prove that, if subject reduction 
holds, then we have strengthening, which is the following property 

If I', x: A, L11- M: B, x ~ FV(Ll, M, B), then I', L1 I- M : B. 

Using the fact that the underlying pure type system is functional, we can use 
the 'standard' proof (e.g. in [16]) prove strengthening. Using strengthening, one 
also proves a permutation property, which states the following. 

If I',x: A,y: C, L1 I- M: B, x ~ FV(C), then I',y: C,x: A, L1 I- M: B. 

Now, the following slight extension of the first result above can be proved by 
induction on the derivation (using strengthening and the permutation property). 

If h M : A, then I' I- M : A 

for all I' such that I' respects E and dom(I') = FV(M, A). 

Here, I'(= Xi : Ci' ... 'Xn : Cn) respects € means that EXi = ci and Xi+l ~ 
FV(Ci, ... , Ci) for all i. Furthermore, dom(I') denotes the set { x1, ... , Xn}.D 

It follows that strong normalisation and subject reduction of the system with 
labelled variables (or labelled system for short) is equivalent to strong normalisa­
tion and subject reduction of the original system. Besides, one can reformulate 
the criterion for systems with labelled variables. 

Definition 14 Let >..S be an algebraic type system with a variable labelling E. A 
prototype is a pseudo-term M for which there exist Ni, ... , Np E Pseudo and 
s E S such that 

r. M Ni ... Np: s 

The set of prototypes is denoted by Proto. As before, we consider the relation -< 
defined as the smallest relation such that 

VM, NE Pseudo[(M N) E Proto==> N-< M /\ (M N) -< M] 

Definition 15 >..S is stratified if the relation -< is well-founded. 

Theorem 10 can now be rephrased as: 

Theorem 16 Every R-terminating stratified labelled type system with the sub­
ject reduction property is strongly normalising. 

Theorem 10 follows easily from Theorem 16. 

4 The proof of the main theorem 

In this section, we prove Theorem 16. The proof is divided in two parts: in the 
first part, we prove that algebraic reduction is strongly normalising on legal 
terms. In the second part, we give a model-construction for stratified algebraic 
type systems. Strong normalisation is derived easily from the model construction. 
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4.1 Strong normalisation of algebraic reduction 

Strong normalisation of algebraic reduction on legal terms is established directly 
by advocating modularity results from [13] for example. 

Proposition 17 - R is strongly normalising on legal terms. 

Proof: the technique is inspired from [5] and consists of viewing .A-calculus 
as an algebraic signature. In this way, we define for every 'R.-algebraic type 
system .AS = ('R.., S, sortax, rules, datax) an algebraic signature E>.s extending 
the signatures of the rewrite systems and upon which algebraic reduction is 
terminating. Then we show that all legal terms can be obtained from the terms 
of E>.s by an erasure map f.l which reflects reduction. Strong normalisation of 
algebraic reduction on legal terms follows easily. In the sequel, we consider a 
finite sequence of terminating higher-order rewriting systems 'R.i = (Ai, Ei, Ri) 
for i = 1, ... , n. Let A = LJi=l, ... ,n Ai and let E>.s = (LJi=l, ... ,n Ei) U Eo where 
Eo is the signature with function symbols: 

- Sr : r for s E S and r a datum, 
- <fr: r for r;, r data, 
- Ilx,r1 ,r.,r3 , 'X.,,r1 ,r2,r3 : T1 X r2-> r3 for every variable x and T1,r2,r3 data, 
- Applr1 ,r2,r3 : T1 x r2 - T3 for every r1, r2, T3 data. 

The union Ro of the Ri's is a higher-order rewriting system over Exs. By hy­
pothesis, its first-order reduction relation is terminating, so Ro is terminating 
(see [13]). 

To conclude the proof of the Proposition, first note that by subject reduction 
for -R, we only need to prove that there is no infinite reduction through legal 
terms. To this end, we define a map from the terms of E>.s to pseudo-terms. 
For the sake of simplicity, we assume that the set of variables for every sort r is 
{xT Ix E V}. The map r.1 is defined as follows: 

rxrl = x 

fj(t1, ... ,tn)l = Jft1l ··· ftnl 

fllz,r1 ,r2 ,r3 (ti,t2)l = Ilx: ft1lft2l 

f'Xz,r1 ,r2,rs(t1,t2)l =AX: ft1lft2l 

fApplr1 ,r2,r3 (t1,t2)l = ft1l ft2l 

The map is surjective on the set of legal terms. Moreover, every infinite R­
reduction sequence on legal terms can be lifted to an infinite Ro-reduction se­
quence on the terms of E>.s.D 

4.2 The model construction 

In this section, we present a model construction for stratified algebraic type 
systems with the subject reduction property. The construction is based on sat­
urated sets and is a generalisation of strong normalisation proofs for pure type 
systems, such as the polymorphic >..-calculus ([18, 24, 14]) or the calculus of con­
structions ([17, 25]). The model is heavily inspired by [25]. Before giving a proof 
of Theorem 16, we need some preliminaries on saturated sets. 
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Saturated sets Traditionally, saturated sets are defined as sets of ,B-strongly 

normalisable untyped >.-terms. Here we consider a slightly different notion of 

saturated sets, more adapted to our framework: we define saturated sets as sets 

of pseudo-terms rather than as sets of >.-terms. This is not really important but 

makes the proof slightly more elegant. Moreover, we consider typed saturated 

sets as in (20, 25] rather than untyped saturated sets. This means that the 

notion of saturated sets is defined relative to a set of pseudo-terms. This is not 

important for pure type systems but turns out to be crucial for algebraic type 

systems (otherwise, we cannot use the results of the principal case). 
Recall that a pseudo-term Mis strongly normalising if all reduction sequences 

starting from M are finite. The set of strongly normalising terms is denoted 

by SN. Saturated sets will be defined as subsets of SN with certain closure 
properties. 

Definition 18 A base term is a term of the form x P1 ... Pn where x E V and 

P1, ... ,Pn E SN. 

The set of base terms is denoted by Base. Note that all base terms are strongly 
normalising. 

Definition 19 Key-reduction ->k is the smallest relation on pseudo-terms such 

that for all pseudo-terms M, N, 0, P1 , ... , Pn 

(>.x: M.N) 0 P1 ... Pn ->k N[O/x] P1 ... Pn 

Note that a term has at most one key-redex. The term obtained from M by 
contracting its key redex is denoted by kred(M). 

Definition 20 Let U ~ Pseudo. A set X of pseudoterms is saturated in U if 

{i) X ~SN n U; 
{ii) Base n U ~ X; 
{iii) If kred(M) EX and ME SN n U, then ME X. 

The collection of all saturated sets in U is denoted by SAT(U). For ME Pseudo, 

we use SAT(M) to denote the set of saturated sets in {NE Pseudo I f-, N: M}. 
If X E SAT(M), we say X is a M-saturated set. 

We list some closure properties of saturated sets. 

Fact 21 Let U, U' ~ Pseudo. 

- SN(U) =SN n U is a saturated set in U. 

- The set of saturated sets in U is closed under arbitrary non-empty intersec-
tions. 

- If X is saturated in U and Y is saturated in U', then X _. Y defined by 

X-tY={MEWIVNEX.M NEY} 

is saturated in W provided that Base n W c X -t Y {i. e. for every w E 
Basen Wand x EX, wx E Y). 
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- If X is saturated in U and Yx is saturated in U~ for x EX, then Ilx E X.Yx 
defined by 

llx E X.Yx ={ME WjVN EX.MN E YN} 

is saturated in W provided Base n W C Ilx E X.Y., (i.e. for every w E 
Basen Wand x EX, wx E Y.,). 

If M E Pseudo, then SN(M) is the saturated set of strongly normalising terms 
of type M. 

The principal case The key fact in the model construction for algebraic type 
systems is that the sets of strongly normalising terms of base datum enjoy suit­
able closure properties. 

Proposition 22 Let f be a function symbol of datum (cr1, ... , crn) --t T. Then 
for all pseudo-terms t 1 , ... , tn, 

tiESN(cri) fori=l, ... ,n =t-- ft1···tnESN(r) 

The proof is an adaptation of [19, 2]. This key fact ensures that the model 
construction for algebraic type systems can be carried out in exactly the same 
way as for pure type systems. 

Intuition behind the proof The idea of the proof is to give a model con­
struction in which types are interpreted as (saturated) sets and legal terms as 
pseudo-terms such that the following soundness condition is satisfied: 

1-. M: A =t-- QMD E ((A)) 

where ((A)) is the saturated set interpretation of A and QMD is the pseudo-term 
interpretation of M. For simple systems, such as the (algebraic) simply typed 
A-calculus).__,., the definition of ((A)) can be given inductively on the structure of 
A and the soundness condition can be proved by induction on the derivation. For 
the polymorphic A-calculus A2, one is forced to parameterise interpretations by 
valuations. One then has to prove that if a valuation p satisfies certain properties, 
then 

1-. M: A =t-- QMDP E ((A))p 

In a system with dependent types such as AP or APw, terms might occur in types 
so one cannot any longer define ((A)) by induction on A. The standard solution 
is to define ((A)) as a partial interpretation and show that i.t is well-defined on 
legal types. This requires the introduction of a new interpretation a(M) which 
assigns to a term its possible values. (In this context valuations are of the form 
(p, () where p assigns to every variable (in some domain) a pseudo-term and ( 
assigns to every variable (in some domain) a saturated set.) The idea is that 
a(M) should be defined for every type M and be a set of saturated sets such 
that under suitable conditions 

1-. M: s =t-- ((M))p,C E a(M) 
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Here we see that dependent types introduce a new difficulty: we have indexed 

families of types, i.e. terms of type B _... *6 • These terms, which we have defined 

earlier as prototypes, will also need to be intepreted. To interpret them as families 
of types, we use induction on their structure: if M is of type B _... C _... *, we 

want to define a(M) as the set of families of maps {(fb)b:B J fb: a(b) _... a(M b)}. 
This requires a(b) and a(M b) to be already defined. This requirement matches 

exactly the definition of -<: the assumption that -< is well-founded enables us 

to define the interpretation a(M) by -<-induction. The other two interpretations 

will be defined as usual by induction on the structure of the terms. 

Convention From now on, we drop the subscript in f-,. 

The construction The set Data of data is defined as the union of the set of 
base data of the rewriting systems. The set Type of types is defined by 

Type= {ME Pseudo J f-- M: s for some s E S} 

Definition 23 The map a : Pseudo _... Set is defined by case distinction as 
follows. 

- if M E Type\ Data, a(M) = SAT(M); 
- if ME Proto, a(M) = {(fs)BEcone(M)lfs: a(B) _... a(M B)}; 
- if M E Data, a(M) = {SN(M)}; 
- otherwise, a(M) = {{0}}; 

where cone(M) ={BE. Pseudol(M B) E Proto}. Define A= LJMEPseudo a(M). 

Definition 24 A valuation is a pair (p, () such that p : V ....... Pseudo and ( : 
V----+A. 

The extension [.DP : Pseudo ----+ Pseudo of p is defined as the unique capture­
avoiding substitution extending p. 

Definition 25 The map ( is extended to terms by defining a map ((.))µ( : 
Pseudo ----+ A as follows. 

((x))p( = ((x) if x E V, p(x) E Proto 
((Ilx: A.B))p( ={PE Pseudoj'v'(N, Q) E Ep<(A). 

'(M )) PN E ((B))p(m:=N),((m:=Q))} if QJix: A.EDP E Type 
\ N P( = {((M))p<)QNDp ((N))p( if QMNDP E Proto 

((>..x: A.b))p( = (,\c E a(B).((b))p(:i::=B),((m:=c))BECOne(Q>,.,:A.bDp) if Q>..x: A.bDP E Proto 
((M}) P( = SN(M) if M E Data 
(( M}) p( = { 0} otherwise 

where for every ME Pseudo, 

Ep((M) = {(N, Q) E Pseudo x A I f- N: QMDP, NE ((M))p(, Q E a(N)} 

6 !his is n~t only true for dependent types but also for higher-order polymorphism as 
1t occurs m >..w. 
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The following lemma is easily established by induction on the structure of 
M. 

Lemma 26 Let M, N E Pseudo. Let (p, () and (p', (') be two valuations. 

- If px = p'x and (x = ('x for every x E FV(M), then ((M))pt; = ((M))p'('· 
- ((M[N/x]))p( = ((M))p(x:=QND.),t;(x:=((N))pc) 

As a consequence of Lemma 26 and of the subject reduction property, we con­
clude that ((. )) p( is invariant under reduction on legal terms. 

Corollary 27 For every valuation (p, () and terms M, N such that M ->mi:c N 
and QMDp, aNDp E Proto, we have ((M))p( = ((N))p(· 

In order to prove the main theorem, we must establish that the model behaves 
as expected. It requires a standard soundness argument. In the sequel, we call 
a context a finite list of variables Ll = y1 , ... , Yn such that for i = 1, ... , n, 
Yi (/. FV(cYi) (Vj ::; i). One can check that for every term M, FV(M) can be 
ordered into a context. 

Definition 28 Let Ll be a context. A valuation (p, () satisfies Ll (notation (p, () f= 
Ll) if for every x E Ll, 

(iJ f- px : acxDp, 
(ii) px E ((cx))p(, 
(iii) ((x)}p( E a(axDp)· 

We say that f= M : A if for every valuation (p, () satisfying FV(M) U FV(A), 

(i) f- aMDp : aADp, 
(ii) aMDP E ((A))p,, 
(iii) ((M))p( E a(aMDp), 

Fact 29 Let (p, () be a valuation satisfying Ll. Let x (/. Ll and x (/. FV(cy) for 
ally E Ll. Then for every C E a(x), p(x := x), ((x := C) satisfies Ll U {x}. 

As a(x) :j:. 0, valuations can always be extended to a larger context while pre­
serving satisfaction. We can now prove the main technical result of this paper. 

Proposition 30 (Soundness) f- M: A =? f= M: A. 

Proof: by induction on the length of derivations. 

- Axiom: if f- s1 : s 2 is an axiom, then it is easy to show f= s1 : s 2 . 

- Start: assume f- x : A is deduced from f- A : s by a start rule. Then EX = A. 
Assume (p, () satisifies FV(A)U{ x }. By definition of satisfaction, f- px : QADp, 
px E ((A))p( and ((x))p( E a(px), so we are done. 
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- Function symbol: assume I- f t 1 · · · tn : r is deduced by a function rule from I­
t; : ai for i = 1, ... , n where f is a function symbol of datum ( a1, ... , an) -+ 

7. Assume (p, () I= FV(ft1 · · · tn)· 
I- Qf t1 · · · tnDp : r follows immediately from the induction hypothesis. 
Next one has to prove that Qft1 • · ·tnDp E ((r))p(· This is an immediate 
consequence of Lemma 22. 
Finally, we need to prove ((f t 1 · · · tn}} p( E a(Uf t1 · · · tnD p). This is easy be-
cause Qi ti · · · tnDp rJ. Proto. 

- Product: assume I- II x : A.B : 83 is deduced by a formation rule from I- A : s1 

and I- B: 8 2 • Let (p, ()be a valuation such that(p, ()I= FV(IIx: A.B). 
We prove I- QIIx: A.EDP: 83 . By induction hypothesis, 1-- QADp: s1. By fact 
29, 

p(x := x),((x := C) I= FV(Jix: A.B) U {x} 

for every C E a(x). Hence I- QBDp,(:z::=:z:) : 82 by induction hypothesis. By 
the product rule, I- Ilx: QADp·UBDp,(:z::=:z:) : 83. As Ilx: QADp·UBDp,(:z::=:z:) = 
QJix: A.EDP, we conclude (i) holds. 
Next we show Qll x: A.EDP E ((s3))p(· By definition of((.)) PC, it is equivalent 
to show that QIIx: A.EDP is strongly normalising (we already know that 
(i) holds). By induction hypothesis, QADP E ((81})p( <;;;; SN and QBDP' E 
((82))p'(' <;;;;SN for every valuation (p',(') satisfying FV(B). Let C E a(x). 
Then p(x := x),((x := C) I= FV(llx: A.B) U {x}. Hence QBDp(:z::=x) E SN 
and Qllx: A.EDP E SN. 
Finally, we show ((llx: A.B))p<: E a(UJix: A.BDp)· By (i), we know that 
Qllx: A.EDP E Type, so we have to prove that ((llx: A.B))p<: is a 
Qllx: A.BDµ-saturated set. As QADp is a type, it follows by induction hy­
pothesis that ((A))µi;, is a QADµ-saturated set. Besides, QBDp(x:=x) is a type 
and by the substitution lemma, QBDp(:z::=N) is a type whenever I- N : Ex. 
Hence ((B))p(:z::=N),((x:=Q) is a QBDp(z:==N)-saturated set whenever p(x := 
N), ((x := Q) I= FV(B) (equivalently for every (N, Q) E Epc(A)). We con­
clude ((llx: A.B))p<: is a Qllx: A.BDp-saturated set. 

- Application: assume I- MN : B[N/x] is deduced from I- M : llx : A.B 
and I- N : A by an application rule. Let (p, () be a valuation satisfying 
FV(M) U FV(B[N/x]). 
First, we show that I- QMNDP: QB[N/xJDP. Consider the valuation (p1,(1) 

defined by 

and 

p,y = {PY if y E ~V(M) U FV(B[N/x]) 
y otherwise 

(,y = { (y if y E FV(M) U FV(B[N/x]) 
Cy otherwise 

where Cy is an arbitrary element of a(y). Then 

(p',(') I= FV(MN) u FV(llx: A.B) 

By induction hypothesis, we have 
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- 1- QMDp' : Qllx: A.BDp•; 
- I- QNDp' : QADp'. 

Hence I- QMNDP' : QBDp',(z:=z)laNDp•/x]. In other words, I- QAfNDP' : 
QB[N/xJDp•· As p and p' coincide on FV(Af) U FV(B[N/xj), we conclude 
that (i) holds. 

Next, we show that QM NDP E ((B[N / x]}) p(. Note that it is equivalent to 
show QMNDP' E ((B[N/x]))p'(' where (p1,(1) is defined as above. By in­
duction hypothesis, we know that I- QNDP' : QADp', Qlv'DP' E ((A)}p'(' and 
((N))p'(' E a(QNDp1 ). Hence, (QNDP'•((N))p'(') E l'p'('(A). By induction hy­
pothesis, QMDP' E ((llx: A.B))p'('- Hence 

By Lemma 26, 
done. 

QM NDp1 E ({B)} p1 (z:=QNDP' ),('(x:=((N))p•cil 

((B[N/xJ)}p'(' = ((B)}p'(:r:=QNDp•),('(:r:=((N)),,,,, So we are 

Finally, we prove that ((MN}) p( E a(Q M ND P). There are two cases two 
distinguish. If QMNDP r:/. Proto, then a(QMNDp) = {{0}} and ((MN))p( = 
{0}, so we are done. Otherwise, QMDp E Proto. By induction hypothesis, 
((M))pt. E a(QMDp) and ((N))p( E a(QNDP). Hence (((M))PdUND,((N))p( E 
a(QMNDp)· 

- abstraction: assume I- ,\x : A.t : II x : .4.B is deduced by an abstraction 
rule from I- t : B and 1- II x : A.B : s. Let (p, () be a valuation satisfying 
FV(,\x: A.t) u FV(IIx: A.B).We prove I- Q,\x: A.tDP: Qllx: A.BDp· 
By induction hypothesis, I- QII x : A.EDP : s. By Fact 29 we find that p(x := 
x),((x := C) f= FV(t) for every C E a(x). Hence I- QtDp(:r:=x): QA.Dp(x:=x)· 
As x is not free in A., we have QADp(:r:=:r) = QADp· We can apply the abstrac­
tion rule to conclude. 
Next we prove that Q>.x: A.tDP E ((IIx: A.B})p(· This amounts to showing 
that for every (N, Q) E £pc(A.), we have 

Q,\x: A.tDP NE ((B))p(z:=N),t.(:r:=Q) 

By definition of saturated sets, this follows from 

QtDp(x:=N) E ((B})p(x:=N),((x:=Q) 

which is a direct consequence of the induction hypothesis. 
Finally we prove ((,\x : A.t)) p( E a(Q,\x : A.tDP ). There are two cases to dis­
tinguish. If Q>.x : A.tDP r:j. Proto, this is an easy consequence of the defini­
tions. Otherwise, we have to prove that for every B E conern>.x : A.tDp) and 
c E a(B), ((t)) p(:r:=B),((:r:=c) E a(Q,\x : A.tDpB). By the generation lemma, it 
follows that I- B: QADp, hence (p(x := B),((x := c)) satisfies FV(t). The 
result is a consequence of the induction hypothesis. 

- expansion/reduction: assume I- M : B is deduced from I- M : A and 1-
B : s using the expansion/reduction rule. Let (p, () be a valuation satisfying 
FV(M)U FV(B). As before, we can extend the valuation into a new valuation 
(p', ( 1 ) such that (p1 , ( 1) satisfies FV(M) U FV(B) U FV(A) and coincides with 
(p, () on FV(M) u FV(B). 
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To prove f-- QMDp• : UBDp•, note that QADp1 -t QBDp1 or QBDp1 -t QBDp'· 
Besides, it follows from the induction hypothesis that: 
- f-- QMDp1 : UADP1 j 

- 1- QBDp' : s. 
We conclude by the conversion rule. 
To prove QMDp E ((B}}p(, we just apply Corollary 27. 
Finally, {(M}}p( E a(QMDp) is immediate from the induction hypothesis.0 

Corollary 31 f-- M: A => ME SN. 

Proof: for every derivation I- M : A, consider the valuation (p, () such that 
p(x) = x for every x E V and ((x) = max(x) where maxis defined on pseudo­
terms by -<-induction: 

- if M E Type, max(M) = SN(M); 
- if ME Proto, max(M) = (>.x: a(B).max(M B))Becone(M)i 
- otherwise, max(M) = {0}. 

Then (p, () f= FV(M) U FV(A). It follows from Proposition 30 that ME ((A))p,(· 
As ((A}}p,( ~SN, we conclude. 

5 Applications of the main theorem 

5.1 Strong normalisation results 

As stated in Corollary 11, Theorem 10 has several important consequences. 
For 'R-terminating extensions of the .A-cube, we know from [3] that subject 

reduction holds; so we are left to prove that the systems are stratified. To do so, 
notice that, if Mis a prototype, then M: A with A a kind and kinds are of the 
form7: 

- *, 
- II x : A.B where A and B are kinds, 
- II x : A.B where B is a kind and A is a type. 

One can define a measure v on kinds as follows: 

- 11(*) = 1, 
- 11(Ilx: A.B) = 11(A) + v(B) + 1 if A and Bare kinds, 
- v(Ilx: A.B) = 11(B) + 1 if Bis a kind and A is a type. 

Note that the measure is preserved by conversion. By uniqueness of types, this 
yields a measureµ on prototypes: define µ(M) = n if f-- M: A and v(A) = n for 
some A. Extendingµ to all pseudo-terms by letting µ(P) = O if P ~ Proto, we 
obtain the following result. For every P, Q, 

p-< Q => µ(P) < µ(Q) 

7 Below we are implicitely assuming tha.t algebra.ic da.ta. live in * a.s in [3]; it is easy to 
ada.pt the proof to the other ca.se. 
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Hence the systems of the algebraic .\-cube are stratified. A similar technique 
applies to algebraic higher-order logic. 

For 'R.-canonical and 'R.-left-linear extensions of the calculus of constructions 
with universes, the proof is more involved and requires a quasi-normalisation 
argument, as developed in [20]. The quasi-normalisation theorem shows that 
every type has a weak head normal form. This enables us to give a measure on 
types. As before, we can invoke uniqueness of types to turn this measure into a 
measureµ for prototypes with the property that P-< Q => µ(P) < µ(Q) for all 
pseudo-terms P, Q. Note that in this case it is crucial to know subject reduction 
and confluence of reduction on normal terms before the strong normalisation 
proof so we must restrict ourselves to confluent and left-linear rewriting systems. 
For such systems, the combined reduction is confluent on the set of pseudo-terms 
of the algebraic type system (this follows from [22]). 

5.2 Confluence results 

As noticed in [10], the combined reduction relation ->mi:r of an algebraic type 
system is in general not confluent on the set of pseudo-terms. However, it is 
straightforward to check that ->mix is locally confluent on pseudo-terms. Us­
ing Newman's Lemma, one can lift Theorem 10 to 'R.-canonical algebraic type 
systems. 

Proposition 32 Every R-canonical algebraic type system with the subject re­
duction property is strongly normalising and confluent w.r.t. ->mix· 

The results of Corollary 11 can all be lifted to 'R.-canonical algebraic type sys­
tems. 

6 Conclusion 

We have introduced in the unified framework of algebraic type systems a large 
class of algebraic-functional languages which includes all the systems considered 
in the literature so far. In this general framework, we have been able to ad­
dress modularity questions. We have given a general criterion for algebraic type 
systems to be strongly normalising and shown that all the usual algebraic type 
systems satisfy this criterion. One nice aspect of the proof is that it gives a uni­
form treatment of all the usual algebraic type systems and emphasizes the fact 
that proving strong normalisation for algebraic type systems is not essentially 
more difficult than proving strong normalisation for pure type systems. It would 
be interesting to extend the present work to more powerful type systems: pos­
sible extensions to be considered are first-order inductive types (i.e. inductive 
types generated by first-order signatures, see for example [23]) or congruence 
types (an extension of algebraic type systems in which data come equipped with 
an elimination principle, see [8]). However, we feel more enclined to focus on two 
important problems which have remained unsolved so far: 
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- subject reduction: it is an open problem whether algebraic type systems have 
subject reduction. This is a serious gap in the theory of algebraic type sys­
tems. Even for systems with subject reduction, such as the algebraic Calculus 
of Constructions, the situation is unsatisfactory because the proof of subject 
reduction is long and intricate. One possible approach to solve the problem 
would be to consider a labelled syntax for algebraic type systems in which 
all the usual properties of functional pure type systems (especially subject 
reduction, unicity of types and classification) hold and use these properties 
to prove strong normalisation of the labelled syntax (for stratified systems). 
Then, assuming the labelled syntax to be strongly normalising, one would 
transfer these results to the traditional syntax by proving the equivalence 
between the labelled and traditional syntaxes. This approach, introduced by 
T. Altenkirch to prove strong normalisation for the Calculus of Construc­
tions with ,871-reduction ([1]), is currently investigated by P-A. Mellies and 
the first author. 

- modular proofs: our approach to prove strong normalisation is uniform in 
the sense that algebraic type systems are treated simultaneously with pure 
type systems. Yet in practice, one would like to know that an algebraic type 
system is strongly normalising if its underlying pure type system is. Note 
that such a result would require a purely syntactic proof as no assumption 
is made on the algebraic type system. See [7] for some preliminary work in 
this direction. 

Another interesting direction for future research is to study the strength of the 
criterion for pure( and algebraic) type systems. Although every pure type system 
of interest is stratified, one can easily find pure type systems which are strongly 
normalising without being stratified. The easiest example is probably obtained 
by adding to the polymorphic A-calculus a new sort !:::. and an axiom !:::. : *· It 
would be instructive to compare our criterion with other strong normalisation 
criteria for pure type systems. It is easy to prove that any pure type system which 
can be embedded in the calculus of constructions with universes is stratified. The 
converse is not true: consider the pure type system with set of sorts N and with 
axioms i + 1 : i (and no rules). This is a stratified pure type system, yet it 
cannot be embedded in the calculus of constructions with universes. However, 
we might hope that every stratified pure type system with finitely many sorts 
can be embedded in the calculus of constructions with universes. 
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