
The Variable Containment Problem

Stefan Kahrs�

University of Edinburgh
Laboratory for Foundations of Computer Science

King�s Buildings�
Edinburgh EH� �JZ
United Kingdom

email� smk�dcs�ed�ac�uk

Abstract� The essentially free variables of a term t in some ��calculus�
FV��t	� form the set fx j �u� t
� u � x � FV�u	g� This set is signi��
cant once we consider equivalence classes of ��terms rather than ��terms
themselves� as for instance in higher�order rewriting�

An important problem for �generalised	 higher�order rewrite systems is
the variable containment problem� given two terms t and u� do we have
for all substitutions � and contexts C � that FV��Ct��	 � FV��Cu� �	�

This property is important when we want to consider t� u as a rewrite
rule and keep n�step rewriting decidable� Variable containment is in gen�
eral not implied by FV��t	 � FV��u	� We give a decision procedure for
the variable containment problem of the second�order fragment of ���
For full �� we show the equivalence of variable containment to an open
problem in the theory of PCF� this equivalence also shows that the prob�
lem is decidable in the third�order case�

� Introduction

As soon as we make the step from terms to equivalence classes of terms as the
objects of our interest� the question whether a variable occurs �free� in such an
object becomes a bit delicate� Should the variable occur in all terms of the class
or only in some� or can we sensibly ask this question at all�

Typically� the equivalence relation � in question is preserved by substitution
application� i�e� t � u implies t� � u� for arbitary substitutions �� In particular�
if t � u and x is free in t but not in u then t�y�x� � u�y�x� 	 u for any variable
�or term� y� This suggests the following de
nition�

De�nition �� Let 	e be a substitutive equivalence relation� The free variables

modulo 	e of a term t� FVe�t�� are de
ned as follows�

FVe�t� 	
�

t�eu

FV�u�

� The research reported here was partially supported by SERC grant GR�J������

In the above de
nition I was deliberately a bit vague about basic notions
such as term� substitution� and free variable� because the concept makes sense for
various �typed or untyped� ��calculi as well as
rst�order terms� In the following�
we shall concentrate on the equivalence 	� and call variables which are free
modulo 	� essentially free��

For each equivalence class �u�� that contains a normal form u�� we have
FV��u� 	 FV�u��� Unfortunately� the set FV��t� is in general �for the untyped
��calculus� not recursive� i�e� the problem x � FV��t� is undecidable� the set
Mx 	 ft j x � FV��t�g is closed under ��conversion and non�trivial which
already implies that Mx is not recursive �theorem ����� �ii� in ����� moreover�
t �Mx �� x � FV��t��

In ��� the notation x �� M is used instead of x � FV��M� �exercise �������
notation ������ � the concept is not really new� even though Barendregt de
nes
it only for ��theories rather than arbitrary �substitutive� equivalence relations�
Similarly� Middeldorp ���� uses the notation V�x ��t�R� to describe the set of
variables that occur in every term that is R�equivalent to t�

Most typed ��calculi studied in the literature ��� have a strongly normalising
��reduction� which implies that FV��t� is recursive for each typable term t� we
reduce t to its ��normal form t� and
nd the set as FV�t���

Moving from terms to equivalence classes of terms is not entirely unprob�
lematic� the property FV��t� � FV��u� is in a sense less informative than the
ordinary FV�t� � FV�u�� From the latter we can deduce FV�t�� � FV�u��
and FV�C�t�� � FV�C�u��� which means that the property is a rewrite relation�
But we cannot deduce from the former FV��t

�� � FV���u
��� or FV��C�t�� �

FV��C�u��� Example� the terms t � �x y� and u � ��z� z x y� are in normal
form and have the same essentially free variables fx� yg� But when we apply the
substitution � 	 ���v� x���x� to both terms then x� is essentially free in both
but y is only essentially free in u�� similarly� the context C� � 	 ��v�x�� also
distinguishes these terms� x is essentially free in C�t� but not in C�u��

Why does this matter�
The condition FV�t� � FV�u� is typically used as a requirement for rewrite

rules t � u� to make sure that rewriting never introduces free variables� This
property is desirable for a number of reasons�

�� Without it� the rewrite system could not be strongly normalising� because
rewriting is substitutive and extra variables on the right�hand sides could
be instantiated to �terms containing instances of� left�hand sides of rules�
including the left�hand side of the very rule with the extra variables�

�� Without it� con�uence is unlikely� if t� u and if u contains an extra variable
x then also t� u�y�x� and con�uence would require that u and u�y�x� have
a common reduct�

�� To decide the one�step rewrite relation t � u� one has to decide matching
problems� i�e� matching occurrences in t to left�hand sides of rules� This
remains true if we allow extra variables though we have then an additional
matching problem of �a subterm of� u against the instance of the right�hand
side of the applied rule� However� if we consider n�step rewriting for n � ��

then we have to solve uni
cation problems if the rules have extra variables�

To make the last point clear� we can encode any uni
cation problem as a
two�step rewriting problem of a rewrite system with extra variables as we shall
see shortly� By uni
cation problem� we mean the following�

De�nition �� The uni�cation problem t
�
	 u is the property 		� t� 	 u��

Again� I am deliberately vague about what the terms t and u and the substitution
	 range over� and how substitution application t� is actually de
ned � terms�
substitutions� and their uni
cation problems exist in a variety of formalisms�

Theorem�� For any �rst�order uni�cation problem t
�
	 u there is a �nite �gen�

eralised� rewrite system R and terms C�D such that t
�
	 u �� C�R ��R D�

Proof� We choose symbols C�D� F not occurring in t and u� R has two rules�
C � F �t� u� and F �x� x� � D� The required intermediate term E with C �R

E �R D must have the properties 		� E 	 F �t� u�� � because we can only apply
the
rst rule to C� and similarly 	
�E 	 F �x� x�� � because we can only apply the
second rule backwards to D� Both conditions together are su�cient as neither
C nor D are a�ected by substitution application� Thus� C �R E �R D is
equivalent to the problem 		� 	
� F �t� u�� 	 F �x� x�� which is equivalent to
		� 	
�
�x� 	 t�

�x� 	 u� which in turn is equivalent to t

�
	 u� ut

The same kind of situation appears in higher�order rewriting� where it is
even more signi
cant� matching up to fourth�order is known to be decidable
��� �� ���� but second�order uni
cation is already undecidable ���� The decidability
of higher�order matching is still an open problem but it is often conjectured to
be decidable ����

Remark� In view of Loader�s recent result ���� that �absolute� ��de
nability
for �arbitrary�
nite models of �� is undecidable this conjecture is rather doubt�
ful� Looking at the details of Loader�s proof we can observe that it shows that
relative ��de
nability is already undecidable for third�order types which �see
Loader�s proof of Lemma � in ����� implies that absolute ��de
nability for fourth�
order types is undecidable too� absolute ��de
nability for third�order types is
decidable �����

The question about extra variables is generally asked for the instance of a
rule� not for the rule itself� We have already seen that this di�erence matters in
the presence of higher�order variables and indeed we do not need extra variables
in the rules themselves to solve uni
cation problems�

Theorem�� For any second�order uni�cation problem t
�
	 u there is a �nite

�generalised� second�order rewrite system R �with all rules l � r satisfying
FV��l� � FV��r�� and terms C�D such that t

�
	 u �� C �R ��R D�

Proof� We choose fresh symbols D�F�G such that the result type of F and G is

rst�order� and a fresh second�order variable y� The rules of R are G�y �F tu���
�F tu� and as before F xx� D� We can only apply the
rst rule to C � GD by
taking any substitution 	 such that 	�y� 	 �z� D and have the same situation
as in the proof of theorem �� ut

This observation is based on generalised higher�order rewrite systems ����� Orig�
inally� HRSs were de
ned with an additional condition for left�hand sides ����
which we shall not consider here� su�ce it to say that the subterm �y �F t u�� in
the above proof does not satisfy this condition�

Theorem � shows that FV��l� � FV��r� is clearly not the right condition
for general higher�order rewriting if we want to ban extra variables and keep n�
step rewriting decidable� We need something stronger� a property which is also
a rewrite relation�

There is a general principle behind the last remark� A rewrite relation is a
relation closed under substitution application and context application� i�e� � is
a rewrite relation i� t � u implies t� � u� for arbitrary substitutions �� and
C�t� � C�u� for arbitrary contexts C� �� In a typed scenario� the arbitrary�
comes with a typing proviso�

The typical use of the term rewrite relation� is to form the rewrite closure
of a relation R� i�e� the smallest rewrite relation �R which contains R� This is
well�de
ned� because rewrite relations are closed under arbitrary intersections�
As they are also closed under arbitrary unions� the dual concept is also well�
de
ned� the rewrite interior of R is the largest rewrite relation�R contained in
R�

The notion of rewrite interior is useful for the following reason� Sometimes
we want to show that all terms in a rewrite relation �given by a rewrite system
R� satisfy a certain property� i�e� t �R u implies tSu� more brie�y �R �
S� The proof will hardly ever work directly� because �R is almost always an
in
nitary object� it relates in
nitely many terms� The solution is to prove instead
a property about R itself� since R is typically a
nite relation�

Theorem�� Let R and S be relations on terms� Then �R � S �� R � �S�

Proof� Trivial by exploiting the following facts� �i� Rewrite interior and rewrite
closure are monotonic w�r�t� to �� �ii� any rewrite relation is a
xpoint of both
the closure and the interior operator� in particular this applies to �R and �S �
�iii� R � �R and �S � S� ut

In words� to show that a rewrite closure �R satis
es an invariant S we can
show that R satis
es�S � In our situation� S is the relation tSu �� FV��t� �
FV��u� and variable containment is the interior of this relation�

� Variable Containment in General

De�nition 	� Given two terms t� u � �� their variable containment problem�
t � u� is de
ned as the following property�

t � u
def
�� �C� �� ��� FV��C�t

��� � FV��C�u
����

For the untyped ��calculus this is obviously an undecidable problem as even the
sets FV��t� are generally non�recursive� We can also ignore the ��� quanti
er

as any substitution application can occur as the substitution derived from a
��reduction�

For typed ��calculi the problem has to be slightly restated� restricting t and
u to be well�typed preterms in some context� � and � a substitution mapping
variables in � to preterms that type�check �with the same type� in some context
� An analogous restriction applies to C� �� The exact formulation depends on
the particular ��calculus� though the general principle should be clear�

It is possible to formalise it uniformly for all type systems expressible in the
formalism of Pure Type Systems �short� PTS� see ��� ���� especially the PTS
with signature� as in ��� which support a proper treatment of constant symbols�
However� this goes somewhat beyond the scope of this paper and therefore we
concentrate on the simply typed ��calculus �� and its fragments�

In order to formulate the appropriate notion of variable containment for
typed ��calculi we have to adapt the notion of substitution accordingly�

De�nition
� We write � � � � if � is a function from variables to preterms
and � and are contexts such that�

�x � Dom�� � � x �
 	� � ��x� �

For arbitrary type systems� we would have to formulate a similar though more
awkward adaptations for contexts �in the sense� term with hole�� However� for
�� and its n�th order restrictions this is not really necessary due to the following
observations� Suppose t and u have a function type� then t � u �� t x � u x
for some fresh x� Thus we can reduce variable containment of arbitrary types to
variable containment of base types� Moreover� if t and u have a base type then
FV��t� � FV��u� i� for all C� � we have FV��C�t�� � FV��C�u��� This way we
can avoid the quanti
cation over contexts by restricting our attention to variable
containment for base types� To be precise� this trick requires that substitution
does not a�ect the types� i�e� it does not apply to �� as presented in ��� where
base types are variables � we need them to be constants�

De�nition �� The variable containment problem for �� with signature � is
the following�

� � t � u �

def
�� �
 � �� � �
 � � t �

 � � u �

�� �� � � � � FV��t
�� � FV��u

��

The property �
 � �� � � just means that
 is a base type in the signature�
To decide the variable containment problem we would generally need that

FV��t� is recursive which is the case for all strongly normalising type systems�
Then we have to
nd a semantic domain �D��� to interpret the judgements
� � t �
 such that the predicate � and the interpretation function are total

� I use the word �context� for terms with holes C � and also for sets of pairs of
variables and types � � since it is established terminology for both�

recursive functions and ��t�� � ��u�� i� t � u� We follow tradition by using double
brackets �� �� for denoting the semantic interpretation of syntactic objects�

There is no other requirement we need for these domains� i�e� D is just a set
and � a binary relation on D� Since � is a preorder �easy to show�� we would
need that � is a preorder as well if �� �� is surjective�

� Variable Containment for ��
�

We begin with the type theory ��� � the second�order fragment of the simply
typed ��calculus ��� In ��� � free variables are restricted to at most second�
order types� i�e� types of the form
� �
� � � � � �
n such that all
i are base
types� It is possible to de
ne ��� as a PTS� but we shall not do that here� for it
would distract too much from the major issues we want to tackle�

Combinatory reduction systems �CRSs� ���� ��� can be seen as a special
class of rewrite systems in the type theory ��� over extensions of the signature
� 	 h�� �� � � �� � �� � �i� To get an exact match� no further type constants
�other that �� or third�order constants �other than �� should be allowed� CRSs
come equipped with an additional restriction for left�hand side of rules �each
free variable is applied to a sequence of distinct bound variables� that makes the
variable containment problem trivial � for CRS rules l � r the property l � r
is equivalent to FV�l� � FV�r��

However� we can drop the restriction for left�hand sides and generalise the
de
nition of second�order rewrite rule�

De�nition �� Given a ��� �signature �� a ��rule is a tuple ��� l� r�
�� written
� � l � r �
 � such that �i�
 is a base type� �ii� � � l �
 � �iii� � � r �

An instance of a rule ��� l� r�
� is given by a substitution � � � � and a
context C� � such that E C�x� � 	 for some type 	� some fresh variable x� and
some context E such that �x �
� � E and x �
 is a premise of E C�x� � 	�
i�e� is the context in which the hole of C� � is being type�checked� We omit
the formal de
nition of the latter� but it can easily be formalised in the style of
a type system� We have t�R u for terms t� u with E t �
 �analogously for u�
if there is a rule � � l � r �
 � a substitution � � � � and a context C� �
�as described� such that C�l�� 	�� t and C�r� � 	�� u�

Since second�order matching is decidable� we can decide whether we have
an instance of a rule� i�e� the rewrite relation �R is decidable for
nitely many
rules� As for
rst�order rewriting� the transitive closure of �R is undecidable�
As already explained� the two�step rewrite relation �R ��R is undecidable for
general second�order rewrite systems because of extra variables�

Therefore� it makes sense to require � � l � r �
 for all rules � � l �
r �
 � Since we require that the type
 of a rule is a base type� the proposition
� � l � r �
 is well�formed and according to our general observations for base
types it is equivalent to variable containment for the rewrite relation generated
from this rule� In the following we shall omit the subscript � for judgements�

How can we decide variable containment in ��� for two terms t and u� Take
for instance the terms t 	 F �x �y z�� �y w� and u 	 G �y �x z�� �where w� x� y� z
are variables� x and y second�order�� do we have t � u� or u � t� or both�
or neither� and how can we
nd out� For t � u we have to check FV��t

�� �
FV��u

�� for all substitutions �� but this is an in
nitary condition� For second�
order variable containment only two things matter for a substitution� �i� which
variables are free in the substitute� and �ii� for second�order variables v with
substitute �v�� � � � � vn�s� which of the �
rst�order� variables vi is free in s� The
former limits which variables can be free in the substituted term� from the latter
we can
nd out which subterms will be erased during normalisation� Consider
the variables x and y from the example and their substitutes ��x� 	 �x��p and
��y� 	 �y��q� if x� is free in p and y� is free in q then the free variables in u�

are exactly FV����x�� � FV����y�� � FV����z�� and FV��t
�� contains those and

also FV����w��� Thus u �� t� If y� is not free in q then FV��u
�� 	 FV����y��

and FV��t
�� 	 FV����x�� � FV����y��� Finally� if y � FV��q�� x �� FV��p� then

FV��t
�� 	 FV����w�� � FV����x�� � FV����y�� and FV��u

�� 	 FV����x�� �
FV����y��� So� in all cases we have FV��t

�� � FV��u
�� and thus we have t � u�

The general picture is that we have to consider all free variable occurrences
in a term and see in which argument positions of which other variables these
occurrences are� The following semantic interpretation of terms captures these
observations�

De�nition �� For ��� � we interpret judgements � t �
 as pointwise ordered
functions in Dom� � �����Dom� ��N �� where the order on the codomain is
given as�

A � B
def
�� �M � B� 	N � A� N �M�

We assume in the following that t is in ��normal form� i�e� if it is not then we
take ��� t �
 �� 	 ��� t� �
 �� where t� is the normal form of t�

If t has the form x t� � � � tn �n � �� with x � Dom� then�

��� x t� � � � tn �
 ���x� 	 f�g

��� x t� � � � tn �
 ���y� 	 fM � f�x� i�g j � � i � n�M � ��� ti �
i���y�g

if x �	 y

If t has the form f t� � � � tn with f � Dom� then

��� f t� � � � tn �
 ���y� 	
�

��i�n

��� ti �
i���y�

If t is an abstraction �x �
� u then

��� �x �
� u �
 � 	���x� 	 �

��� �x �
� u �
 � 	���y� 	 fM n �fxg �N � jM � ���� x �
 u � 	���y�g

if x �	 y

The subtraction of fxg�N �for the abstraction� is only necessary if the type
of x is second�order� This situation can only occur on outermost level� and it
cannot in our second�order rules� One could argue whether these terms exist in
��� � but they do indeed in a PTS�like formalisation�

The interpretation can be explained as follows� if ��� t �
 ���x� 	 M then
M contains for each free occurrence of x in t the set of argument positions in
variable applications that lie above that occurrence� In particular� ifM 	 � then
x is not free in t and if � �M then there is a topmost occurrence of x in t and
all variables free in ��x� will be free in t� as well�

De�nition ��� A substitution � � � � preserves a set M � �V �N �� written
� j	M � i�

��x� i� �M� x � Dom� � 	y�� � � � � yi� t�

��x� 	�� �y�� � � � � yi� t
 yi � FV��t�

We can read the property 	M � ��� t �
 ���x�� � j	 M as follows� there is
a free occurrence of x in t which is not erased when we apply � to t��

De�nition ��� A substitution � � � � is called �rst�order i� for all �x � 	� �
� the preterm ��x� is not an abstraction�

Thus� if t is a normal form and � is a
rst�order substitution with only normal
forms in its codomain then t� is in normal form too� Obviously� a
rst�order
substitution preserves any M � This means that 	M � ��� t �
 ���x�� � j	 M is
equivalent to x � FV��t� for
rst�order ��

Lemma��� Let � t �
 � � � � � and y � Dom be arbitrary� We have
y � FV��t

�� ��
	x � Dom�� y � FV����x��
 	M � ��� t �
 ���x�� � j	M

Proof� We can w�l�o�g� assume that t is in normal form and that � maps variables
to terms in normal form�

First we prove the lemma for
rst�order substitutions� Using our assumptions
about t and � and the above observations about
rst�order substitutions� the
lemma reduces to y � FV�t�� �� 	x � Dom�� y � FV���x��
 x � FV�t�
which is an obvious property of substitutions�

Now let � be arbitrary� We prove the lemma by induction on the term struc�
ture� We just show ��� �� is similar� We only have to consider variable
applications z t� � � � tn� constant applications f t� � � � tn and abstractions �z� t��

Let t be a variable application z t� � � � tn� Let ��z� 	 �y� � � � yn� u� Then
t�� 	 u� where � � E � is given by ��yi� 	 t�i � and ��v� 	 v for v ��
fy�� � � � � yng� Observe that � is
rst�order� i�e� we can apply the lemma to it� We
get� y � FV��t

�� �� y � FV��u
�� �� 	x� � DomE��y � FV����x

���
	M �
��E u �
 ���x��� � j	 M� �� 	x� � DomE� y � FV����x

���
 x� � FV��u�� For
x� � DomE� we either have x� 	 yi for some yi or x

� � Dom�
In the former case the condition reduces to yi � FV��u�
 y � FV��t

�
i � for

some i� The
rst part means that � preservesM �f�z� i�g i� it preservesM � For

the second we can apply the induction hypothesis and get a variable x � Dom�
and a set Mi � ��� ti � 	i���x� with � j	 Mi� Thus � j	 M �

i 	Mi � f�z� i�g and
clearly M �

i � ��� z t� � � � tn �
 ���x��
In the latter case� x� � Dom� we have y 	 x� and can choose x 	 z� since

� � ��� z t� � � � tn �
 ���z� we only have to show � j	 �� but this is trivially true�
For constant applications f t� � � � tn we can directly apply the induction hy�

pothesis� y � FV��f t
�
� � � � t

�
n� �� 	i� y � FV��t

�
i � �� 	x � Dom�� y �

FV����x��
 	M � ��� ti � 	i���x�� � j	 M �� 	x � Dom�� y � FV����x��

	M � ��� f t� � � � tn �
 ���x�� � j	M �

Finally� let t be an abstraction �z�u� We de
ne �� 	 ��z �� z�� We get�
y � FV��t

�� �� y � FV��u
��

�
 y �	 z �� y �	 z
 	x � Dom� � fzg� y �
FV���

��x��
 	M � ���� z � 	 u � 	����x�� �� j	M �� y �	 z
 	x � Dom�� y �
FV����x��
 	M � ���� z � 	 u � 	����x�� �� j	 M �� y �	 z
 	x � Dom�� y �
FV����x��
 	M � ���� z � 	 u � 	����x�� � j	 M n �fzg � N � �� 	x �
Dom�� y � FV����x��
 	M � ��� �x � 	� u � 	����x�� � j	M � ut

Lemma��� � t � u �
 �� ��� t �
 �� � ��� u �
 ��

Proof� This follows easily from a pointwise extension of lemma ��� Considering
the �� direction� notice that for each N � ��� u �
 ���x� we can construct a
substitution � such that � j	M i� M � N and y � FV����x��� ut

Clearly� �� �� is a total computable function and so is the order � when re�
stricted to total computable functions� Therefore�

Theorem��� The variable containment problem for ��� is decidable�

� Variable Containment for ��

We are going to reduce the general variable containment problem for �� to a
more speci
c situation� in which we only consider a particular signature and
substitutions into a particular context� This reduction also links the problem to
a problem in the semantics of PCF�

De�nition �	� A pseudo�constant in a ���signature � is a term c with hi �
c � 	 for some type 	 and�

��� �	� �t�� � � � � tn� � � c t� � � � tn � 	 	�

�x � Dom�� �x � FV��c t� � � � tn� �� 	i� x � FV��ti��

Any symbol in the signature is obviously a pseudo�constant� The identity
function �x � 	� x is a pseudo�constant if and only if 	 is a type constant� The
idea behind pseudo�constants is that they behave like constants in many ways�
in particular with respect to the variable containment problem� It is sometimes
useful to assume a constant for any type �for freezing variables�� but this would
require an in
nite signature� For our purposes it is su�cient to have pseudo�
constants for any type�

De�nition �
� A ���signature � is called rich if �i� it includes a base type ��
�ii� there are constants A � � and B � � � � � � in � and �iii� for any other
base type � � � there are constants C	 � �� � and D	 � �� � in ��

We can extend any signature to a rich signature just by adding the missing
constants� One could also view signatures as rich if they have pseudo�constants
of the required types� but we shall not do that as it only complicates the tech�
nicalities without adding anything substantial� In the following� we assume for
simplicity that there is only one base type � in �� The corresponding adjustments
to the general case are straightforward�

De�nition ��� Let � be rich� For any type 	 we de
ne a term con� as follows�

con� 	 A

con��� 	 �x � �� x

con������� 	 �x � �� �y � 	� con��� �B x �con��� y��

con������� 	 �f � 	 �
� con��� �f con��

The function con is well�de
ned as the right�hand sides of the equations use
fewer arrows� in the types of con than the corresponding left�hand sides�
Clearly� each con� has type 	 in the empty context�

Remark� it is worth noting that the terms con� have a more general signi
�
cance� e�g� they show up in ���� where A is � and B is addition� As explained in
���� the map con��� is the inverse of con��� whenever A and B form a monoid�
moreover� in the terminology of category theory ����� they are even morphisms
of �some� actions of this monoid�

Proposition��� Each con� is a pseudo�constant�

One consequence of having pseudo�constants for all types is that we can
slightly simplify the variable containment problem�

Lemma�� The variable containment problem � � t � u �
 is equivalent to
the following property for a rich extension �� of ��

�� � � � X� FV��t
�� � FV��u

�� ���

where X is the �xed context hx � �i�

Proof� We prove both implications by contradiction�
rst ���� The property ���
is an instance of the variable containment problem if� is already rich� Otherwise�
let � � � � X be a ���substitution such that x � FV��u

�� and x �� FV��t
��� We

can create a counter�example for variable containment as follows� the context is
 	 ha � �� b � � � � � �� x� � �i and the substitution � � � � is given by
��y� 	 ��y��a�A� b�B� x��x�� Clearly� u
 contains the variable x� essentially free
whilst t
 does not�

Now ���� suppose variable containment does not hold� i�e� for some context
� some variable y � Dom� and some substitution � � � � we have that

y � FV��u
�� but y �� FV��t

��� We can de
ne a substitution � � � X as
follows�

��z� 	 con� if z �	 y� z � 	 �
��y� 	 �con��� x� if y � 	 �

and from this we get a contradiction of ��� using the substitution �� � � � � X �
the pseudo�constant property of all con� makes sure that x is in FV��u

��� while
FV��t

��� 	 �� ut

Variable containment is una�ected by replacing constants by pseudocon�
stants� Based on this observation and lemma �� we can design a semantic inter�
pretation for types� terms� and judgements to model variable containment� Since
X has only one variable x of type �� FV�t� is just a boolean information for any
t with X � t � �� For higher types� we also have to model how the freeness of
x can be a�ected by ��reduction�

Thus we can interpret � � � � � by the partially ordered set f���g �with
� � �� and each function space 	 �
 by the set of ��de
nable monotonic
functions from ��	�� to ��
 ��� ordered pointwise� Here� we take the constants � and
� and the function
 � ��� � � � ��� �greatest lower bound� as primitively
��de
nable� Thus� our semantic domain is a fully abstract model for PCF�� i�e�

nitary PCF over the unit type� We come to that later in more detail�

The restriction of the function space to ��de
nable functions is crucial� the
terms f x x and B �f A x� �f x A� are equivalent w�r�t� to variable containment
but are di�erent in the full Poset model over ������

De�nition ��� Given a context � an environment � for � is a
nite map from
the domain of � to the union of all ��	�� �with hi � 	 � �� such that� �x � 	 �
�� ��x� � ��	���

Let � be rich �otherwise we can make it rich by a signature extension�� Given
any context � and environment � for � � we can interpret judgements � � t �

as follows�

��� � �x � 	� t � 	 �
 ��� 	 �v �� ���� x � 	 � t �
 ����x��v��

��� � t u �
 ��� 	 ��� � t � 	 �
 ������� � u � 	����

��� � x � 	��� 	 ��x�

��� � c � ���� 	 �

��� � c � �� �� ���� 	 �x �� �y �� x
 y��

��� � c � 	��� 	 ��hi � con� � 	���� if 	 �� f�� �� �� �g

The reason for the special treatment of types � and � � � � � is that
con� terms can contain constants of only these two types� so this stops the
recursion� The de
nition of the interpretation function �� �� is well�de
ned as the
interpretation of each judgement ��� � t � 	�� is in ��	��� Moreover� for any given
environment �� the function �� ��� is clearly recursive�

The interpretation of judgements is in fact independent from the choice of
signature� as all constants of the same type have equal interpretations� The

idea behind this interpretation is the following� we use the
xed context X 	
hx � �i and take � for x is not essentially free� and � for x is essentially
free�� Apparently� x does not occur free in any constant c of type �� which
we model by interpreting c as �� Then� x is essentially free in B t u i� it is
essentially free in either t or u � this explains the interpretation of B �and any
other constant of type � � � � �� as
� the greatest lower bound� The rest
of the de
nition is just book�keeping and reducing more complicated situations
to simpler ones� In particular� ���equivalent terms have equal interpretations as
syntactic abstraction and application are modelled by semantic abstraction and
application� and constants of any type can be replaced by pseudo�constants of
the same type as they behave the same w�r�t� the variable containment problem�

As usual� we can compose substitutions and environments�

De�nition ��� Let � � � � be a substitution and � be an environment for
� We de
ne a function � � � as follows�

�� � ���x� 	 �� ��x� �
 ��� if � x �

Lemma��� Let � � � � be a substitution and � be an environment for �

	� � � � is an environment for � �

� For all � t �
 we have �� t� �
 ��� 	 ��� t �
 ������

Lemma �� is standard for semantic interpretations of the ��calculus� the proof is
routine and needs hardly any adaptation from �for example� the proof of lemma
�� in �����

De�nition ��� We de
ne an order � on judgements of the same type and con�
text as follows�

�� t �
� � �� u �
� �� ��� ��� t �
 ��� �� ��� u �
 ���

Lemma��� Let J�� J� be judgements Ji 	 � � ti �
 �
We have J� � J� �� � t� � t� �
 �

Proof� By lemma �� we can w�l�o�g� assume that � is rich and restrict our
attention to variable containment w�r�t� the context X � Similarly we can require
� to be the rich extension of the empty signature� because variable containment
and �� �� are una�ected by replacing constants by arbitrary pseudo�constants�
Since the interpretation of syntactic abstraction and application is by semantic
abstraction and application� ��reduction does not a�ect the interpretation� From
this it follows �by a straightforward induction on normal forms� that ��X u �
���x��� 	 � �� x � FV��u��

To prove ��� we need to be able to construct a substitution counterexample
for � t� � t� �
 whenever we have an environment � such that ���J���� � ��J�����
Because we required each value in the model to be ��de
nable relative to �� ��
and
� we can
nd for each value v in ��	�� a term tv such that X tv � 	 and
��X tv � 	��x��� 	 v� The substitution � � � � X with ��y� 	 t��y� is then the
substitution we were looking for� ut

In other words� the variable containment problem is equivalent to deciding
the inequality � in a fully abstract model of PCF� �PCF over the unit type
with constants � and � and
�� To decide �� it would be su�cient to e�ectively
construct such a model� because each type is interpreted by a
nite poset� The
connection is rather tight indeed� if we have a partial construction of the model
for types up to order n then we can decide variable containment for ��n �

A recent result by Zaionc ���� means	 that variable containment is decidable
for ��	 � as his technique of creating all ��de
nable values by some grammar easily
extends to the situation with prede
ned constants A and B� Sieber�s PCF model
of logically sequential� elements ���� seems to be e�ective for
nitary PCF and
it is fully abstract up to order � and term�generated up to order �� this also
implies the decidability of variable containment of ��	 � though the connection is
less direct than in the case of Zaionc�s result� This improves upon my theorem ���
but the decision procedures obtained that way are extremely ine�cient and of
solely theoretical interest� while the decision procedure outlined earlier for ���
is of polynomial complexity�

For PCF� �PCF over the booleans with constants �� tt� ff� if�� e�ectively
constructing a fully abstract model was posed as an open problem by Jung and
Stoughton in ���� it is yet unclear whether this is equivalent to our problem�

We can also show that the e�ective� construction of a model for PCF� is
necessary to decide � and even the indistinguishability relation ��

Theorem�	� The problem of deciding the indistinguishability relation � for
PCF� is equivalent to e�ectively constructing a fully abstract model�

Proof� As explained before� one implication is trivial� It remains to show that �
gives us a way of constructing a fully abstract model�

We can construct ����� 	 f���g with � � �� Suppose we have constructed
the sets ��	i�� then we can construct ��	� � � � � � 	n � ��� as follows� Each
element in this set is a function mapping n�tuples to either � or �� There are
only
nitely many such functions �as all the ��	i�� are
nite��

To decide whether a particular function F is ��de
nable we consider the term
�F 	 �f� f a�� � � �a�n
 � � �
 f ak� � � � akn where the tuples ai� � � � ain are tuples
of terms representing exactly those tuples �of values� mapped by F to �� Since
the construction of each ��	j �� is assumed to be complete we can e�ectively
nd
a term a for each value v in these sets�

Now take � to be the pointwise extension of the �j such that it is de
ned
on all monotonic functions� not just the ��de
nable ones� Now consider any
other function G � F and its characteristic function �G� Suppose F is de
ned
by a term t then ���G t�� 	 � and ���F t�� 	 �� Consequently� �F and �G are
distinguishable if F is ��de
nable� and thus if �G � �F for any G � F then
F cannot be ��de
nable� Now suppose that �F is distinguishable from �G for
each G � F � This means that there has to be a term tG for each G such that
���F tG�� 	 � and ���G tG�� 	 �� We can de
ne a term t 	 �x� � � �xn�tG�

x� � � �xn

� The title of Zaionc�s paper is a little misleading � he gives the base type order �
instead of �� following a deplorable custom in programming language semantics�

� � �
 tGr
x� � � �xn where G� � � �Gr are all functions greater than F � We obviously

have ���F t�� 	 � and ���Gi
t�� 	 � for all Gi� But this exactly means ��t�� 	 F � i�e�

F is ��de
nable�
Hence we can construct ��	� � � � � � 	n � ��� as the set of all monotonic

functions that pass the outlined test� i�e� whose characteristic functions are dis�
tinguishable� ut

Unsurprisingly a similar result holds for PCF�� though the proof is a bit
messier� involving pairs of characteristic functions �one for tt� one for ff�� We
do not go into that�

� Conclusion and Open Problems

We have explained why the usual condition FV�l� � FV�r� for higher�order
rewrite rules l � r is inadequate and why it should be replaced by the variable
containment� property l � r� the rewrite interior of FV��l� � FV��r��

We have shown that variable containment is decidable for the third�order
fragment of ��� also giving a constructive solution for the second�order frag�
ment� The general problem for �� is equivalent to e�ectively constructing a
fully abstract model for
nitary PCF over the unit type�

Open problems are�

� Is the problem for �� decidable� I have seen a preliminary version of an
unpublished paper which claims that it is indeed� The proof in the paper is
rather complicated and without thorough revision I would not say that the
problem is settled�

� Is variable containment equivalent to providing a fully abstract model for
PCF�� This is very delicate� I had a promising proof idea which I pursued
for a few weeks without getting it to work� One of the referees conjectured
that the PCF� model is not recursive�

� For which type systems is variable containment undecidable�
� Finally� what about other type systems of the ��cube� is there a similar
correspondence between full abstraction and variable containment for those
systems� Probably yes� but to make any sense of this� one
rst has to gen�
eralise the de
nition of full abstraction to these type systems�

Acknowledgments

Many thanks to Alex Simpson with whom I had a number of fruitful discussions
on the subject� especially on the PCF part and theorem ��� Also thanks to the
HOA referees�

References

�� Hendrik P� Barendregt� The Lambda�Calculus� its Syntax and Semantics� North�
Holland� �����

�� Hendrik P� Barendregt� Introduction to generalised type systems� Journal of

Functional Programming� ���	��������� �����
�� Hendrik P� Barendregt� Lambda calculi with types� In Handbook of Logic in

Computer Science� Vol��� pages �������� Oxford Science Publications� �����
�� Gilles Dowek� Third order matching is decidable� In Proceedings of the �th Sym�

posium on Logic in Computer Science� pages ����� �����
�� Philippa Gardner� Representing Logics in Type Theory� PhD thesis� University of

Edinburgh� �����
�� W� D� Goldfarb� The undecidability of the second�order uni�cation problem� The�

oretical Computer Science� ����������� �����
�� G�erard Huet and Bernard Lang� Proving and applying program transformations

expressed with second�order patterns� Acta Informatica� ��������� �����
�� Achim Jung and Allen Stoughton� Studying the fully abstract model of PCF within

its continuous function model� In Typed Lambda Calculi and Applications� �����
LNCS ����

�� Stefan Kahrs� Towards a domain theory for termination proofs� In Rewriting

Techniques and Applications� pages �������� ����� LNCS ����
��� Jan Willem Klop� Combinatory Reduction Systems� PhD thesis� Centrum voor

Wiskunde en Informatica� �����
��� Jan Willem Klop� Vincent van Oostrom� and Femke van Raamsdonk� Combina�

tory reduction systems� Introduction and survey� Theoretical Computer Science�
������������ �����

��� Ralph Loader� The undecidability of ��de�nability� �����
��� Saunders MacLane� Categories for the Working Mathematician� Springer� �����
��� Richard Mayr and Tobias Nipkow� Higher�order rewrite systems and their con�u�

ence� Technical Report TUM�I������ Technische Universit at M unchen� �����
��� Aart Middeldorp� Modular aspects of properties of term rewriting systems related

to normal forms� In Rewriting Techniques and Applications� pages �������� �����
LNCS ����

��� Tobias Nipkow� Higher order critical pairs� In Proceedings of the �th Symposium

on Logic in Computer Science� pages �������� �����
��� Vincent Padovani� On equivalence classes of interpolation equations� In Typed

Lambda Calculi and Applications� pages �������� ����� LNCS ����
��� Jaco van de Pol� Termination proofs for higher�order rewrite systems� In Higher�

Order Algebra� Logic� and Term Rewriting� pages �������� ����� LNCS ����
��� Jaco van de Pol and Helmut Schwichtenberg� Strict functionals for termina�

tion proofs� In Typed Lambda Calculi and Applications� pages �������� �����
LNCS ����

��� Kurt Sieber� Reasoning about sequential functions via logical relations� In M�P�
Fourman� P�T� Johnstone� and A�M� Pitts� editors� Applications of Categories in

Computer Science� pages �������� Cambridge University Press� �����
��� Marek Zaionc� Lambda de�nability is decidable for second order types and for

regular third order types� Unpublished Manuscript� University of New York at
Bu!alo� �����

This article was processed using the LATEX macro package with LLNCS style

