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Abstract. Recent database research has given much attention to the specification 
of "flexible" transactions that can be used in interoperable systems. Starting from 
a quite different angle, Business Process Modelling has approached the area of 
communication modelling as well (the Language/Action perspective). The main 
goal of this paper is to provide some useful structuring mechanisms for 
interoperable transactions based on the Language/Action perspective. The paper 
thus tries to build a bridge between two rather separated worlds: the research on 
interoperable transactions on the one hand, and the research on business process 
models on the other. Extended deontic logic provides the material for this bridge. 
To better structure the specification, a distinction is proposed between the 
transaction level, the task level, and the contract. 
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1. Introduct ion  

The field of Information Systems Engineering no longer concerns itself only with the 
development of 'isolated' Information Systems (IS). With the advent of high-speed 
local and global network communications, more and more applications, like EDI, 
Workflow management and collaborative computing, are being developed that access 
different independent resources inside and outside the organization. Integration of the 
various resources might not be possible for technical or organizational reasons, hence 
the growing reliance on interaction between systems. Behaviour of such systems, called 
Information and Communication Systems, or Cooperative Information Systems (CIS), 
is described by means of interoperable transactions defined as a logical unit of work, 
involving different autonomous agents. Interoperable systems cooperate by means of 
message passing; a specification of an interoperable process consists essentially of a set 
of communicating agents, the possible message types provided by each agent to support 
its role, and constraints on the synchronisation of messages. 

A notorious problem with interoperable transactions, is that isolation cannot be 
maintained because of the long life-span. This means that certain accomplishments can 
become invalid later. For example, a flight reservation has been made, but the airline 
company cancels the flight. In the ConTracts model ([W~ichter & Reuter,1992]), exit 
invariants can be specified that have to be maintained by the system for the duration of 
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the ConTract. If they are violated, specific confict resolution methods are invoked, such 
as compensation. In Interactions ([Nodine et a1.,1994]), the problem is known as weak 
conflicts. It is recognised that weak conflicts do not fit well into the block structure of a 
specification language. They are treated more like exceptions and specified by means of 
event-condition-action rules. The "action" part is always an abort, that is, backtracking 
(using compensation) to the point where an alternative can be tried. Backtracking can be 
a very rude way, as [Nodine et at.,1994] admits, but it seems to be impossible to specify 
a satisfactory general failure handling mechanism. In general, a weak conflict requires a 
rescheduling of the task components that preserves as much of the original schedule as 
possible, optimises costs to be made by compensations etc. 

Recent years have shown a growing awareness that linguistic theories are relevant 
for IS design in general and CIS in particular. The so-called Language/Action approach 
gives content to a new generation of Business Process Models [Teufel & Teufel,1995]. 
Examples are DEMO [Dietz,1994] and Actiola Wurkflow [Medina-Mora et a1.,1992]. 
Underlying these models, the concepts of obligation and authorization play an 
important role. An obligation is the result of a commitment to perform a certain act and 
authorizations restrain or allow the commitment to and operation of an act (including 
doing other communicative acts). The logic to reason about obligations and related 
concepts is called deontic logic DVieringa et al., 1989]. The application of deontic logic 
to communication modelling was first suggested in [Weigand,1993] and worked out in 
[Dignum & Weigand, I995]. 

The "weak conflicts" mentioned above usually originate from a violation of an 
obligation. For that reason, our approach insists that obligations and authorizations of 
service providers and receivers are modelled. In this way it is possible to reason over 
any uncooperative action rather than classify them as a true failure (leading to 
unnecessary rollback or recovery actions of transactions). 

(Extended) deontic logic is a convenient tool for expressing the semantics of 
interoperable transactions, but does not impose any structure on the specification. 
Interoperable transaction specifications tend to become rather complicated, because of 
all possible exceptions that must be envisaged and the absence of one central control 
agency. This not only causes methodological problems in the design phase, but also 
reduces evolution and reusability of specifications. 

The main goal of the present paper isto provide some useful structuring mechanisms 
for interoperable transactions based on a Language/Action perspective to commun- 
ication. Loosely speaking, the paper tries to build a bridge between two hitherto 
separated worlds: the research on interoperable (extended) transactions on the one hand, 
and the research an business process models on the other. Extended deontic logic 
provides the material for this bridge. 

In section 2, we start with a business process model proposed by [Goldka~l,1995] 
that will be used as leading example in the rest of the paper. To illustrate the feasibility 
of deontic logic, we use it to formalise the semantics of this model. In section 3, a three- 
level architecture will be introduced for structuring the specification. A distinction is 
made between task level and transaction level. Moreover, failure handling is dealt with 
separately by a contingency plan and a contract, respectively. In section 4, this 
framework is discussed with a view to reusability and dynamic evolution. We conclude 
with a brief comparison with related works. 
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2. Business Process Example 

Business process is a central concept in the field of Business Process Reengineering. A 
business process can be defined as a series of coherent activities (value chain) that 
creates a result with some value for an external or internal customer. In his paper on 
communicative action, [Goldkuhl,1995] discusses the well-known framework by 
Michael Porter, and notes some theoretical weaknesses. As an alternative, he describes a 
communicative action model of business relations and business processes (figure 1). 

SUPPLIER CUSTOMER 
Capacity, know-how Problems, objectives 

(Negotiation) ~ ~ 

(pOaovffsiblbl ~, ~ ~ Questions 

~ (= request for 

Confirm order ~ delivery + 
. ~  ~ commitment 

= commitment ~ ~ of ha" men0 
of delivery) ~ b ,  Contract ~ e �9 J 

1) - \ 
)IL Fu commitment v Receive delivery ~ / I 
-- (de.v ) d. , 7 ' , 1  

§ . . .  �9 P "  \ l  
Invoice v Fulfilment commitment ,~[ 

R~e~c~ii~a~nmen ~ (payment) S 

Customer P " ~ "  
satisfaction Supplier 

satisfaction 

Fig.1. A communicative action model of business relations and 
business processes (after [Goldkuhl,1995], fig.5) 

What distinguishes this model from other BPR models is (a) the focus on 
interactivity, rather than input-output transformations, and (b), its generic 
communicative logic. For instance, once an order is defined as a mutual obligation (to 
deliver and to pay, respectively), the fulfilment is a logical consequence, as is the 
(undesirable) possibility of non-fulfilment (not pictured yet). That the obligation must 
be mutual can be inferred from the very nature of a business transaction. It is also quite 
natural that mutual commitments can only be established after a stage of negotiation. 
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The communicative logic suggests a distinction of four stages in the interchange process 
between supplier and customer: 

1. inquiry and negotiation stage 
2. contractual stage 
3. fulfilment stage 
4. satisfaction stage 

It should be noted that no specific messages or actions for the satisfaction stage are 
given in the model. This is perhaps because satisfaction is often implicit, and only 
dissatisfaction leads to communicative acts, such as appeals to warrant. 

The communicative logic behind the model of Goldkuhl can be made even more 
precise by formalising the communicative acts (messages) in deontic logic. Deontic 
logic is an extension of dynamic logic with two operators, Obl ( i , a )  and Au t  ( i ,  o~), 
for obliged and authorized, respectively. Besides o b l  and Aue,  we include one more 
primitive operator in the deontic specification language. This is A c c ,  for 
accomplishment. 

�9 The semantics of an authorized request to do a is that Obl ( i ,  a)  holds (as a 
postcondition) provided that A u t  ( i ,  a )  (as a precondition). In other words, an 
authorization is a conditional obligation. 

�9 Obl  ( i ,  a )  means that i not doing a leads to violation. An obligation is 
weaker than a logical necessity; violation does not lead to inconsistency. Independent 
rules specify what such a violation implies, e.g. a sanction. These rules are usually 
expressed in terms of other Obl and Aut  formulas. 

�9 Ac c (a)  means that action a has been executed, and hence the obligation to 
do a is fulfilled. 

The following gives some examples related to Fig.1 now written in Deontic Logic 
(where [a ]  q means that after action a,  q holds, DIR (directive) stands for the action 
request): 

[give-quotation (j, i, g,p) ] 
Aut (i,DIR(i, j, deliver (j, i,g,p) ) ) 

If  a company gives a quotation for a certain price (p) the client is authorized to 
order the product (g) for that price. (This could be a meaning definition for give- 
quotation). 

Aut(i,DIR(i,j,deliver(j,i,g,p))) -9 
[DIR(i,j,deliver(j,i,g,p))] (Obl(j,deliver(j,i,g,p)) 
A 
[deliver(j,i,g,p)] Aut(j,DIR(j,i,pay(i,j,p)))) 

If  a customer is authorized to order a product for a certain price (i.e. a quotation 
has been given for that price) then the company is obliged to deliver the product after 
the customer has ordered it. But after delivery of the product, the company is authorized 
to order the customer to pay for it. 

Aut (j, DIR (j, i, pay(i, j, p) ) ) -) 
[DIR(j,i,pay(i,j,p))]Obl(i,pay(i,j,P)) 

l /an order has been delivered (and authority acquired to request payment) a request 
for payment induces an obligation for the customer to pay. 
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Note that the obligation to pay is made conditional: it becomes effective only when 
the supplier requests for it. This is of course one way of doing it; the obligation can also 
be instantiated directly when the order is given, and even precede the delivery. These 
different ways of working can be distinguished in the logic when needed. 

Deontic logic can also be used to reason about violations. This part of the 
specification is not included in Goldkuhl's picture, but will be part of the business 
contract as well. This holds also for cancellations, which means a retract of an 
obligation before it has been fulfilled. 

Another thing about which the logic can and must be explicit is the expiration of 
authorizations and obligations. In Deontic Dynamic Logic, this is accounted for by 
explicit or implicit frame axioms. For example: 

Obl (i,pay(i, j,p) ) -9 
[pay(i,j,p)]-~aut(j,DIR(j,i,pay(i,j,p))) 

After the customer has paid, the company cannot request another payment again. 

Goldkuhl emphasises the importance of the satisfaction stage and the mutual 
satisfaction that must be the goal. In the Deontic Logic, two levels of satisfaction can be 
distinguished. The basic level of satisfaction is reached as soon as the obligations of 
both partners have been fulfilled, that is, Acc(tx) is true for all actions tx in the contract. 
This is in fact the borderline between fulfilment and satisfaction. However, the contract 
may also describe authorizations for both partners to make claims in the case of 
dissatisfaction. The second level of satisfaction, and the real end of the interaction, is 
when these authorizations have expired as well. We will come back to the mutual 
satisfaction, and Goldkuhrs deviation from the Action Workflow model ([Medina-Mora 
et al. 1992]) in this respect, in section 4. 

The borderlines between the other stages can be expressed in deontic logic as well. 
The negotiation stage ends with the establishing of certain authorizations.. The 
contractual stage ends with the establishing of certain (usually, mutual) obligations, 
making up the contract. In the case that the authorizations have been negotiated 
beforehand (cf. section 4), the contractual stage can be entered right away. 

More details about the logic can be found in [Weigand et a1.,1995] and [Dignum et 
a1.,1995] where it has been extended with temporal deontic constraints, making it 
possible to describe for instance deadlines and the request to do some action "as soon as 
possible". Although deontic formulas describe the exchange between the customer and 
the company exactly and completely, they lack structure. In [Dignum & Weigand, 
1995] we have introduced provisionally a language CoLa (Communication Language) 
with a more readable syntax that structures the (speech) acts into transactions. In the 
next section, the CoLa framework will be described in more detail, and we will argue 
for a distinction between task level and transaction level. 

3. CoLa Framework  

The specification of interoperable transactions needs structure for the sake of 
complexity reduction and reusability. Besides the notions of messages, transactions and 
services introduced in our earlier paper ([Dignum & Weigand, 1995]), we distinguish 
contracts and tasks. We use the general term "agent" for the participants in the 
interoperable transaction (e.g., the supplier and customer). From an analysis point of 
view, the agent is a real-world person or company. From a design point of view, the 
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agent can also be a piece of software to which the person or organization has delegated 
some of his tasks, 

Fig. 2 gives a schema in which the CoLa concepts are related. An agent has a certain 
task that can be split up into subtasks that the agent tries to fulfil. In doing so the agent 
initiates the necessary transactions. Transactions are seen as a communication process 
oriented towards a goal, the possible message types provided by each agent and 
constraints on the synchronisation of messages, together with a specification of what 
should happen in the case of a failure. In case of an unrecoverable failure the task 
manager of the agent should be notified so that he can pursue an alternative. 

Transactions are part of a contract describing the communication behaviour between 
two agents concerning some business relation and process. The contract also specifies 
what should happen in case of violation of one of the obligations or cancellation by one 
of the agents (by notifying the Contract Manager), possibly leading to other obligations 
described by another transaction in the contract and triggering the contingency plan, 
describing what should happen in order to get the subtask fulfilled, managed by the 
Task Manager. 

contract cl 

1 
task 

fail 

m' I 
task 

agent B 

c2 

goal 

Inanaj~er 

m3 

task 
manager 

cancel 

contract manager 
Fig. 2. Tasks, contracts and transactions 

3.1. Tasks 

A task is a meaningful unit of work assigned to an agent. Performing the task often 
involves communication, that is, using some transactions. However, the task 
specification and updates thereof do  concern the agent in question only, whereas 
changes in the possible transactions can only be made by consent of the other agent. For 
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that reason, we make a distinction between task and transactions, where the transactions 
corresponds to the agreements between the two agents and the task draws on this 
potential for fulfilling an agent's goal. 

Tasks can be described in a task language such as TasL [Nodine et a1.,1994]. It 
typically allows the specification o f  tasks and subtasks, alternatives and temporal 
constraints. What is crucial in this context, is the way failures are dealt with. 

Transactions are prone to many types of failures, including traditional ones like 
system failures such as system crashes (in the case of interoperable transactions this also 
includes network failures) and deadlocks caused by concurrent processes. Furthermore a 
failure occurs when a transaction (as one subtask) is initiated that does not commit (e.g. 
order product), but also when the transaction does commit first, and the resulting 
deontic state is violated later (e.g. the company doesn' t  deliver), or because of 
cancellation, whereby the other party undoes an achieved effect. These features of 
transactions directly influence the task specification. 

Drawing on previous work in extended transaction models [Elmagarmid, 1992], we 
distinguish the following failure handling methods: 

- f a i l  - this stops the subtask in a failure state (similar to abort or time out), 
- s k i p  - this indicates that the subtask is non-vital. The task can be resumed as if  the 

subtask has succeeded, 
- c h o o s e  - this prompts for seeking an alternative way to make the subtask run to a 

successful state (similar to the concept of contingency transaction in DOM [Buchmann 
et al.,1992]). 

A task can be seen as an AND/XOR graph of possible subtasks. The following 
relations can be defined: 

T1 BEFORE T2 (temporal precedence) 
Ts = AND(T1,T2, ..) (task/subtask relation) 
Ts = XOR (T1, T2, ..) (alternative set) 
Ts = XOR (T1 .... skip) (non-vital part) 

We can use the temporal logic semantics [Ngu et a1,1994] for the precedence 
relations, while the AND/XOR formula is specified as the Goal of the task. The 
constraint T1 BEFORE T2 is a paraphrase for the TL expression: -T2 UNTIL T1. 

The execution model is as follows: 
- when a task is called, the Task Manager collects the subtasks, puts them into a 

right order according to the precedence relationships (such an ordering can be stored of 
course to save computing time). The subtasks are then called one by one. This step 
continues recursively. 

- when a subtask cannot be fulfilled, the next alternative is chosen. If no alternative 
is available, it means that the subtask fails. It does not mean directly that the parent is 
aborted, since it is possible that the subtask can still be fulfilled by choosing an 
alternative in the preceding subtasks. This is tried first (backtracking). Only when no 
alternative is left, the parent fails. 

- the parent also fails when an exit state is reached. 
- when an exception occurs, the procedure is basically the same. A next alternative 

is taken, or, i f  no alternative is left, backtracking is attempted. To keep the task 
specification simple, we give the designer the opportunity to specify a contingency plan 
separately (see below). If  no alternatives for backtracking are left, the task fails, but its 
parent may have alternatives or contingency plans of its own. Every time a task fails, 
the Task Manager goes up one level in the task hierarchy. 
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Note that our execution model enforces a "structured approach" in the task 
specification. We do not allow for arbitrary abort or commit dependencies between 
subtasks over the boundaries of the parent tasks. This modularity is enforced to keep the 
specification transparent and maintainable. 

A notorious problem with contingencies is that when a subtask is invalidated, later 
(dependen0 subtasks may already have commited, and their result might become 
obsolete. Whether they have to be retried (and compensated) or not depends on what 
kinds of results they have produced. We therefore give the designer the opportunity to 
specify a separate contingency plan. The contingency plan consists basically of a set of 
results (such as supplier list, order-set), Results have an internal object structure, are 
produced by certain subtasks and can become invalidated by other subtasks. When that 
occurs, a task can be triggered to repair the damage. This task can make use of the fact 
that all the essential results obtained so far (and not invalidated) are explicit. For reasons 
of space, we Ieave the contingency plan specification for a follow-up paper (Weigand & 
Ngu, 1995). 

We will use the order example to illustrate the task specification (without 
contingency handling). A task specification consists of a task name, a set of subtasks 
(unordered), a set of temporal constraints, a goal (what makes the task succeed), and an 
exit (what makes the task fail - abort). Constraints and exit are optional. 

task order 
subtasks 

inquiry 
order-product 
ACCEPT ( de Iivery) 
payment 
cancel-delivery 

constraints : 
order-product BEFORE order-delivery; 
inquiry BEFORE order-product; /*etc 

Goal = {delivery} 
Exit = {cancel-delivery} 
end- task 

task inquiry 

end-task; 

= XOR(get-quotation(abc), 
get-quotation(xyz)) 

- The subtasks are either tasks signified elsewhere or transactions specified in the 
contract. 

- The goal of the task o r d e r  is d e l i v e r y .  This goal can only be reached by first 
an inquiry and a product order. 

- In the case of i n q u i r y  we have used a short-hand notation in which we put the 
Goal immediately after the task name since there are no constraints. 

- The ACCEPT around d e l i v e r y  means that this transaction is not initiated by 
the CUStomer agent himself. Executing the subtask ACCEFT(de 1 i v e r y )  implies 
executing that part of the transaction that thecustomer is supposed to do, in response to 
the prompt of the supplier. 

- A possible contingency part specifies that if the order is canceUed by the other 
party, the Task Manager has to find an alternative (as if o r d e r - p r o d u c t  had failed). 
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This will involve finding another supplier. Any contractual matters that need to be 
resolved (for example, collecting a fine) are not specified here, since they are handled 
by the Contract Manager (see below). However, dependent subtasks, e.g. reservation for 
the shipping, if any, are cancelled by the Task Manager in accordance with the 
contingency plan. 

In the example, only two alternative suppliers are taken into account. A better 
approach would be to first collect a list of possible suppliers. The task specification 
language should be expressive enough to represent this. At the moment, we are working 
on a pseudo-Prolog language extension. 

Goldkuhl explicitly includes in his model the problems and objectives of the 
customer and the capacity of the supplier. By embedding the transactions in an agent 
task, the link to the objectives are now explicit, and relationships with other tasks of the 
customer company can be described. As far as the supplier is concerned, Goldkuhl 
makes no reference to objectives, only to capacity. The symmetry between the parties 
the author argues for is not maintained at this point. In our point of view, the supplier 
has objectives as well, including producing goods and making money. These can be 
modelled as supplier tasks. On the other hand, the capacity and know-how do play a 
role, as constraining factors, but so do they at the customer side, in particular, the 
financial capacity or liquidity. Therefore we argue for a symmetric treatment of supplier 
and customer also as far as objectives and constraints are concerned. The particular task 
of the supplier can be modelled as follows: 

task sell 
subtasks 

ACCEPT(get-quotation); 
give-quote; 
ACCEPT(order-product) 
delivery; 
ACCEPT(payment) 

constraints: 
give-quote BEFORE ACCEPT(order-product); 
ACCEPT(order-product) BEFORE delivery 

Goal = {payment} 
end-task 

3.2. Transactions 

Elementary tasks are either executed by the agent as an internal procedure or involve a 
transaction with another agent. By transactions we mean all possible (authorized) 
messages and message sequences that can be exchanged between the two 
communicating agents [Dignum et a1.,1995]. Real-world events, such as "product 
delivered" do not play a role directly, but only via messages such as "assert(product 
delivered)" by means of which a particular agent communicates a certain fact or 
evaluation. Moreover, since the message interface encapsulates the local database 
actions of the agent, the latter do not play a role either. Provided that there is agreement 
on the semantics of the messages exchanged, the specification of these messages is the 
only concern for the designers of an interoperable transaction. To put it sharply, for an 
agent sending an "order product" request to a supplier, what counts is that the supplier 
replies by a positive confirmation, and not what it does in its database. This can and 
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must be sufficient to let the transaction succeed, and, if the supplier might turn out to be 
unreliable, it is the confirmation message that provides ground for further (for example, 
legal) action. So we may assume that the speech act "assert(product delivered)" implies 
the material action of delivery, and we could make an axiom of this, but we refrain from 
stating it in this paper because the material action is not relevant for the communication 
model. 

Each transaction has a set of agents, the messages, the constraints (in propositional 
temporal logic), and the goal and exit states. A transaction execution leading to a goal 
state means that the transaction succeeds, whereas an execution leading to an exit state 
means that the transaction fails. "States" are identified here by message occurrences. 
Higher-level transactions are aggregations of subtransactions, and can specify temporal 
constraints on the subtransactions. The temporal constraints (not included in our 
previous paper) are temporal logic formulae [Ngu et al,1994]. 

All messages are specified as an illocution function, such as request, and a 
propositional content (an action or proposition). This is in accordance with the common 
practice in the Language/Action perspective. The semantics of the illocutions are 
specified directly in deontic logic [Weigand et al, 1995]. The advantage of using these 
illocution functions is that otherwise the illocution is hidden in the message name (e.g. 
req_quote), so that no generalization is possible over the semantics. 

For our example we arrive at the following transactions, among others. 

transaction quotation 
isa get_authorization(order(Partno, 

end-transaction 
Quantity, Price)) 

transaction get_authorization(a:action) 
agents: 

c: customer /* all customers in the 
s: supplier /* all suppliers in the 

c can send 
{messages: 
request(authorize(a)) to s 

} 
s can send 

{messages: 
authorize(a) to c 
refuse(authorize(a)) to c 

} 
constraints 

request(authorize()) BEFORE authorize() 
Goal = {authorize(a)}; 
Exit = {refuse(authorize(a)} 
end-transaction; 

network 
network 

The above states that the transaction quotation is a specialisation of the transaction 
geLauthorization. This transaction is defined as a request to get authorization, followed 
by an authorization or a refusal. Specialization means inheritance of the message set, the 
constraints, the Goal and the Exit. All these parts can be extended (not overruled) in the 
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specializaton. The message authorize is predefined and creates an authorization for a 
certain action. The effect of this sample specification is the same as the give-quotation 
example in section 2, but here we make use of more generic primitives. Note that the 
constraint here is so self-evident that it is better built-in in the language as an axiom. 

transaction order-delivery(O: 
agents: 

s: supplier 
c: customer 

s can send 
{messages: 

assert(delivered(O)) to c 
} 

c can send 
{messages: 
accept(delivered(O)) to s 

} 

Goal = {accept(delivered(O))} 
end-transaction 

order) 

This example shows a typical transaction, in which the two partners express 
agreement about a situation by means of two messages. In most cases, the accept is 
essential, since delivery is more than saying the order is delivered, it is also more than 
just putting the containers in front of the entrance. Only when the customer accepts the 
goods as such (a speech act), the delivery succeeds. 

transaction payment(s:supplier,$:amount) 
agents: 

c: customer 
b: bank 

c can send 
{messages: 

request(transfer_money(s,$)) to b 
request(increase_credit) to b 

} 
b can send 

{messages: 
commit(transfer_money(s,$)) to c 
assert(credit(c,$)) to c 
refuse(transfer_money(s,$), "not enough 

} 
constraints 

refuse(transfer_money(s,$), "not enough 
BEFORE request(increase_credit) 

request(transfer_money() 
BEFORE commit(transfer_money) 

Goal = {commit(transfer_money(s,$))} 
end-transaction 

credit") to c 

credit") 
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Although the transactions often take the form of a request followed by a commit, or 
an assert followed by an accept, sometimes intermediary messages are allowed, as with 
i n c r e a s e _ c r e d i t :  in the bank payment example, and sometimes the response is 
superfluous because the request/assert was already authorized. In the method DEMO 
([Dietz,1994]), communication is modelled exclusively by means of so-called 
actogeneous and factogeneous conversations, creating an obligation and a fact 
respectively. Each of these conversations is required to have at least two messages 
(request/commit, assert/accept). A limited set of additional messages, to be used in the 
negotiation, such as refuse, and counter offer, are allowed as well. Although this is not 
essential for our method, DEMO could be integrated into it as far as the transaction 
modelling is concerned. DEMO complements this model with an Information Model 
and an Action model. The Information Model, describing the object structure of the 
message content, can be easily combined with our transactions as well, but the Action 
Model is, in our method, divided over the Task specification and the Contract. 

3.3. Contracts 

Conceptually, in our framework, contracts specify obligations between different parties 
about services provided to each other. If a particular service is not being fulfilled, it is 
possible to reason over this violation and take a remedial action without forcing the 
whole task to abort. In this way, the process is more reactive to failures. 

From a technical point of view, a contract is nothing but a protocol binding different 
parties to their commitments by explicitly specifying the type of services agreed upon, 
the obligations and the failure recovery methods. From an organizational point of view, 
a contract between interoperable systems stemming from different organisations also 
has the purpose of laying down some agreement. By grounding it in other contracts or 
business law, it may have legal status. 

A contract is based on a set of transactions, where a transaction is a set of messages 
and constraints between them, or, alternatively, an aggregation of reified transaction 
types. A contract describes the authorized communication behaviour among providers 
and receivers of services. If the provider does not adhere to the obligation, it is the job 
of the Contract Manager to impose the violation policies. It would complicate the task 
specifications and lower the reusability if this communication is included in the task. As 
stated before the Task Manager should only be responsible in ensuring that a task is 
brought to its goal, not how violation of commitments are being dealt with. 

The reader may have noted that we sometimes use the term "contract" for the 
specification of the transactions plus the way failures are dealt with, and sometimes for 
the latter part only, separated from the transactions. This is to avoid inventing yet 
another term. In the following, the restricted meaning is intended. 

A contract is specified as a set of deontic clauses (called 'services' in [Dignum & 
Weigand, 1995]). The status of an interaction of the two partners can be described in 
terms of obligations, authorizations and accomplishments. Logically speaking, this is a 
big deontic logic formula. This formula can be brought into a conjunctive normal form. 
Each clause in this normal form is a disjunction of literals. The contract describes the 
deontic clauses and their dynamics, that is, a clause is created by one or more 
transactions, and is removed by other transactions. So the state of the interaction can be 
represented by a set of clauses, as in a Petri Net, where a state is identified by a set of 
token placements. Due to lack of space, the formal aspects of the contract will be 
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worked out in another paper ([Weigand& Ngu, 1995]). We restrict ourselves to a few 
intuitive examples, related to o r d e r - p r o d u c t :  

clause Sl: Obl(a,deliver) 
in 

order product 
goal 

delivery => $3 
exit 

VIOLATION => $4 
cancel-order product => $2 
cancel-delivery => S4 

modified by 
change-conditions 

end {SI} 

clause S2: Obl(t,pay($100)); 
in 

cancel-order product 
goal 

fine-payment 
end{S2} 

clause $3: Acc(a,order) 
in 

delivery 
end {$3} 

clause S4: Obl(a,pay($1000)) 
in 

cancel-delivery 
end{S4} 

clause $5: Aut(t,warrant) 
in 

delivery 
goal 

date(Dl) 
end{S5} 

The clause is identified by a number (unique within the contract) and may have a 
name. Its content is specified as a deontic formula. The " i n "  part sums up the 
transactions that lead to this state, provided they have been closed successfully. The 
goal and exit transactions have the effect of moving to another deontic clause. The old 
clause is no longer valid. The difference between goal and exit is that one involves the 
fulfilment of the obligation whereas the other involves a violation or cancellation. 
Violation means the deadline has passed without fulfilment of the obligation (in this 
example leading to the same state as c a n c e l - d e l i v e r y ) .  Note that in $4 we only 
record the incoming transactions, and not the fact that violation of S1 also leads to this 
clause. Finally, the contract also allows the specification of update transactions that do 
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not invalidate the deontic content but only modify certain parameters (e.g. a change of 
the delivery date). 

The contract does not only specify the "success line" of the interaction, but 
especially the exceptions. In some cases, it is possible to return to the success line. For 
example, the supplier might have the obligation to offer an alternative product (in 
change-condi t ions) .  If this is acceptable, clause S1 remains valid (this can be 
handled by the Contract Manager). If the supplier does not offer an alternative product, 
or when it is not acceptable, it is no longer possible to reach the final state, and the 
interaction fails. Such a failure has to be handled by the Task Manager (see previous 
section). 

Note that this is done only when the contract has no solutions to offer anymore. 
During the execution of the interaction, other obligations may be instantiated. For 
example, the obligation to pay a fine or the authorization to warrant. These obligations 
can be represented explicitly in our framework. However, the further processing o f  
these "side-effects" should not interfere with the task execution. To achieve this 
inffependence, we suppose that execution of the interactions takes place in an agent 
architecture. When the execution of the interaction leads to an obligation of the 
customer to pay a fine, this obligation is automatically put on the agent's agenda. Since 
by definition the agent recurrently checks its agenda and executes its tasks, the fine will 
also be paid in due time. On the other hand, if it is the supplier that has a liability, it is 
up to the agent to see to it that the payment is actually made. 

4. Contracting 

Contracts, in the general sense of agreements between commercial partners, can be 
defined on two levels. In Goldkuhrs model, a contract is the result of the negotiation, 
and boils down to a commitment to deliver and a commitment to pay. Let us call this an 
order contract. In the previous section, we have defined a contract as a set of services 
that specify authorized messages (in transactions) and their deontic effects. We assume 
that such a contract has been set up by the two partners only once and then frequently 
used. We call this a procedural contract. 

Fig. 3. Contracting in cyberspace 
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Since "contracts" can be defined on different levels, we should require from any 
communication modelling approach that it can account for these levels. We want to say 
a few words about how our approach can do this. 

Starting from an empty cyberspace (Fig. 3) in which agents can only communicate, 
agents must have the possibility to offer services. A service is a publicly accessible 
interface of the agent, comparable to a method in object-oriented programming. A 
supplier agent can provide the service of giving an offer. When a customer agent 
requests for this service, the supplier can refuse or accept. If he accepts, he sends an 
offer, that is, an authorization for the customer to order a product with the obligation to 
pay for it. If the customer agent uses this authorization, an order contract in the sense of 
Goldkuhl has been accomplished. All that is required in this case is a reliable and 
standardised way of requesting a service, as well as the "umbrella" protection of some 
international business law that guarantees the legal status of the obligations. 

Nowadays it is often considered an economic advantage to have closer business 
relations with some preferred supplier or customer. In that case, the two parties can 
make more agreements beforehand, for example about a guaranteed delivery time. Such 
a contract has to be set up, This can be supported by another service of the agent that 
offers contracts rather than specific products. If the customer accepts the offer, a 
mutually agreed contract is accomplished. This can be used then by the customer in the 
way described in section 3. 

The contract can be "symmetric" in the sense of Goldkuhl (section 2), but also 
establish an asymmetric power relationship, in the same way as an employer can 
contract a new employee. We then arrive in a situation in which Goldkuhl's critique of 
Action Workflow - that it is rather one-sided in its customer[initiator] emphasis - is no 
longer valid. The one-sided Action Workflow loops fit well in an organizational setting 
with existing power and authorization relationships, whereas the symmetric business 
process model fits well in the free market context of autonomous negotiating agents. So 
we feel that both models have their value, depending on the context. 

5. Comparison with Related Work 

The Interactions model [Nodine et al.,1994] uses "weak constraints" and backtracking 
when they are violated. Our failure handling uses backtracking as well, but it goes 
further in two respects. First, we do not abort later (dependent) subtasks immediately, 
but only when the committed service cannot be maintained (by the Contract Manager). 
The contract may provide specific alternatives; if these succeed, no abort or 
backtracking is necessary. Secondly, we have sorted out the complex concept of 
"compensation" into two more focused notions: compensation of the other party, as 
specified in the contract, and "compensation", or contingency handling, of the task. For 
contingency handling, we proposed a separate specification part that monitors the 
results obtained and invalidated so far. Although exception handling is a complex issue 
and will remain so, the least we can do is try to manage the complexity. This is the most 
important but modest goal of the task/contract distinction. We also consider it an 
advantage that task management can be turned into a local issue, rather than a concern 
of the (global) multidatabase as in the Interactions model. In this way the global control 
is kept to a minimum, which makes the specification and implementation much more 
flexible. 

In [Alonso et al, 1996] a comparison is made between the advanced transaction 
models and workfiow models. It is argued that transaction models are too centered 
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around databases, and that (in many respects) workflow models offer a superset of 
transaction models. This is in accordance with our approach. However, we feel not at 
ease with the FlowMark workflow model adopted in that paper that (a) still separates 
activities from data (cf. speech acts) and (b) specifies flow of control in a mechanistic 
way (cf. contracting, negotiation) 

The paper has also aimed at providing a formal way of specifying business process 
models such as DEMO, GoldkuhI's BPR and Action Workflow. We have shown how 
these approaches can be put to use. However, it has also become clear that they have 
different scopes. For example, DEMO offers a rigid methodology, but only on the 
transaction level. Goldkuhl's BPR is a generic task model that is particularly aimed at 
free market exchanges, whereas Action Workflow is a generic task model (and perhaps 
transaction model) that is more oriented towards an organizational context. All models 
mentioned do not pay much attention yet to failure handling. 

Our results are quite compatible with the ideas on electronic contracting developed 
by Ronald Lee and his colleagues (eg. [Dewitz, 1991]). In this work, attention has been 
given to the "grounding" of electronic messages in an "umbrella contract" that describes 
in particular the legal effect of the speech act. Legal rules are formalized in deontic 
logic and legal procedures are represented by means of Petri Nets. It appears that our 
use of Petri Nets (contracts) is more restricted: we don't use it for representing temporal 
constraints, we identify each place node with a deontic clause, and use it in particular 
for violation handling. 
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