
The Role of Benchmarking in Information
System Development

M. Daneva
Institut fur Wirtschaftsinformatik
at the University of the Saarland

Altenkesseler str. 17/B2, D-66 115 Saarbriicken, GERMANY
E-maih maya@iwisel.iwi-uni.sb

Abstract. This paper highlights the importance of benchmarking for fitness and
enhancement of quality and productivity in IS development life cycle, We
introduce a pragmatic approach to IS improvement based on continuos learning
from best-in-class achievements. We also report a benchmarking case study that
illustrates the application of the method during the requirements analysis and the
development of requirements specification.

1 Introduction

Controlling quality and productivity is a critical success factor for today's software
projects [13]. The importance of IS controlling increases when the projects deal with
the development or the customization of business/engineering applications, and are
essential parts of a business process reengineering initiative. To get some insight in IS-
controlling, software engineering people from the industry, the government and the
academia have developed numerous measurement approaches and assessment
frameworks that should serve as a basis for enterprise-wide metrics programs capable
of guiding quality improvement efforts. In a lot of cases, these schemes are too
complex to use and difficult to learn; their application has a significant duration and
require costly data collection procedures and expensive IS-staff training.
Unfortunately, it is very easy to specify an improvement conceptual model that does
not work for most practical purposes [14].

The main objective of this work is to advise the IS-development community of how
to benefit more from software metrics technology in terms of efficiency and
effectiveness. We deliver a pragmatic tool to IS organizations together with practical
guidelines how and when to use it.

The remainder of this paper is organized as follows: Section 2 presents how the
concept of benchmarking fits with IS-improvement. Section 3 overviews our
benchmarking method. Section 4 provides some guidelines for conducting
benchmarking studies easily. Section 5 reports a comparative study on IS requirements
defmitions.

2 Benchmarking: a feasible path to IS-enhancement

Competency and knowledge in controlling IS productivity are considered as a key
strategy for dominating the global information technology market in the next century
[13]. Surprisingly, recent research on the deployment of quality control mechanisms

422

revealed that the actual use of controlling procedures is generally poor and lower than
organizations claim [10]. It also is surprising that the IS-practitioners and
academicians have devoted much efforts to develop new measurement and
improvement frameworks, and very few works have dealt with the effectiveness and
efficiency of these mechanisms [10]. Although the lack of reliable quantitative
information about the usefulness of the current measurement and assessment methods,
the existing experience helps us identify some serious drawbacks of these
improvement schemes:
1. Quality programs based on Capability Maturity Model [15], Bootstrap method, or

the SPICE Standard are too expensive and implementationally difficult [3, 14].
Getting organization's staff involved in the assessment team and training them in
assessment technique proved too costly and disruptive for small and middle-sized
enterprises.

2. The assessment models completely disregard company's specific improvement
objectives [18]. Major efforts are required to customize these frameworks to the
organization's circumstances and needs. As the size of the IS-organization shrinks,
the assessment methodology becomes increasingly informal. In such situations the
existing models fail in formulating improvement advice which maximizes the
returns on investments for small companies.

3. The current assessment practices mainly address the question where to improve,
but not how and how much. As Zultner writes [20], they are extremely weak on
what to do after the assessment. The software metrics technology itself does not
add value to a company; its use makes sense only when this leads to implemented
improvement actions.
To counteract these difficulties, we propose an approach to IS-enhancement based

on the concept of software benchmarking [6]. This is a process of continually
searching for the best software experience, indicating software standards to be
achieved in day-to-day company's operations, adopting or adapting the best-in-class
practices, and implementing them to become the best of the best. We believe, the
above three points referring to the current assessment methods can be handled by
means of IS benchmarking in the following manner: First, our intention is to provide
both large companies and small IS organization with an instrument for deriving
comprehensive and effective software metrics programes that contribute significantly
to successful improvement initiatives. Second, our approach is context-based what
means we regard the fact that software practitioners usually set their own quality
priorities according to their own development environments [10]. Moreover, IS-
benchmarking is aimed at giving starting point to analyze how well a straight
transplant of somebody else's solution fits with the own organization. This ensures the
holistic view to the questions where, how and how much to improve.

3 An overview of the approach

3.1 Preliminaries

The present approach is based on the idea that a software organization could and
should learn about its own technological and marketing opportunities by learning

423

about other's similar operations and processes. We do not see benchmarking as a
competitive study, ,,number crunching", spying or stealing, but organizational
learning. This hypothesis is directly derived from our previous work on the problem
of sottware quality ranking [5] and software benchmark design and use [6]. We have
developed a holistic view of software benchmarking, whose focus was on the key
steps of the benchmarking process and how they are to be performed. We also
determined systematic procedure for software controlling together with a generic
benchmarking model explaining the software enterprise items in benchmarking terms
[4].

The approach we present here, is anchored on management by metrics [7], which
uses high-level quantitative indicators for the manager to control software projects
and products. We also follow the AMI tradition [1] and Basili's framework [2] to
goal-driven derivation of software metrics, whose focus on goals leads to focus on
what actions can be taken.

3.2 The benchmarking process

This section summarizes our benchmarking method. The approach includes the
following steps:
1. Clarify the goal. Formulate the software bottleneck and identify decisions which

would be made on the base of IS-benchmarking results. Derive a benchmarking
goal that refers to the specific aspects of company's competitive agenda: increasing
customer satisfaction, shortening time-to-market, improving service quality.

2. Operationalize the benchmarking goal. Identify interest groups, i.e. the IS-staff-
members who are interested the most in benchmarking information. Express the
benchmarking goal in a hierarchy of measurement goals. These help us determine
that the benchmarks reflects what they are presumed to measure. Begin with an
analysis of what information the benchmarking study has to reveal, e.g. current
productivity level, current schedule ranges, probabilities of achieving significant
recognition (European Quality Award, ISO 9000 Certification, CMM Level 3, 4
and 5 [15]). This analysis delivers a top level measurement goal that is further
broken down into a set of primitive measurement goals which are easily expresses
by software attributes.

3. Select competitors. These are software objects from one of the following groups:
(i) work products - any artifact, produced as a part of defining, maintaining, or
using software process, which may or may not be intended for delivering to the
customers or end users [15], (ii)processes - any means by which people,
procedures, methods, equipment, and tools are integrated to produce a desired end
results, and (iii) resources: i.e. teams, hardware, CASE tools, etc. The software
objects candidates for benchmarking should be prioritized by experts or by using
some heuristic procedures or formal decision making techniques.

Establish best-in-class object which one can learn from. This can be either an
object which embodies somebody else's practice recognized as a best-in-class one,
or a preliminary def'med model whose values are numerical quality or productivity
thresholds.

424

4. Specify IS benchmarks. Def'me two major benchmark components - the domain
specification and the measurement (or assessment) specification. The fast one
describes completely the IS-quality or productivity aspects the benchmark should
deal with and the second specification establishes the relevant IS-characteristics to
be measured or assessed.

5. Collect benchmarking data. Implement the measurement specification by
constructing a set of measured functions. Carry out the measurement, i.e., assign
actual values to characteristics involved in benchmarking. The benchmarking data
can be classified as follows:

�9 expert judgments.

�9 elementary metrics: these are numbers derived from facts [1]. For example,
marketing indicators, such as market share, sales volume, or engineering
indicators, such as lines of code, elapsed time, cyclomatic complexity.

�9 assessments: these can be done using either predefmed calculation rules
(Halstead's software science, Function Point Analysis [13], etc), or
questionnaires in the software enterprise (CMM, BOOTSTRAP).

�9 profi le charts: these are sets of expert judgments and assessments relevant to
a certain software characteristics which can not be quantified directly (for
example, maintenance).

�9 competitive f igures: these are sets of software characteristics and their
competitive levels revealing the position of the company with respect to its
competitors.

6. Compare software objects. Given objects' measurements/assessments, determine
some superiority and inferiority criteria that help the benchmarker rank objects
according to their capability to support the benchmarking goal. The ranking points
out where a company is in both developmental and quality terms.

7. Decide on learning strategy. Project future quality and productivity levels. Check
to what extent it is possible to implement a solution already used in another IS-
organization. Prioritize strategies how to implement the best-in class experience in
home. Make decisions on course of improvement actions.

8. Develop and implement an action plan. Establish functional improvement goals
and identify steps that systematically lead to goal achievement.

9. Re-evainate. Check how well the best-in-class practice is incorporated into home.
Continue through conducting a new benchmarking study.
It is worth stressing that IS-benchmarking is rarely a strictly linear process. It is

possible to re-define benchmarking goal after defining precisely measurement goals,
or after identifying the best-in-class achievements.

3.3 The instrumentation

An IS-benclunarking study has to be aware of the software objects' characteristics
submitted as benchmarks as well as the possible ways the benchmarks are quantified
and interpreted. To provide the benchmarker with guidance to successful
benchmarking studies we propose an instrumented scheme that consists of a
benchmarks model and operations permitted on it. The scheme ensures a common
understanding of benchmarking and provides a mechanism for structuring the

425

information about benchmarking practices. The scheme is based on the ISO Standards
as well as the STEP standard [19] that suggest to organize software characteristics
according to an hierarchical quality model flexible enough to be customized to the
needs of any benchrnarker. We ref'me this idea by developing three level scheme for
IS-benchmarks. It consists of categories, indicators and metrics. The categories
provide a high level view to the types of benchmark measurements performed on
software objects. The indicators are measurable aspects of the quality/productivity for
any given category. The indicators are quantified by assessing one or more facts about
an software object. Each fact to be assessed is called a metric. The benchmarker can
investigate objects at any of these levels.

Generally, a benchmarking procedure def'mes six operations over a quality model:
�9 derivation: given a set of categories, generate a set of indicators, and a set of

metrics to be considered, trying to minimize the measurement costs.
* integration: given a set of measurements, generate relevant set of indicators and

categories, and construct objects' benchmarking profiles.
�9 auditing: given a preliminary established model recognized as a best-in-class one,

compare a set of target objects against the best-in-class assessments.
�9 visioning: given a benchmarking goal, rank target objects with respect to their

capability of supporting the predefined objective.
�9 interpreting: given a model benchmarking profile, map objects' values (e.g. the

function point number is 107) onto merit values (e.g. 1.5 on a scale from 0.0 (low
complexity) to 10.0 (highest complexity)).

�9 reasoning: given a model benchmarking profile, explain why the measurements
produced this profile.

4 Benchmarking case study

This section summarizes some results of a benchmarking initiative undertaken at the
University of the Saarland. Our benchmarking approach was applied to the life cycle
phase of requirement analysis. The objective with this study was twofold: (1) to
control the process of requirement gathering, and to ensure the quality of IS-
requirement specifications in efficient and effective way, and (2) to anticipate pitfalls
in integration of submodels and/or customization of IS reference models.

The benchmarked IS-requirement def'mitions were represented in form of business
process models by using the specification language of event-driven process chains
(EPC) [17]. Any EPC specifies details of the modes of operation which a system can
be in, as well as the interface between the system and entities beyond the scope of the
system. The formalism comprises three basic elements: functions, events, and logical
operators (and, or, and exclusive or). The functions are considered as time-consuming
activities that create or modify objects. The events are both conditions for the
execution of functions, and results. The events refer to points in time and are defined
as data items that should be available at the start and at the end of functions'
execution. In the EPC-schemes, the functions are represented by rounded boxes and
the events as hexagons. An example of an EPC-scheme is given in Fig. I.

426

We operationalized the benchmarks model so as to use it in benchmarking studies
dealing with the complexity. A set of appropriate complexity indicators has been
def'med as well. For any indicator we explained how it helps us improve the IS-
requirements specifications and how it would be more difficult to make improvements
without the indicator. Finally, the indicators were specified by following AMI metrics
description guidelines [1].

In the next section, we review some complexity indicators. We suggest to present
the benchmark definitions together with an illustrative example.

4.1 An illustrative example

To show how metrics data are collected we use the EPC in Fig. 1 which depicts the
high level definition of the process ,,Bid preparation" developed by the ESPRIT
BIDPREP Consortium [11]. Due to space limitations we present a part of benchmark
specifications only (namely, the reference object and the integration rules).

Figure 1. A part of BIDPREP Specification.

427

4.2 Function Cohesion (FC)

Reference Object: Function

Integration Rules: FC = (F C i n p +FCo~t)/2

where FCmp und FCou t are the input and output function
cohesion measures. These are defined as follows:
FCinp(0) = ko No
FCinp(i) = ki.(FCinp(i-1)+ Ni) i=l,..,n
FCout(0) : ko No
FCout(i) = kj.(FCo~t(i-1)+ Nj) i=l,..,l
where i and j are levels of nesting, k i and kj are weights, and
N i and Nj are the numbers of the input and output events with
respect to the function under consideration.

The numbers k i and kj are defined by modifying Rechenberg's weighting scheme [10]:

Type of EVent Weight
AND-Event 3
XOR-Event 3

Type of Event Weight
OR-Event 2
Single Events 1
Table 1.

Examples:
FC (Capture inquiry) = (1+1)/2 = 1
FC (Estimate bid costs) = (3x3 + lxl) /2 = 5

4.3 Data Item Cohesion (DIC)

Reference Object: Event

Integration Rules: DIC=DICi~p + DIC out + c.NF

where DICi.p and DICou t are the input and output data item
cohesion cohesion measures, c is an event cohesion class, and
NF is the number of functions affected by the event under
consideration. These are defined as follows:
DlCmp(0) = k o NEo
DICinp(i) = ki.(DICinp(i-1)+NEi) i=l,..,n
DICout(0) : k o NEo
DICout(i) = kj.(DICo~t(i-1)+ NEj) j=l,..,l
where i and j are levels of nesting, k i and kj have the above
meaning, NE i is the number the of co-items, with which a
data item acts together as an input to a function, and NEj is the
number the of co-items, with which a data item acts together
as an output from a function.

428

The cohesion class c defines the role of an event. It characterizes the decision power
of the event and reflects the way in which the event affects the functions related to it.
We established the following rules for defining the cohesion class of an event:
1. An event has a cohesion class 1 when it is produced by only one function and is an

input to only one function.
2. An event has a cohesion class 2 when it is produced by more than one functions

but is an output to only one function.
3. An event has a cohesion class 3 when it is produced by only one function and is an

input to more than one functions.
4. An event has a cohesion class 4 when it is produced by more than one functions

and is an output to more than one functions.

Example:
DIC (Inquiry is evaluated) = 0-v0+2xl= 2
DIC (Layout is deemed) = 0 + 2x3 +3x3 = 6 + 9 = 15

4.4 Validation of complexity benchmarks

To investigate the expressive power and the adequacy of the developed benchmarks,
we followed Fenton's guidelines [8] for software metrics validation. The
operationalized benchmarks models were applied to representative sample of EPC-
schemas produced. The results were compared with expert evaluations referring to the
same models. We refined benchmark calculation rules every time when our method
did not come to the same conclusion as the experts. Finally, the conformity between
expected and effective benchmark values has been checked through estimating
Kendal's concordance coefficient. This study pointed out the strong correlation
between expert opinions and the quantified indicators.

We have also studied the statistical independence among the benchmarks. The
benchmark values exhibited a low correlation, what pointed out that they characterize
distinct aspects of business process models.

4.5 Benchmarking profiles

To illustrate how our solution strategy works, we report here a summary of a
comparative study on the model complexity. We evaluated and benchmarkod a model
produced by IDS Prof Scbeer GmbH, Saarbrtlcken, Germany, for the process ,,Human
resource administration" at the enterprise X, an electric company in Eastern Europe,
with an optimized model that represents the same process. The latter was recognized
as a best-in-class one. The considered benchmarks are: Function Cohesion, Data Item
Cohesion and Cohesion of Logical Connectors. Figure 2. represents the average
benchmark values. The complexity evaluations of the model of company X exceed
those of the best-in-class model.

To define corrective actions, the modellers needed a roadmap and guideline where
to begin from. Therefore, we focused our further investigation on each particular
benchmark. To identify which objects contribute the most to the average benchmark

429

Figure 2. Benchmarking profiles.

Figure 3. A comparison on function-by-function basis.

430

values we compared the models on an object-by-object basis. Let us analyze the
benchmark function cohesion.

Figure 3 represents a function-by-function comparison. The functions, which both
models have in common are compared with respect to their FC values. As it is evident
from the data, the high average function cohesion is attributed to the functions
,,Confn-m internal job change", ,,Confu'm final employment", ,,Prepare internal job
change". These can be submitted to the modellers for further enhancement. Thus, it
was pointed out how a benchmarking study can deliver a basis for model
improvement initiatives.

5 Conclusions

Benchmarking expertise is a set of knowledge and skills which support modellers in
controlling IS quality. Our experience has shown how the quality issues in
requirements analysis can be mastered effectively according to a documented
procedure that makes the quality of produced specifications quantitatively known. Our
approach is very different from the existing improvement schemes in the following
three ways: First, its focus is on identifying after-assessment actions. The main point in
IS-benchmarking is how to add value to the IS-organization by using software metrics
technology, instead of how to get assessment.

Second, the approach places the comparison against best-in-class achievements as a
starting point in developing an IS-improvement program.

Third, the approach is applicable to support improvement efforts initiated at any
organization level. The method allows even the least ambitious IS-staff member to
develop useful benchmarks and to compare the results of his own job against the
excellent ones.

6 Acknowledgements

I would like to thank the colleagues from the Institut ~ r Wirtschaftsinformatik,
Saarb~cken, for many stimulating conversations on the subject. I would also like to
thank Thomas Geib and Karl Wagner from IDS Prof Scheer GmbH for the fruitful
discussions on enterprise-model-benchmarking. My thanks also go to the friends
Mathias Kr6mker from Bremen Institute for Industrial Technology and Applied Work
Science, and Christian Rose from Software Union GmbH, for the use of their reference
models.

7 References

1. AMI: Application of Metrics in Industry, Metrics Users' Handbook, AMI
Consortium, 1992.

2. Basili,V., H.Rombach, The TIME Project: Towards Improvement-oriented
Software Environments, IEEE Transactions on Software Engineering, 14(6), 1988,
pp 758-773.

431

3. Brodman, J.G., D.L.Johnson, What Small Business and Small Organizations Say
About the CMM, Proc. of the 17th International Conference on Software
Engineering, Sorento, 1994, pp. 331-340.

4. Daneva, M., Benchmarking Practice for SoRware Quality Achievement, Proc. of
the 5th International Conference on Software Quality, Austin, 1995, pp. 443-457.

5. Daneva, M., Knowledge-based Approach to Software Marketing Modelling and
Support, Ph.D. Dissertation, BAS, Institute of Mathematics, 1994.

6. Daneva, M., Software Benchmark Design and Use,.Reengineering the Enterprise,
Galway, Ed. J. Brown and D. O'Sullivan, Chapman and Hall, New York, 1995, pp.
20-29.

7. ESPRIT Project 2151: ,,SCOPE - Technology for Evaluation and Certification of
Software Product Quality", Project Brochure, November, 1992.

8. Fenton, N., Software Metrics: A Rigorous Approach, Chapman&Hall, 1991.
9. Fenton, N.E., S. Pfleeger, R. Glass, Science and Substance: a Chalange to Software

Engineers, IEEE Software, July, 1994, pp. 86-95.
10. Hall, T., N. Fenton, Software Practitiones and Software Quality, Proc. of the 5th

International Conference on Software Quality, Austin, 1995, 313-324.
l l.Hirsch, B.E, K.-D., Thoben, M. Kr6mker, A. Wickner, Benchmarking in

BidPreparation for Capital Goods, Proc. of IFIP WG 5.7 Workshop on
Benchmarking - Theory and Practice, Trondheim, 1994.

12.Jones, C, Global Software Quality in 1995, Proc. of the 5th International
Conference on Software Quality, Austin, 1995, pp. 283-290.

13. Jones, C., Patterns of Software Systems Failure and Success, International.
Thomson Computer Press, Boston, 1996.

14. Paulk, M.C., A Perspective on the Issues Facing SPICE, Proc. of 5th International
Conference on Software Quality, Austin, 1995, pp. 416-425.

15.Paulk. M., C.Weber, B. Curtis, M.B.Chrissis, The Capability Maturity Model:
Guidelines for Improving the Software Process, Addison-Wesley Publ Co.,
Redings, MA, 1995.

16. Rechenberg, P., Ein neues Mass fftr die Softwaretechnische Komplexitiit yon
Programmen, Informatik Forschung und Entwicklung, 1986, pp. 26-37.

17. Scheer, A.-W., Wirtschaftsinformatik, Referenzmodelle mr industrielle
Geschaftsprozesse, 6.Ed., Springer-Verlag, Berlin et all, 1995.

18. Strigel, W., Assessment in Small Software Companies, Technical Report, Software
Productivity Centre, Vancouver, 1995.

19. Tyler, J., Models, Managing Modekls, Quality Model: an Example of Quality
Management, U.S. Department of Commerce, National Institute of Standards and
Technology, NISTIR 4738, December, 1991.

20.Zultner, R., The Deming Way to Software Development, Proc. of the 5th
International Conference on Software Quality, Austin, 1995, pp. 457-470.

