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A b s t r a c t .  In this paper we introduce DEGAS (Dynamic Entities Get 
Autonomous Status), an active temporal data model based on autono- 
mous objects. The active dimension of DEGAS means that we define the 
behaviotur of objects in terms of production rules. The temporal dimen- 
sion means that the history of an object is included in the DEGAS data 
model. Novel features of DEGAS are the encapsulation of the complete 
behaviour of an object, both potential and actual. Thus, DEGAS com- 
bines dynamic and structural specifications in one model. In addition, 
DEGAS allows easy evolution of object capabilities through a clear dis- 
tinction between inherent types and capabilities that can be acquired 
and lost. This addon mechanism makes DEGAS very suitable as a formal- 
ism for role modelling. Finally, the rule model in DEGAS is both simple, 
through the use of finite automata, and general, because it allows differ- 
ent strategies for dealing with constraints and reacting to events in other 
objects. 

1 Introduction 

It  is widely recognised tha t  information systems (IS) modelling should include 
both static and dynamic aspects of their  universe of discourse. To facilitate ef- 
fective IS design, integration of these aspects must be supported in all phases of 
the IS development process. This includes implementat ion platforms for informa- 
tions systems, database management  systems, tha t  have tradit ionally focussed 
on the stat ic side of information systems. 

Encapsulat ion of methods and da ta  in object-oriented databases  is a step for- 
ward in the integration of the dynamic and static par ts  of an application. Active 
databases [21, 11] integrate another  dynamic  element into databases,  viz., pro- 
duction rules. Originally rules were introduced to deal flexibly with constraints 
in a database.  Much wider use, however, has been found for them. In fact, it is 
possible to encode the entire dynamics of an information system as rules in an 
active da tabase  system. 

In DEGAS we unify both  approaches in one active, object-oriented da t a  model. 
To achieve an effective unification we also incorporate elements of a third area, 
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temporal databases. The specification of a DEGAS object has a static part, at- 
tributes, and a dynamic part, described by methods, production rules, and life- 
cycles. Thus, DEGAS achieves the encapsulation of the complete dynamic aspect 
of an information system. This total encapsulation is a means to achieve ob- 
ject autonomy. Systems built of autonomous components axe necessary for the 
development of networked information systems across multiple organisations. 

Roadmap First, we introduce the main concepts of the DEGAS model. Next, 
we show the use of these concepts by modelling an example. Then, we discuss 
the DEGAS model on a more formal level. After that we look at the broader 
context, motivating the development of DEGAS. We conclude with issues for 
future research. 

2 M a i n  C o n c e p t s  

The fundamental notion of the DEGAS model is the object. It has structure 
and behaviour. The structure of an object is determined by the attributes. The 
behaviour of an object has three components: methods, lifecycles, and rules. 
Methods specify what an object can do. The lifecycles specify what methods the 
object is willing to execute in a certain context, by specifying sequencing and 
preconditions of method execution. A rule states when an object will execute a 
given action as far as can be modelled within the system. In other words, rules 
specify actual actions to be executed in certain situations, described in terms of 
events and object states. 

Thus, methods and lifecycles specify potential behaviour of an object, whereas 
rules describe actual behaviour. Traditionally only potential behaviour is spec- 
ified, whereas DEGAS objects also contain their actual behaviour as fax as that 
can be pre-determined. 

In DEGAS relations are modelled as objects. Thus, we have a place for data and 
behaviour of a relation. A more abstract motivation of this objectification is that 
a relation is a kind of contract, a view also found in, for example, NIAM [15]. 

The class of an object defines the intrinsic capabilities, i.e., attributes, methods, 
rules and lifecycles. Addons axe used to model transient capabilities. That is, ad- 
dons are used to define capabilities that can be added and deleted from an object 
dynamically. Addons can be likened to roles and are DEGAS' only mechanism 
for object specialisation. 

3 A n  E x a m p l e  

Challenging applications to model are those with high dynamics. An application 
with fast changing data and rapidly evolving relations is the stock market. New 
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data  emerges constantly in the form of buying and selling orders, economic 
news items through newsreels etc. Both new and historical da ta  influence the 
behaviour of the parties in the market. In order to introduce the concepts of 
DEGAS, we model this example. Our example is a simplification of the system 
used in the Netherlands. 

Let us briefly describe the example in more detail. Companies are owned by 
persons. A person can buy shares and sell them again. He can subscribe to a 
newspaper to get news about  the companies he is interested in. The buying and 
selling of shares goes through a marketmaker. If a person wants to buy or sell, 
he informs the marketmaker. Periodically, the marketmaker determines t h e  price 
that  balances supply and demand. Buying and selling orders that  agree with this 
price are fulfilled. 

We start to model this example with the marketmaker. The  marketmaker matches 
supply and demand for his market. This means that  the actions he can execute 
are to accept buying and selling orders and to t ry  to match these. This is spec- 
ified by the following DEGAS definition of the marketmaker object 's attributes 
and methods. The methods in this object only contain actions to engages in a 
relation or to extend the object with an addon. 

Object Marketmaker 
Attributes 

currentPrice : real 
Methods 

takeSellOrder = { 
SupplyClass.inltiate 

} 
takeBuyOrder = { 

DemandClass.initiate 
} 
makeMarket = { 

SupplyDemandAddon.extend 
} 

This defines possible actions the object may execute, but  we know more about 
the actions of a marketmaker.  Therefore, an object includes a lifecycle descrip- 
tion. Lifecycles are specified by guarded basic process algebraic expressions [5] 
with method names as basic actions. The  following operators can be used in 
lifecycle specification: 

Sequence A; B A followed by B 
Choice A + B A or B 
Repetition A* One or more times A 
Merge AIIB = A; B + B; A A and B in parallel 

Each basic action can be prefixed by a condition as a guard as follows. 

[(Condition)] ( M e t  hodname ) 
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It can be used to express a precondition of a method,  or to restrict access to the 
method by other objects. 

The lifecycle of a marketmaker consists of taking buying and selling orders. If 
these are both present, he is allowed to match supply and demand. 

Lifecycles 
((takeSellOrder* II takeBuyOrder*);makeMarket)* 

The  specification of the actual execution of actions by a DEGAS object is given by 
rules. The behaviour of a marketmaker is to extend himself, if he has both supply 
and demand relations. This is specified by the following rule, tha t  completes the 
definition of the marketmaker object.  

Rules 
On (takeSellOrderlltakeBuyOrder) do makeMarket 

EndObject 

This rule only extends the Marketmaker with the SupplyDemandAddon, that  
contains a rule tha t  periodically triggers the necessary actions to clear the mar- 
ket. 

In our example a person can buy shares. To do this he should place a buying 
order. If this order can be met by supply in the market, he will actually buy 
the shares. If it is unsuccessful, a cancellation will be the result. In addition 
to buying shares, a person can take a subscription to a newspaper in order to 
obtain information. If he owns shares and also reads a newspaper, he will use the 
information from the newspaper to influence decisions about  his shares. This is 
specified in the person object as follows: 

Object Person 
Attributes 

name : string 
birthday : time 
birthplace : string 

Methods 
tryToBuy(company:string, number:integer, maxPrice:real) ---- { 

DemandClass.initiate (company, number ,maxPrice) 
} 
readPaper(paper:string) ---- { 

SubscriptionClass.initiat e (paper) 
} 
useNews ---- { 

InformedOwnerAddon.ext end 
} 

Lifecycles 
(tryToBuy)* 
((extend-Shareholderllextend-InformedPerson) ;useNews)* 

Rules 
On (extend-Shareholderllextend-InformedPerson) do useNews 

EndObject 
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In the person and marketmaker objects the methods define that the object en- 
gages in relations. Relations in DEGAS are objects themselves. A relation object 
can have the same capabilities as an ordinary object. For example, a share is 
modelled as an ownership relation between a person and a company. In the 
relation object,  the partners in the relation are present as implicit attributes. 
Other information it contains, is the price of the share when it was bought. The 
definition of the share relation object shows the use of guard conditions in the 
lifecycle. The  action after a condition can only be executed, if the condition is 
satisfied. In the Share relation object, guards are used to restrict access to its 
methods. 

Objec t  Share 
Rela t ion Person, Company 
A t t r i b u t e s  

buyPrice : real 
currentPrice : real 
value : real 

M e t h o d s  
transferOwnership(newOwner:oid,price:real) = { 

Person = newOwner 
buyPrice = price 

) 
payDividend(div:real) = { 

value = value + div 
) 

Lifecyeles 
([sender--=Person]transferOwnership)* 
([sender==Company]payDividend)* 

E n d O b j e c t  

A person object does not have the capability to deal with the share relation built- 
in. Instead it acquires these when it engages in this relation. This is represented 
by the shareholder addon. An addon defines a temporary  specialisation of an 
object, which is lost when the relation is terminated. In this example, a person 
who is also a shareholder gains capabilities to sell the shares again. 

A d d o n  Shareholder 
Ex tends  Person 
A t t r i b u t e s  

share : old 
M e t h o d s  

tryToSell(company:string, number:integer, minPrice:real) = { 
SupplyClass.initiate(company, number,minPrice) 

) 
Sell(buyer,price) : { 

share.transferOwnership(buyer,price) 
Supply.drop 

) 
cancelSupply --- { 
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Supply.drop 
} 

L i f e c y c l e s  
(tryToSell;(Sell+cancelSupply))* 

E n d A d d o n  

The SupplyClass.initiate action in this addon specification also occurred in the 
specification of the Marke tmaker  object.  A call to an initiate method is done by 
an object  to express its wish to engage in a relation. Since the relation object  
does not exist at  this time, initiate is a method  of the relation class object.  
In this case a Shareholder object  will send an initiate call to  the Supply class 
object.  In response it will send a takeBullOrder message to the marke tmaker  
to ask, if it is willing to accept the relation. As we can see in the specification 
of the Marketmaker  object,  it will respond with an initiate call to express its 
agreement.  The  Supply class object  will then proceed to instant ia te  the relation. 

As we can see above in the specification of the Person object ,  an addon can 
also be used to link two relations. In our example,  the information a person 
reads in the paper  will influence his decisions as a shareholder. This is achieved 
by extending the person with a further addon, if he owns shares and reads a 
newspaper.  First, we give the specification of the InformedPerson addon, tha t  
extends a person who has a subscription to a newspaper.  

A d d o n  InformedPerson 
E x t e n d s  Person 
A t t r i b u t e s  

subscription : Oid 
transactionPrice : real 

M e t h o d s  
goodNews(compauy : string) = { 

transactionPrice = subscription.priceAdvice(company) 
} 
badNews(company : string) = { 

transactionPrice = subscription.priceAdvice(company) 
} 

Lifeeycles 
([sender= =subscription]goodNews *) 
([sender = =subscription]badNews * ) 
(ExtendInformedPerson;DropInformedPerson)* 

Rules 
On goodNews(company) (t 1) ;goodNews(company) (t2) 
if  t2 - tl _< 7 days 
d o  tryToBuy (company, t ransactionPrice) 

E n d A d d o n  

The rule specification in these addon definitions shows the use of t ime in DEGAS. 
Historical values of at t r ibutes  can be referenced by a t ime parameter .  Likewise, 
we can refer to the t imes tamp of an event. The  following specification gives an 
example of how the informed owner of shares would deal with bad news. This 
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addon extends a person, if it has both the Shareholder and the InformedPerson 
addons. Therefore, the extends specification gives two original object names. 
Please note, that  this does not introduce a form of multiple inheritance. It simply 
specifies, what the addon may assume to be present. 

A d d o n  InformedOwner 
E x t e n d s  InformedPerson,Shareholder 
A t t r i b u t e s  

Key : ~ (  Subscription : Oid, Share : Oid ) 
Lifecyctes 

ExtendInformedOwner* 
DropInformedOwner* 

Rules  
On badNews(company)(tl);badNews(company)(t2) 
if  (t2 --  t l )  ~ 7 days && transactionPrice(t2) _~ transactionPrice(tl) 
do tryToSell(transactionPrice) 
On goodNews(tl);badNews(t2) 
if t2 - tl _~ 7 days && transactionPrice(tl) ------ max(transactionPrice, tl, t2) 
do tryToSell (transactionPrice) 
On DropShareHolder do DropInformedOwner 
On DropSubscription do DropInformedOwner 

E n d A d d o n  

The diagram in Figure 1 shows the complete model of the stock market example. 
In this picture, large boxes represent objects and small boxes represent addons. 
The dashed boxes are relation objects. The outgoing arrows from relation objects 
indicates the partners in the relation, they do not imply any ari ty constraint on 
the relation. 

4 Discussion of D E G A S  concepts  

In this section we discuss the different elements of the DEGAS model in more 
detail. First,  we will look at the different parts of a DEGAS object specification. 
After that ,  we will take a closer look at relations and addons. For a full formal 
description of DEGAS, including its semantics, the reader is referred to [3]. 

Attributes and Methods Attributes and methods are straightforward in DEGAS. 
Attributes in an object are typed. From a number of simple types, like integers, 
reals, strings, and object identifiers, additional types are formed using set and 
tuple constructors. The type system underlying DEGAS follows Cardelli [7] and 
Baisters [6]. In DEGAS method definition allows assignment to attributes. In 
addition, we can map a method over a set. A method can also call other methods. 

Lifeeycles A method call can be executed on an object,  if it follows one of the 
lifecycles specified. The semantics of lifecycles follows process algebra [5]. If mul- 
tiple lifecycles are specified, then these are executed in parallel. Suppose we have 
defined the following set of lifecycles on an object O. 
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Fig. 1. The DEGAS model for a financial market 

Lifecycles 
C1 
C2 

C~ 

This means that  the execution of methods on O must follow the process 

c ,  IIC=ll . . .  I IC. 

This means that  the lifecycles specified are executed in parallel. Lifecycles can 
be checked using finite automata.  This follows from the fact that  lifecycles are 
regular expressions. In an object we have a finite automaton associated with 
every lifecycle. The transitions in this automaton are labelled with method names 
and conditions. If there is an appropriate transition available, a method call can 
be executed. 

The History of an Object The execution of a method modifies the state of an 
object. In DEGAS, an object 's state is its complete history, which is represented 
as a sequence of snapshot states. In temporal  database research [20], the term 
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snapshot state denotes the state of an object at a point in time when we ab- 
stract from the temporal dimension [14]. In DEGAS a snapshot state contains a 
timepoint, the attributes and their valuation at that  time, and the method call 
that brought the object in the state. As an example, the following is a piece of 
the history of a share object: 

(13 : 00 : 00, {currentPrice : real, person : aid, company : old, ), 
(eurrentPrice = 54.25,person = Johan, company = Philips),  
transIerOwnership( Johan, 54.25)) 

(13 : 02 : 00, (currentPrice : real, person : aid, company : aid), 
(currentPrice = 55.25,person = Arno, company = Phil ips) ,  
transferOwnership( Arno, 55.25)) 

The information in the snapshot state is valid from the given time until the time 
given in the next snapshot state. The last snapshot state gives the information 
valid at the current time. Type information is included because of the dynamic 
nature of the capabilities of DEGAS objects, which can be changed through ad- 
dons. 

Historical values of attributes are accessed in DEGAS through the addition of a 
time parameter. This can be used, for example, in the condition of a rule: 

Rules 
On share.newPrice 
if price(T~, - 15 min) - price(T,~o,~) > 10 
do tryToSell 

The history is the central element in the formalisation of DEGAS. Method defi- 
nitions specify the state transitions possible in DEGAS. The sequence of method 
calls is restricted by the lifecycles of an object. In addition rule triggering is 
described in terms of the state history. 

Although the natural combination of temporal and active databases has been 
suggested by different authors [10, 21], there are no active da ta  models that  
incorporate the history of a database. Work on the temporal specification of rules 
has been done by Sistla and Wolfson [19]. This approach is based on temporal 
logic. It focusses only on the condition of the rules, which means that  there is 
no general history mechanism in their approach. 

Rules In the specification of rules, DEGAS follows the ECA format, originally 
introduced by Dayal [9] and now commonly accepted in the active database 
community. Rules are specified as an Event-Condition-Action (ECA) triple. I f  
the event occurs and the database state satisfies the condition, the action is 
executed. This is specified in a DEGAS object as: 

On (Event} if  (Condition} do (Action} 
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The  event specification is a basic process algebraic [5] expression constructed 
from a set of method calls. The  event expression of a rule differs from a lifecyele 
by the absence of guard conditions. In addition a negation operator  can be used 
in the event specification of a rule. 

Negation A;-~B A not followed by B 

A rule condition is a condition on the state of the object.  The  action is a method 
call, either local or to a method in another  object.  

The  presence of rules means that  there are two possible sources of actions in 
an object. The  first consists of method calls from other objects. The second is 
the execution of actions from triggered rules. Both are subject to the lifecycles 
specified on the object. This is reflected in the execution model of an object,  
Basically, an object  first executes a method and then executes triggered rules 
until no more rules are triggered. This loop is depicted in Figure 2. 

No rules triggered 

Execute Method l - L  

i ........... 
Triggered Rules 

Exist triggered rules 1. 

I Pick Rule 
for Execution t 

Fig. 2. The execution of an autonomous object 

The  execution of rules is a two phase process. During a method call, a set of 
rules tha t  are triggered by tha t  method call is built up. After a method  has 
terminated, one rule is picked at random for execution from the set of triggered 
rules at random. If the condition of the rule is satisfied at the time it is picked, 
its action is executed. The rules not picked are dropped. During execution of a 
rule's action, a new set of triggered rules is constructed. 

The  rule model ensures both  simplicity and generality. The  former originates 
from the fact tha t  a~ event specifications ca~ be checked using finite automata .  
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The latter can be found in the different strategies that can be applied to the 
interaction of lifecycles and rules. If the action of a rule is not allowed by any 
lifeeycle the moment it is triggered, we have two options. Either the action is 
tried again later, or the action is simply dropped. DEGAS offers both strategies 
through the negation operator -, in event expressions. If we want the action of 
a rule to be retried, the event includes the negation of the rule's action. For 
example, the marketmaker might have the rule that he must clear the market 
after he has determined a price: 

R u l e s  
On determinePrice;-, clearMarket do clea~Ma~ket 

Rules where only an immediate reaction is of interest, are, for example, those 
rules defining the reactions to news events in the InformedOwner addon in the 
previous section. In this case, the reaction is only useful if it is executed imme- 
diately. 

A number of design issues are simplified by the DEGAS rule model. An example 
is the risk of non-termination, which is already undecidable for very simple rule 
languages [18]. In DEGAS this risk is taken explicitly by the designer by using the 
negation operator. Thus, he knows that a certain rule will be triggered again and 
again until it is executed. This assists in the identification of possibly problematic 
rule sets. 

Other examples of object-based active database systems are HiPAC [9], SAMOS 
[12] and Chimera [8]. SAMOS and Chimera offer encapsulation of rules, but 
the object is not the exclusive location of rule definition. HiPAC treats rules as 
separate objects, thus separating part of the behaviour from the objects. The 
motivation given for this objectification of rules is that it allows easy run-time 
manipulation of rules. In DEGAS this kind of manipulation is offered through the 
addon mechanism. 

Relations and Addons Relations in DEGAS are objects themselves. Hence, the 
discussion of the elements of DEGAS objects above also applies to relation objects. 

The initiative for a relation comes from one of the partners. To this end it sends 
a message to the class object of that relation. Before the relation is established 
there might be a number of conditions that need to be satisfied. These are 
checked by the relation class object. If the relation class approves, it instantiates 
the relation object and instructs the partners to extend themselves with the 
appropriate addon. 

An addon specifies an extension to an object's capabilities. It is a general purpose 
object specialisation mechanism. Hence, it is not tied to one particular form of 
specialisation, such as e.g. roles. An addon can be added to an objeCt, if the 
object has a method to do this. This means that the object knows the name of 
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the addon, but does not know anything about  the contents of an addon. Thus, 
changes in an addon are transparent  to the object. 

An addon can add attributes,  if it does not duplicate names.  Usually, the addon 
will contain the identity of the relation object it is tied to. In case of an 1 - n 
relation, this at tr ibute is a set. The addon is only added the first t ime an object 
engages in a relation. When the object engages in more relations of the same 
type, extension with an addon only means that  an element is added to this set. 

Methods can only be added. There is no mechanism to modify the behaviour of 
existing methods, other than  specifying a rule on an existing method. Rules are 
treated the same as methods with regard to specialisation. 

In an addon, lifecycles can be added to the set of existing lifecycles. As an 
example, suppose we have the following lifecycle definition in object O: 

Lifecycles 
(A;B)" 
(C; D)* 

Clearly, O follows the process: 

(A; B)" II(C; D)* 

If O is extended with addon A with the following lifecycle definition: 

Lifecycles 
(K; L)* 

The specialised object O will follow the process: 

(A; B)* II(C; D)* II(K; L)* 

The addon mechanism offers a number of advantages over using inheritance to 
specialise objects. The key to these advantages is the observation that  object 
specialisation is tied to the role of an object.  An object is specialised in order 
to play a role. In an inheritance hierarchy we would need a separate class for 
each possible combination of object extensions. Clearly, this leads to a combi- 
natorial explosion of the number of classes in the hierarchy [13]. In DEGAS, this 
observation has lead to the extension of an object with an addon, when it en- 
gages in a relation. The addon defines the role the object plays in the relation. 
It gains methods to deal with the relation. Rules specify what information must 
be passed to the relation, while lifecycles define the access of the relation to the 
methods of the object. 

A number of other approaches are based on this observation. For example, As- 
pects by Richardson and Schwarz [16] are also dynamic extensions to objects. 
There is no link between aspects and relations. Although aspects can have as- 
pects themselves, there is no possibility of interaction between aspects of the 
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same object. This means that interaction between relations of an object, or 
multiple roles, in the way shown in our example is not possible using aspects. 
A database programming language offering an extensive role mechanism is Fi- 
bonacci [4]. Its object specialisation mechanism is more complex than the DEGAS 
addon mechanism. For example, it has multiple inheritance between roles, This 
is caused by the strongly typed functional nature of Fibonacci. In DEGAS mul- 
tiple inheritance is not needed, since addons need no information about other 
addons. There is no treatment of rules or time in both Aspects and Fibonacci. 

An extensive conceptual study and formalisation of objects with roles can be 
found in [22]. Here it is observed that there are static classes, dynamic classes and 
roles. Objects cannot migrate between static classes. Hence, these are equivalent 
to the classes in DEGAS. Dynamic classes are based on dynamic partitions of a 
static object class. Objects can migrate between dynamic classes, although this 
may be subject to lifecycles. Roles are dynamic classes that do not partition an 
object class. In addition an object can play multiple roles. In DEGAS the latter 
two are both modelled using addons. Dynamic class migration is specified in the 
lifecycle of an object. Migration is achieved through the gain and loss of addons. 
Roles are tied to relations. When engaging in a relation an object will gain the 
addon that specifies its role in the relation. The main difference is that DEGAS 
only distinguishes between inherent and transient capabilities of an object. 

5 DEGAS in a broader context 

In this section we show DEGAS in a broader context than active databases. Not 
only is the DEGAS notion of object autonomy the natural consequence of the 
integration of rules in an object database, it also supports currently foreseen 
developments in computing, networking and integration of information systems. 
These contribute to the need for systems built of autonomous components. Au- 
tonomy in this case implies extreme distribution. A more elaborate motivation 
for object autonomy can be found in [2]. 

Developments in Technology Extreme distribution is motivated by a number of 
developments foreseen in computer systems in the nearby future. These are the 
emergence of massively parallel computer systems and the coupling of existing 
computer systems over networks. These have in common that any form of central 
control will pose a large amount of overhead on the system. In a massively parallel 
computer centralisation of decisions, for example regarding resource allocation 
or invocation of active rules, poses overhead on the system. Enough overhead to 
make it a considerable factor in the performance of such a system. 

Similar problems are posed by the possibility of information systems running on 
networks of mobile computers. A lot of effort has been put into making databases 
interoperable over a network. Still, it will be very difficult to come up with a 
scheme that can keep up with the sheer size of such a network and the speed 
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of changes in the network caused by its mobile character.  It seems a be t te r  idea 
to build an inherent flexibility into the components, such that  they can function 
with as little global information as possible. 

Because of the problems of central control in these environments, control must 
be distributed to components of the system. In other words, the components are 
forced to be autonomous. 

Integration of Information Systems There  is a strong trend to increasing inte- 
gration of systems in chain information systems or through a public information 
infrastructure. Such systems merge (parts of) information systems of various 
owners into one big information system. Examples are integrated information 
systems for suppliers and customers and the trading system at the stock ex- 
change, as shown in this article. However, nobody wants to give up control over 
his part of such a system. In addition one organisation may want to integrate its 
information system with a number of inter-organisation systems. An example of 
this is a supplier of tyres, who sells these to several car manufacturers,  that  all 
have an information system for their own chain of suppliers and resellers. 

An inter-organisation information system is made up of parts  that are not subject 
to any form of central control. This means that  we need information systems 
that  function without central control of the components. In addition, different 
parts of an organisation's information system may be exported to different inter- 
organisation systems. This means that  access control can differ at a very fine 
grain in the system. For each component we want to be able to define who has 
access to what. 

These developments again force components of a system to function without 
central control. In addition they point at a need to be able to define access 
control in a system at a very fine grain. Autonomy of components makes this 
possible. 

Autonomy is the Solution All the developments mentioned above foster a need 
for systems composed of autonomous components. The difficulties with central 
control of a system can be overcome by distributing control to parts  of the 
system, or by building inherent flexibility into the parts  of the system. The 
result will be autonomy for the components of such a system. We also signalled 
a development towards the sharing of da ta  with outsiders. Approaching data 
from multiple sources as one database while the owners retain control, means 
autonomy for the components. Export ing data  to multiple inter-organisation 
information systems at a time, asks for an inherent flexibility that  autonomous 
components can offer. 

DEGAS offers a formal model to support the development of systems of au- 
tonomous components. This is achieved by basing the DEGAS model on au- 
tonomous objects. We have chosen object as the level of autonomy, because of 
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its obvious advantages in modelling an information system. Object autonomy 
also has the advantage of generality, because the complexity of the objects may 
be arbitrary. This means that the model can also be used for autonomous com- 
ponents at a higher abstraction level, as long as its behaviour can be described 
in DEGAS, 

Autonomous objects and Agents In recent years the notion of agents has received 
considerable attention as a paradigm for software development. Research has 
focussed either on the specification of agents by logic, see for example [17], or on 
the implementation of special purpose agents, for example to schedule meetings 
(see [1]). Since the logics used to specify agents are relatively complex, there is 
a gap between these two approaches. To bridge this gap we need simple general 
purpose agents. Autonomous objects are a first step towards this kind of agents. 

Another area where agents can be useful, is the design and analysis of informa- 
tion systems. For example, Yu et al [23] propose an agent-oriented framework for 
the specification of information systems. This framework consists of two parts, 
one, Albert, to specify agents in an information system and the other, i*, to 
understand and redesign the organisational context of the information system. 
If we want to apply this framework also to the design and implementation phase 
of information system development, we need a database programming language 
that supports the modelling notions used in the specification phase. Autonomous 
objects in DEGAS offer such support through their rule and lifecycle specifica- 
tions. 

6 C o n c l u s i o n  

In this paper we introduced DEGAS, an active temporal data model, using an 
application with a highly dynamic content, the stock market, as an example. 
The relation and addon mechanism of DEGAS, where capabilities are only present 
when they are needed makes DEGAS especially useful for this kind of applications. 
In addition addons and relations offer a clean mechanism to implement roles. 

DEGAS emphasises the integration of the dynamic and static paxts of an appli- 
cation. This integration is achieved through the complete encapsulation of an 
object's behaviour. This contributes to the autonomy of objects, an important 
factor in the construction of highly distributed information systems. 

An important contribution in the field of active databases is the temporal ele- 
ment of DEGAS. The notion that the state of an object is formed by its complete 
history makes it possible to achieve temporal database functionality in DEGAS. 
We elaborate on the temporal aspects of DEGAS in a forhtcoming paper. 

A prototype implementation is underway. The simplicity of the DEGAS rule 
model is expected to facilitate a performant system. To complement the data 
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model a query model will be formalised for DEGAS. Basically, a query is the 
specification of a set of objects.  Further  research will focus on the integration of 
temporal  and active databases.  

References  

1. Special issue on intelligent agents. Communications of the ACM, 37(7), July 1994. 
2. J.F.P. van den Akker and A.P.J.M. Siebes. A data model for autonomous ob- 

jects. Technical Report CS-R9539, CWI, Centre for Mathematics and Com- 
puter Science, Amsterdam, The Netherlands, 1995. Available through WWW 
(http://wln~. cwi. nl/'vdakker/Publicat ions. html). 

3. J.F.P. van den Akker and A.P.J.M. Siebes. DEGAS: A temporal ac- 
tive data model based on object autonomy. Technical Report CS-R9608, 
CWI, Amsterdam, The Netherlands, 1996. Available through WWW 
(http ://w~nr cwi. n l / ' vdakke r / P ub l i c a t  ions.  html). 

4. A. Albano, I%. Bergamini, G. GhelU, and R. Orsini. An object data model with 
roles. In Rakesh Agrawal, Sean Baker, and David Bell, editors, Proe. of the 19th 
Intl. Conf. on Very Large Data Bases (VLDB), Dublin, Ireland, 1993. 

5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge 
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 
UK, 1990. 

6. Herman Balsters and Maarten M. Fokkinga. Subtyping can have a simple seman- 
tics. Theoretical Computer Science, 87:81-96, 1991. 

7. Luca Cardelli. A semantics of multiple inheritance. In G. Kahn, D.B. MacQueen, 
and G. Plotkin, editors, Proceedings of the International Symposium on the Se- 
mantics of Data Types, pages 51-68, Berlin, Germany, 1984. Springer. 

8. Stefano Ceri and Rainer Manthey. Consolidated specification of Chimera (CM and 
CL). Technical Report IDEA.DE.2P.006.01, IDEA, ESPRIT Project 6333, 1993. 
Available by FTP from rodin.inria.fr:/pub/IDEA/DE.2P.006.ps.gz. 

9. U. Dayal et al. The HiPAC project: Combining active databases and timing con- 
straints. SIGMOD Record, 17(1):51-70, March 1988. 

10. Klaus R. Dittrich and SteUa Gatziu. Time issues in active database systems. In 
N. Pissinou, R.T. Snodgrass, and R. Elmasri, editors, Towards an Infrastructure 
for Temporal Databases: report of an international ARPA/NSF  workshop, Tucson, 
AZ, USA, 1994. University of Arizona, Dept of Computer Science, TR 94/01. 

11. Klaus R. Dittrieh, Stella Gatziu, and Andreas Geppert. The active database man- 
agement system manifesto: A rulebase of ADBMS features. In T. Sellis, editor, 
Rules in Databases: Prec. of the ~nd International Workshop, pages 3-17, Berlin, 
Germany, 1995. Springer. 

12. Stella Gatziu, Andreas Geppert, and Klaus R. Dittrich. Integrating active concepts 
into an object-oriented database system. In Paris Kanellakis and Joachim W. 
Schmidt, editors, The Third International Workshop on Database Programming 
Languages: Bulk Types and Persistent Data, pages 399-415, San Mateo,. CA, USA, 
August 1991. Morgan Kaufmann. 

13. David McAUester and Ramin Zabih. Boolean classes. In M. Meyrowitz, editor, 
Proceedings OOPSLA'86, pages 417-423, 1986. 

14. L. Edwin McKenzie Jr. and Richard T. Snodgrass. Evaluation of relational alge- 
bras incorporating the time dimension in databases. ACM Computing Surveys, 
23(4):501-543, December 1991. 



98 

15. G.M. Nijssen and T.A. Halpin. Conceptual schema and relational database design 
: a fact oriented approach. Prentice-Hall, New York, USA, third edition, 1990. 

16. Joel Richardson and Peter Schwarz. Aspects: Extending objects to support mul- 
tiple, independent roles. In Proceedings of the A CM SIGMOD International Con- 
ference on the Management of Data, pages 298-307, 1991. 

17. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92, 
1993. 

18. A.P.J,M. Siebes, J.F.P. van den Akker, and M.H. van der Voort. (un)decidability 
results for trigger design theories. Technical Report CS-R9556, CWI, Amster- 
dam, The Netherlands, 1995. Available through WWW 
( h t t p : / / ~ .  cwi. n l / "  vdakker/Publicat  ions. html). 

19. A. Prasad Sistla and Ouri Wolgson. Temporal conditions and integrity constraints 
in active databases. In Proc. of the 1995 SIGMOD International Conference on 
the Management of Data, pages 269-280, San Jose, CA, USA, 1995. 

20. A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Tempo- 
ral Databases: Theory, Design, and Implementation. Benjamin/Cummings, Red- 
wood City, CA, USA, 1993. 

21. Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers and Rules 
for Advanced Database Processing. Morgan Kaufmann, San Francisco, CA, USA, 
1995, 

22. Roe/Wieringa, Wiebren de Jonge, and Paul Spruit. Using dynamic classes and 
role classes to model object migration. Theory and Practice of Object Systems, 
1(1):61-83, 1995. 

23. Eric Yu, Philippe Du Bois, Eric Dubois, and John Mylopoulos. From organization 
models to system requirements: A "cooperating agents" approach. In Proc. o/the 
Third International Conference on Cooperative Information Systems (CoopIS'95), 
Wien, Austria, May 1995, 


