
From Rules To Rule Patterns

G. Kappel, S. Rausch-Schott, W. Retschitzegger, M. Sakkinen 1

Institute of Computer Science, Department of Information Systems
University of Linz, AUSTRIA

email: {gerti, stefan, werner, markku} @ifs.uni-linz.ac.at

Abstract. Rule-based systems are a commonly accepted solution for smoothly
capturing the context-dependent and time-dependent organizational knowledge
of large enterprises, also known as business policies. At the same time, however,
the design of rule-based applications is one of the most pressing open research
problems. This is largely because of the expressive power and flexibility of
existing rule-based models together with a lack of design guidelines on how to
apply these models. Learning from analogous problems in object-oriented
system development and borrowing their solution metaphor we introduce rule
patterns as generic rule-based solutions for specifying business policies. The
advantage of rule patterns is their predefined, reusable, and dynamically custom-
izable nature allowing the designer to reuse existing experience for building new
rule-based applications. The paper introduces the general notion of rule patterns
and illustrates the approach by sample rule patterns for specifying interaction
policies in workflow applications.

Keywords and Phrases. rule patterns, specification of business policies, work-
flow management

1 Introduction

Non-standard applications have to cope with frequently changing requirements
which are, to a large extent, due to changes in the business environment [Louc91].
Those aspects of the business environment which are subject to frequent changes are
often referred to as business policies. Business policies typically capture context-depen-
dent and time-dependent organizational knowledge. They may be based on ethics, law,
culture and organizational commitments by either prescribing a certain action or by
constraining the set of possible actions [Herb95, Ode194, Schr95]. To cope with chang-
ing business policies, it should be possible to easily adapt the application implementing
the respective policies. The introduction of the object-oriented paradigm has been one
step in this direction. Object-oriented languages and development environments help to
intuitively model the universe of discourse and to adapt to changing requirements
[Fugi92, Tsic89]. However, a mechanism for explicitly specifying business policies in
a natural and straightforward way is still missing. In most object-oriented systems busi-
ness policies are implemented by some methods or parts thereof, and thus business

1 On leave from the Department of Computer Science and Information Systems, University of Jyv~kyl~i
(Finland), until July 1996.

100

knowledge is mixed with code realizing the basic functionality with a low modification
probability. Within this respect there exist some suggestions for distinguishing methods
containing policy, i.e., the "making of context-dependent decisions", from methods
containing implementation, i.e:, the "execution of fully specified algorithms"
[Rumb91]. It has been shown, however, that a more intuitive way to describe business
policies is in terms of rules, not least since domain specialists usually do so in express-
ing their system requirements [Petr94].

Approaches for integrating rules with object-oriented concepts have been widely ac-
cepted as a powerful means for explicitly modeling business policies [Ode194, Rubi94,
Tsal91]. These approaches are also known as rule-based models, or more accurately as
active object-oriented models whose most prominent basic mechanism is the Event/
Condition/Action rule (ECA rule) 2. Such a rule monitors the situation represented by
an extent and a condition and executes the corresponding action when the event occurs
and the condition holds true [Diaz91, Ditt95]. ECA rules allow for an explicit, loca-
lized, and transparent specification of business policies. With ECA rules, on the one
hand, reusability of methods and thus of classes is enhanced since they no longer con-
tain application-specific policies. On the other hand, reusability of a business policy
itself is enhanced, since it is encapsulated within rules.

Unfortunately, designers are overtaxed with the power of the provided concepts,
especially with the amount of possibilities for implementing a certain business policy.
Thus, they would need some guidelines for defining rules realizing specific business
policies. Learning from analogous design problems in object-oriented system develop-
ment and borrowing their solution metaphor, we introduce rule patterns in analogy to
design patterns [Coad95, Cop195, Gamm94, Pree95]. Rule patterns provide templates
for an easy specification of business policies. They both categorize rules according to
different types of business policies, and at the same time provide an abstraction mecha-
nism for specifying rules in an application-independent manner. If we try to draw a
rough analogy between rules and rule patterns, respectively, and standard object-
oriented constructs, we can say that an ECA rule corresponds to a single method. How-
ever, there is no widely adopted concept or construct for combining several rules that
would correspond to an ordinary class, even less to a parameterized (generic) class.
Patterns in object-oriented programming represent a still higher level of abstraction and
granularity. In the current paper, we will present only quite simple rule patterns corres-
ponding to generic methods or procedures.

To illustrate the potential of rule patterns we fall back upon workflow applications
as one prominent application area. In these applications, rules are used for specifying
different kinds of business policies such as the order of processed activities, agent selec-
tion and interaction, and worklist management [BuB194, Casa95, Eder95, Kapp95ab,
Rein93]. We pick up interaction policies which, in addition to workflow applications,
have been recognized to be crucial concerning the interaction between objects within
object-oriented modeling as well as concurrent object-oriented programming langua-
ges.

2 Note that there are approaches which integrate the ECA paradigm into non-object-oriented environments
like extended relational database systems.

101

The remainder of this paper is organized as follows: Section 2 introduces the general
notion of rule patterns. Section 3 illustrates the approach by describing sample rule pat-
terns for interaction policies in workflow applications. A comparison to related work
follows in Section 4. Section 5 concludes with a discussion of the approach and ongoing
research. Due to space limitations the paper can only discuss some rule patterns within
a small fraction of a real world example. A more complete list of interaction rule pat-
terns together with their application to a fully-fledged running example is available as
a technical report [Kapp95c].

2 Rule Patterns for Specifying Business Policies

There exists a broad range of business policies which can be realized by using rules.
Business policies encountered in workflow applications, such as those mentioned
above, are a small fraction thereof. For a discussion of different classifications of busi-
ness policies the interested reader is referred to [Gert93, Herb95, Kapp95c, Ode194].
The motivation of introducing rule patterns as abstraction of rules is at least threefold.
Firstly, and as already mentioned, there exist no design guidelines for applying rules in
application development. Secondly, the amount of business rules found in simple case
studies reported in literature is beyond several hundreds [Kno194]. Clearly, one needs
some kind of structure and/or classification in order to manage such an amount of rules.
And thirdly, we have found out that rules realizing business policies can be abstracted
in that they are no more restricted to a specific application domain but rather can be
easily applied to other domains with little adaptation effort. Consequently, when look-
ing at a rule realizing a specific policy, one can find components which are applicable
for a number of application domains as well as components specific to a single applica-
tion domain. Let us consider the following two policies. A business policy in a ware-
house could be that every time the stock-keeper takes out goods, the number of goods
in stock has to be checked and, if fallen below a given limit, new goods have to be
ordered. A similar business policy in a bank could be that every time a customer with-
draws a certain amount from his/her account, the balance is checked and if overdrawn,
the bank charges are increased. It can be seen that there are a lot of similarities between
these two policies. Consequently, it is possible to factor out common components valid
for both application domains. An abstract tbrmulation of these two policies could be:
As soon as a certain value is changed and this value falls below a certain limit some
reaction has to be undertaken.

To avoid that the application designer has to consider such fixed, i.e., common
components of a rule realizing some business policy again and again for each applica-
tion domain and to support the adaptation of such a rule to other application domains,
rule patterns are introduced. Rule patterns are descriptions of rules, predefining certain
event/condition/action-pairs. They are an abstract means to capture a certain kind of
business policy in a generic and thus application-independent manner. Some rule pat-
terns realize business policies by abstracting from a single rule only. At a higher level
of abstraction, however, rule patterns are a composition of several rules working
together to realize some specific kind of business policy. Parameterization makes rule
patterns even more general and versatile than they could be otherwise. Parameterized
rule patterns consist of components independent from particular applications, i.e.,

102

predefined components, as well as components specific to particular applications, i.e.,
parameterized components. The kinds of parameters as well as the degree of para-
meterization, i.e., the relation between parameterized components and predefined com-
ponents, vary according to the different kinds of policies.

Figure 1 illustrates the process of working with rules and rule patterns. In the long
run, for each kind of business policy rule patterns are provided within a pattern library.
Within our research prototype, this library is organized as a set of dictionaries wherein
the patterns are all stored as first-class objects. At this time, of course, we are far from
claiming that our set of rule patterns is complete. Consequently, this pattern library
must be extensible by both defining new patterns and specializing existing ones ((9 in
Figure 1). At the same time, existing patterns or parts of them can be easily reused. In
order to use rule patterns within an application, they have to be customized by the appli-
cation designer. This is done by binding the parameters of a selected pattern on the basis
of the application semantics. The system guides the application designer during the pro-
cess of parameter binding by providing on-line help for each required parameter and by
restricting the binding alternatives to those that do not contradict the specification of the
underlying pattern (cf. the application of a rule pattern shown in Figure 4). Once a rule
has been fully and correctly specified, it can be automatically generated and stored in
the rule base attached to the corresponding application (| in Figure 1).

Definition of new
patterns from ~' (~)
scratch or on
the basis of RuleBase for
existing ones Application X

|

Definition
of new ~' I patterns by (~)| (~
factoring out

E
t=
m a.

Activity Agent
Ordering Selection
Patterns Patterns

RuleBase for
Application Y

L

Interaction Integrity
Patterns Patterns

Definition of
(~) new rules

from scratch
RuleBase for
Application Z

I Application of
(~) (~) rule patterns

Real-Time Other
Patterns Patterns

lJ
Fig. 1. Working with Rules and Rule Patterns

Furthermore, it is still possible to specify rules without using a pattern and to store
them directly within the appropriate rule base (| in Figure 1). This is normally done for
rules without reusability in mind. If sometimes later an application designer recognizes
that a specific design situation recurs and thus is worth to be specified by a correspond-
ing rule pattern, existing rules can be used for this abstraction process (@ in Figure 1).

103

3 Rule Patterns by Example: Interaction Rule Patterns

In the following, we want to illustrate our approach by sample rule patterns speci-
fying different policies concerning interactions between a sender object and a receiver
object. These rule patterns are called interaction rule patterns. Interaction rule patterns
represent interaction structure abstractions similar to the already well known data struc-
ture abstractions (e.g., classification, association, aggregation, and generalization/
specialization) and to control structure abstractions (e.g., sequence, condition, and iter-
ation). They enhance sequential message passing in two different ways. Firstly, in con-
trast to sequential message passing based on a single thread of control where any
receiver object has to accept messages implicitly, i.e., unconditionally, interaction rule
patterns model interactions in a concurrent object-oriented environment based on mul-
tiple threads of control. Thus, any receiver object accepts messages explicitly, i.e., de-
pending on its actual state. Secondly, interaction rule patterns support different kinds of
interaction policies such as synchronous, asynchronous and future synchronous
[Nier93, Yone87]. In the following, two interaction rule patterns are described by
means of an example situated in the area of active object-oriented workflow systems
[Kapp95ab], where it is crucial to flexibly model the synchronization between concur-
rently executing tasks within activities. In a first step, each interaction policy is de-
scribed by means of an application-specific rule. The syntax and semantics of these
rules are based upon our underlying research vehicle TriGS (Triggersystem for
GemStone) [Kapp94a] and will be described, if necessary, on the fly. In a second step,
the corresponding generic rule pattern is factored out. Note that the reader should not
get too much diverted with details of TriGS. The approach is intended to be applicable
much more generally than just for TriGS. For a complete description of the example as
well as of eight currently existing interaction rule patterns we refer to [Kapp95c].

3.1 Synchronous Interaction Policy

Problem. The first interaction policy we want to realize is synchronous interaction.
Synchronous interaction means that the sender of a message blocks until the receiver
has finished the requested method execution. The receiver on its part is not able to exe-
cute the requested method until it is in the right state for satisfying the request. That is,
a received message is explicitly accepted on the basis of the receiver object's actual
state. A state is specified in the sense of a state transition diagram [Rumb9I, Hare88].
For sake of simplicity, we assume that every object has an implicit multi-valued
instance variable s t a t e holding its actual state(s).

Example. Our running example is a typical workflow application realizing a com-
puterized reservation management system for a nationwide consortium of motels con-
nected via a wide area network. Each motel manages rooms grouped into different
categories. In order to be able to check the availability of rooms for a certain reservation
request, a motel has to retrieve a list of rooms from a c a t e g o r y object corresponding
to the desired room category stored within the reservation object (r e sob j) . For this
task, the m o te l object interacts with the ca tegory" object by sending the message
getRooms within the context of the method t r y R e s synchronously, i.e., blocking until
the result is available.

104

This situation is shown in Figure 2. The notation of the interaction diagram in Figure
2a is based partly on the notation for event-trace diagrams of OMT [Rumb91], and on
the interaction diagram notation of OSA [Embl92]. Sender object, i.e. the mote l , and
receiver object, i.e., the c a t e g o r y , are denoted by vertical bars. Time progresses from
top to bottom of the lines. Solid lines designate active threads of control and dashed
lines designate inactive, i.e., blocked threads of control. Arrows denote interactions bet~
ween objects. Furthermore one sequence of states of the receiver object as it might oc-
cur during a certain interaction is shown. These states are all part of the state transition
diagram in Figure 2b. Note that we assume multiple threads of control in the sense that
either the receiver object has its own thread of control, or another thread of control exe-
cutes methods of the passive receiver object. Multiple threads are necessary since, if the
receiver object is currently not in the right state for satisfying a certain request, it must
be possible to execute one or more other methods in parallel, assuring that the receiver
object eventually reaches the correct state. In Figure 2a, for example, getRooms has to
wait until the category object has been transformed from the state Updating into the
right prestate r d l e , necessary for performing getRooms.

Motel Category

: ::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::: L]

, WAIT I iil li::~i~'~;~!; ~:::~,~/:~,:?:~::::~!I!::~;~::1

m

i ~ (roomLi

Adding)
. - - ~ - ~ R o o m
4, , # I (room)

_ �9 ~ e . n d U p a a t e ~

get I A beginUpdate & [removeRoom
R o o ~ I ,(room)

Legend:

... possible state of receiver object

I ... active thread of control

/ inactive thread of control j ...

... blocking interaction

(a) Interaction Diagram

Legend:

event
...tmnsition

�9 ... initial state

([~) ... state

(b) State Transition Diagram
of C a t e g o r y

Fig. 2, Synchronous Interaction Between Motel and Category

Figure 2b shows the state transition diagram based on OMT notation [Rumb91] for
class Ca t ego ry . According to it, an object of class c a t e g o r y remains in state I d l e
until receiving one of the requests getRooms or beg inUpda te . In the first case, the
object changes its state to S e l e c t i n g and automatically returns to the state I d l e upon
finishing the execution of the corresponding method. In the second case, the object
changes its state to Upda t ing . Within this state, a c a t e g o r y object accepts the mes-
sages addRoom, removeRoom and endUpdate. Upon receiving the messages addRoom

105

and removeRoom, respectively, the object changes its state; it automatically returns to
the state Updating upon finishing execution of the corresponding methods. When re-
ceiving the message endUpdate it returns to the state I d l e .

Concrete Solution by using Rules. The rule b locke r_ge tRooms depicted in Fig-
ure 3 has to be specified in order to realize the synchronous interaction between a
mo t e l object and a c a t e g o r y object. Note, we use a simplified notation borrowed
from our underlying active object-oriented model TriGS. Rules in TriGS extend the
ECA paradigm to ECEA, therewith allowing a more flexible definition of rule execu-
tion points [Kapp94b]. The condition event selector (Eselc) of the rule
b locke r_ge tRooms defines all events which are able to trigger the rule. The rule
b locke r_ge tRooms is triggered each time any object of class Motel sends the mes-
sage getRooms to any object of class c a t e g o r y from within the method t ryRes . The
keyword PRE denotes that the rule is triggered before the requested method getRooms,
further on called triggering method, is executed. Moreover the triggering method
getRooms is blocked at least until the condition is evaluated. The condition part of the
rule checks whether the receiver r e c e i v e r is not in the appropriate prestate I d l e for
executing the requested message getRooms. If the condition is false, the action part is
not considered at all and the triggering method getRooms proceeds immediately. If it
is true, getRooms is further blocked until the correct state is reached (keyword WAIT
UNTIL).

DEFI.NE RULE blocker_getRooms AS

ON PRZ(Motel,tryRes:aResObj,Category,getRooms) DO

Ru|e Name

Condition Event
Selector (Eselc)

IF not (receiver.state includes: "Idle") THEN Condition

WAIT UNTIL 01%1 POST (receiver, getRooms) OR Action Event

POST (receiver, endUpdate) Selector (ESelA)

~XECW~ NIL . Action

Fig. 3. Synchronous Interaction Rule

The action event selector (EselA) of the rule b!ocker getRooms is responsible for
monitoring the transitions leading to the correct state I d l e . Therefore the Esel A is
specified as a composite event selector whose components are two simple messages
connected by disjunction. Each of these messages, when sent to the actual r e c e i v e r ,
leads to the state I d l e (cf. also Fig. 2b). After one of these messages has finished exe-
cution (keyword PosT), the action is executed. Since the action is defined as NIL, the
triggering method getRooms is allowed to proceed immediately.

One benefit of this approach is the fact that the mo te l object does not have to check
periodically for the fight state of the c a t e g o r y object (polling) since reaching the ap-
propriate state is signalled by the c a t e g o r y object itself. However, even more impor-
tant is the fact that already implemented sequential message passing can be enriched
with this additional synchronization semantics without any modifications of the exist-
ing implementation.

Generic Solution by using Rule Patterns: The Blocker. Although the realization

106

of a interaction policy by using rules provides some important advantages, there still
exists one major drawback. Since the policy of synchronous interaction is not only used
for the message getRooms but also for other parts within our reservation example and
for other application domains, too, those components of the rule remaining the same for
any synchronous interaction would have to be specified again and again. What we want
to do is to relieve the application designer from this task. For this purpose, the applica-
tion-dependent rule for synchronous interaction depicted in Figure 3 is abstracted to a
generic rule pattern for synchronous interaction, called Blocker.

DEFXNE RULE PATTERN blocker_<name> AS Rule Pattern Name

ON PRE (<sender>, <senderMethod>, Condition Event

<receiver>, <message0>) DO Selector (Eselc)

XF not (receiver.state includes: <prestate>) { AND Condition

not (receiver.state includes: <prestate>) }* THEN

WAXT UNTXL ON (POST (receiver, <message>) Action Event

[' [' receiver, state includes : <prestate> '] ']) { OR Selector (ESelA)

(POST (receiver, <message>)

['[' receiver.state includes: <prestate> ']']) }*

EXECUTE N'rL. Action

Fig. 4. Synchronous Interaction (Blocker) Rule Pattern

This abstraction process is done by factoring out the recurring components of the
rule and by explicitly specifying the formal parameters which have to be bound when
applying the pattern. The structure of the Blocker rule pattern is depicted in Figure 4.
The first parameter of each rule pattern is used for generating the specific name of each
rule being deduced from the pattern at hand (<name>). The Esel c of the Blocker rule
pattern consists of four different parameters denoted by angle brackets. Note that for all
parameters specified within angle brackets actual parameters have to be provided. Any
unbracketed occurrence of a parameter name is bound to the nearest preceding bracke-
ted (defining) occurrence. For the parameters <sende r> and < r e c e i v e r > , classes as
well as objects may be specified. In case of classes being specified, the corresponding
rule is triggered whenever <message0> is sent from/to any instance of the <sender> /
< r e c e i v e r > class 3. If the same rule shall be applied for several classes and/or
methods, wildcards may be used instead of specifying actual parameters. For example,
if it is immaterial from which method <message0> is sent, <senderMethod> is not
specified and the rule is triggered whenever the specified <sender> sends
<message0> to < r e c e i v e r > . The condition of the rule pattern consists of a conjunc-
tion of one or more actual state checks (cf. the EBNF meta symbols "{... }*"). It checks
whether the set of actual states of the receiver (r e c e i v e r . s t a t e) includes one of the
prestates of the transition denoted by the incoming message. If one of the prestates is
already reached, the action part is not considered at all and the triggering method

3 Note that class methods can be specified by the keyword CLASSMETHOD within the parameters <sen-
derMethod> and <message0>. In that case the rule is triggered whenever the <message0> is sent
from/to the respective class.

107

(<messageO>) can be executed. If the receiver is in none of these prestates, the sender
blocks (keyword WAIT UNTIL).

The Esel A specifies that the action should be executed after one of the methods cor-
responding to a transition leading to one of the prestates has been executed. In case that
one distinct message is used as event in different transitions, the resulting state set has
to be checked within a guard (enclosed in square brackets). A guard specifies a boolean
expression further restricting the set of events able to trigger the condition or action, re-
spectively. The action of the rule pattern is defined as NIL indicating the fact that the
Blocker pattern is just used for blocking the triggering method until the receiver is able
to accept the sent message.

Fig. 5. Application of a Blocker Rule Pattern

Due to its generic nature, at a first glance the proposed rule pattern looks admittedly
much more complicated than the application-dependent rule described above. But once
a rule pattern is defined it can be easily applied just by defining its parameters using a
corresponding form. On the basis of this parameter binding, the system automatically
generates a rule. Anyway, the application designer is not concerned with the complexity
of the rule pattern. Figure 5 illustrates the approach of generating the business rule rea-
lizing synchronous interaction as described in Figure 3 out of the Blocker rule pattern.
Note that actual parameters are shown in italic. The remaining components are generic
and are, thus, together with formal parameters the basic ingredients for the rule pattern.

108

3.2 Asynchronous Interaction Policy

Problem. The second interaction policy we want to realize on the basis of rules is
asynchronous interaction. Asynchronous interaction considerably increases concurren-
cy since the sender just initiates the interaction. This is useful for all those cases where
the sender does not need any result of the task it delegated. From the sender's point of
view neither a check for the receiver's actual state is necessary, nor does the sender have
to wait for the receiver to finish method execution. Of course, the receiver may not satis-
fy the request before having entered the appropriate prestate.

Example. Continuing with our running example, reservation transactions can be
concurrently submitted to the consortium from any node within the network. The con-
sortium is responsible for delegating such requests to the appropriate motels. Conse-
quently, the c o n s o r t i u m object asynchronously propagates the message ~ryRes from
within the method newRes to all motels satisfying the user's request stored within
r e s O b j , quits its current thread of control and gets ready for further requests. Figure 6
illustrates this scenario. Within the interaction diagram in Figure 6a asynchronous inter-
action is denoted by a flash line with two arrows, indicating the fact that interaction is
done with one or more motels.

(a) Interaction Diagram (b) State Transition Diagram
of Motel

Fig. 6. Asynchronous Interaction Between Consortium and Motel

Figure 6b shows the state transition diagram for class Motel. According to it, a
m o t e l object remains in state I d l e until it receives the message t r y R e s , which chan-
ges the state to L o o k i n g F o r a o o m s . Within that state the motel selects appropriate
rooms (of. synchronous interaction g e t R o o m s in Section 3.1) and asks whether one of
them is available. If not, the motel returns to state I d l e . If yes, the first available r o o m
notifies the motel and, thus, changes the motel's state to RoomAvai l a b l e. Finally, the

109

consortium object is asked to confirm or cancel the reservation, and the motel re-
serves the room within state R e s e r v i n g or immediately returns to state I d l e , accor-
dingly.

Concrete Solution by using Rules. This asynchronous interaction policy is rea-
lized by a rule depicted in Figure 7. The Esel C specifies an event which is signalled
every time a consortium object sends the message tryRes to a motel object from
within newRes (of. also Figure 6). The condition is set to TRUE Since asynchronous
interaction requires that the sender has to proceed execution immediately after initiating
a request, independent of the receiver's state.

DEFINE RULE async~tryRes AS

ON PRl~(Consortium, newRes, Motel, tryRes:res0bj) DO

Rule Name

Condition Event
Selector (Eselc)

~F TRUE THEN Condition

ON (POST (receiver, notify: from:) OR
POST (receiver, cancelRes:) OR
POST (receiver, confirmRes:)) OR
((POST (Motel, CLASSMETHOD new) OR

POST (receiver, notify: from:) OR
POST (receiver, cancelRes:) OR
POST (receiver, confirmRes:));

P~(sender, newRes:, receiver, tryRes:))
[left.left.retVal = right.receiver]

EXECIFfE INSTEAD ASYNC receiver tryRes: resObj.

Action Event
Selector (EselA)

Action

Fig. 7. Asynchronous Interaction Rule

However, the interaction should be accepted by the mote l object only if it is in state
I d l e . Thus, the composite event selector Esel A specifying the acceptability consists of
two main components: The first component resembles the Esel A of synchronous inter-
action rules. It is responsible for recognizing transitions to the state I d l e , if the motel
is not already in this state, In our example, these transitions are represented by three
simple messages which are connected by OR operators. The second component is re-
sponsible for recognizing the case that the mote l object is already in the appropriate
state Idle upon request of tryRes. The motel object is in state Idle either if the ob-
ject has just been created (classmethod new) or if one of the messages which are part of
the first component of the Esel A has been sent. After this, the action has to wait on the
request of the triggering method t ryRes . This is denoted by the sequence operator "; ".
In case that the m o te l object has just been created, a guard ensures that the receiver
(r i g h t . r e c e i v e r) of the request is identical to that object (l e f t . l e f t . r e t V a l) .
Note that a composite event selector is stored as a tree and its components can be recur-
sively accessed by the keywords l e f t and r i g h t . The action of the rule starts the exe-
cution of t r y R e s within an asynchronous thread of control (keywords ZNSTEAD
Asn~c).

Generic Solution by using Rule Patterns: The Asynehronizer. In analogy to the
Blocker rule pattern, the Asynchronizer rule pattern depicted in Figure 8 can be derived

from the application-dependent rule shown in Figure 7, accordingly:

110

DEFINE RULE PATTERN async_<name> AS Rule Pattem Name

ON PRE (<sender>, <senderMethod>, Condition Event
<receiver>, <message0>) DO Selector (Eselc)

IF TRUE TIIEN Condition

ON ((PoST (receiver, <message>)
['['receiver.state includes: <prestate>']']) { OR

(POST (receiver, <message>)
['['receiver.state includes: <prestate>']']) }*)

OR (((POST (receiver, <message>)
['['receiver.state includes: <prestate> ']']) { OR

(POST (receiver, <message>)
['['receiver.state includes: <prestate> ']']) }*);

(sender, senderMethod, receiver, message0))

EXECUTE INSTEAD ASYNC receiver message0. Action

Action Event
Selector (EselA)

Fig. 8. Asynchronous Interaction Rule Pattern

4 Related Work

There exist different approaches both from the database area and the programming
language area related to parameterized rules on the one hand, and to flexible interaction
specification on the other hand.

Casati et.al. [Casa95] use rules in the area of workflow management systems. Simi-
larly to [Kapp95ab] rules provide the control and data flow between processing steps,
thereby serving as an implementation mechanism for worldlow enactment. In addition,
rule templates are used to define the general structure of rules whose actual code de-
pends on each specific workflow definition. Rule templates are quite s{milar to rule pat-
terns. They are translated into rules at the time of their application, i.e., when a
workflow definition is compiled. Unlike rule patterns where generic components are
represented by parameters, the generic components of rule templates are represented by
macros. The intention behind rule patterns was to specify business policies and there-
fore to be independent of a specific application domain. In contrast, the discussion of
rule templates is restricted to the domain of workflow management systems.

The AMOS active database management system [Rise92, Sk6195] supports para-
meterized rules where the parameter might be either some value or a type. This resem-
bles simple rule patterns consisting of a single rule. However, rule patterns in general
go a step further in that they may be composed out of several parameterized rules.

The composition fitter approach [Aksi93] is an extension to a conventional object-
oriented model and offers composable techniques for specifying different aspects of the
behavior of objects such as inheritance and delegation, multiple views and roles, syn-
chronization and real-time constraints. New aspects of an object's behavior can be
added by introducing new filter types. The behavior of an object can be enhanced
through the manipulation of incoming and outgoing messages by using input and output
filters. A filter is, similarly to a rule, a first-class object that determines via a condition

111

whether a particular message identified by a matching part is either accepted or rejected
and what action is to be performed in either case. At the conceptual level, composition
filters are similar to our approach because they also aim to be adaptable to "constraints
and requirements imposed by different application domains" what we call business
policies. At the implementation level to the contrary, composition filters are somewhat
different. Unlike rules, composition filters are specified statically within a class's defi-
nition as instances of a certain filter type. Furthermore, TriGS rules can not only be trig-
gered by message passing events but also by time events and, above all, by composite
events. Rule Patterns are comparable to filter types. However, filter types define only
the actions which have to be taken when a filter of this type is applied. The situation
when the action has to be executed has to be specified again and again when applying
the filter type to a certain application class. Rule patterns predefine not only the action
but also the situation which should trigger the rule independently of a concrete applica-
tion, thus allowing automatic generation of rules out of the corresponding rule patterns.

The following approaches in object-oriented systems also have intentions similar to
our rule patterns, or can possibly be applied for similar purposes. However, coming
from the programming and not from the database community they do not consider data-
base aspects such as persistence and transactions. The first two of them have also been
presented strictly for sequential programs, but the ideas might be easily adaptable to
concurrent systems.

The main purpose of the Law-governed approach [Mins87, Mins91] is the expres-
sion and enforcement of global regularities within an object-oriented system. It is based
on rules, which are typically used to intercept message sends (thus corresponding to ON
PRE condition event selectors in TriGS). The collection of all rules belonging to a sys-
tem is called the Law of the system; rules can pertain to both static and dynamic aspects
of the system, and even specify how the Law itself may be changed. The rules are speci-
fied in a variant of Prolog, so they can be very powerful. On the other hand, their evalu-
ation can be very expensive (in general, there is no guarantee that the evaluation of a
rule will even terminate), so the), would be unsuitable for active databases. As a conse-
quence of the global view, message sends can be intercepted only if every message sent
to every object is passed through the law; in TriGS and similar systems events are
caused only by interesting message sends. Instead of the parameterization of our rule
patterns, the law-governed approach has the conventional unification of logical vari-
ables. The Law is always a "flat" collection of rules; there is no structuring facility
analogous to composite rule patterns.

The Contract [Helm90, Ho1192] 4 is a construct for explicitly specifying (complex)
interactions among groups of objects. A contract is thus analogous to a composite rule
pattern: both express patterns of behavior that cannot be specified by a method interface
or by a single rule. In the development of object-oriented software, contracts are inten-
ded to be defined mostly before classes; the Demeter system can automatically generate
methods for a class from the contracts in which it participates [Lieb96]. This aspect is
rather opposite to rules and rule patterns, which are largely intended to specify dynami-
cally changing behavior. Contracts do not allow the behavior of a method to be

4 This is a specific technical meaning different from the well-known idea of "programming by contract"
[Meye88].

112

changed, for instance. However, for the purpose of enforcing certain interactions to oc-
cur in a certain sequence, contracts and rule patterns seem to be equally useful.

Transverse activities [Kris93] are a new approach similar to Contracts. Being based
on BETA [Lehr93], this work does take concurrency into account. (Any object can be
genuinely active in the sense of having its own thread of control, while objects in most
active databases could more precisely be called reactive.) The continuation of this re-
search may yield results that are useful also for rule patterns.

5 Outlook

The basic idea of rule patterns can be applied to underlying systems that are very
different from TriGS. TriGS is a prototype built with small resources, and has some
rough edges, in part because the underlying system could not be modified. Good rule
patterns can hide a lot of those rough edges. However, most object-oriented database
systems are less dynamic and less reflexive than GemStone; in particular, classes in
them are not objects themselves. In such a system, it would be sensible to treat rule pat-
terns as static entities, instead of objects. Actually it is not necessary even for rules to
be first-class objects.

There are some systems, e.g., ODE [Geha92] and Sentinel [Anwa93], in which rules
are always declared within class definitions. In the majority of active object-oriented
systems as well as in TriGS, rules do not belong to classes but are defined and stored
separately from them. This is really the natural choice for rule patterns, which can have
a more global purpose than single rules, and where classes can appear as formal para-
meters. However, when one has patterns, or modules, or other constructs larger than a
single class for building the static structure of an object-oriented system, it seems far
more promising that also rules and rule patterns could be incorporated in them. We will
investigate this issue in the further course of our work.

Finally, let us consider rules and rule patterns within the software life-cycle. At the
stage of analysis, domain specialists state their requirements more naturally by means
of IF ... THEN constructs, i.e., by means of rules. Within design, for rules stated during
requirements analysis appropriate rule patterns are identified. These rule patterns pro-
vide a specification of how the rules found during analysis can be transformed to the
design of the system by means of active object-oriented technology. The implementa-
tion phase comprehends parameter binding on the basis of the rules found during anal-
ysis followed by an automatic generation of the corresponding "implementation rules".
Since the concept of rules and rule patterns is used within each phase of the software
life-cycle traceability of frequently changing requirements for the whole software life-
cycle is facilitated.

Future work will include the development of additional rule patterns for business
policies other than interaction policies introduced in this paper, and the further imple-
mentation of a design environment for active object-oriented applications based on rule
patterns. In the long run, designers of active object-oriented applications should not be
concerned with decisions on how a recurring design problem is realized by using ob-
jects and rules. They should rather be able to compose their applications out of a frame-
work of predefined parameterized rule patterns.

113

References

[Aksi93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa, Abstracting Object
Interactions Using Composition Filters, Proc. of the ECOOP'93 Workshop on Ob-
ject Based Distributed Programming, R. Guerraoui, O. Nierstrasz, M. Riveill (eds.),
Springer LNCS 791, Kaiserslautem, July 1993

[Anwa93] E. Anwar, L. Maugis, S. Chakravarthy, A New Perspective on Rule Support for Ob-
ject-Oriented Databases, Proc. of the ACM-SIGMOD Int. Conf. on Management of
Data, SIGMOD Record, 22 (2), pp. 99-108, June 1993

[Bu13194] C. BuBler, S. Jablonski, Implementing Agent Coordination for Workflow Manage-
ment Systems Using Active Database Systems, Proc. of the IEEE Fourth Int. Work-
shop on Research Issues in Data Engineering (RIDE), Houston, 1994

[Casa95] F. Casati, S. Ceri, B. Pernici, G. Pozzi, Conceptual Modeling of Workflows, Internal
Report no. 95.018, Dipartimento di Elettronica e Informazione, Politecnico di Mil-
ano, Milan, Italy, 1995

[Coad95] P. Coad, D. North, M. Mayfield, Object Models - Strategies, Patterns & Applica-
tions, Yourdon Press Computing Series, Prentice Hall, 1995

[Cop195] J.O. Coplien, D.C. Schmidt (eds.), Pattern Languages of Program Design, Addison-
Wesley, 1995

[Diaz91] O. Diaz, N. Paton, P. Gray, Rule Management in Object Oriented Databases: A Uni-
form Approach, Proc. of the 17th Int. Conf. on VLDB, Barcelona, pp. 317-326, 1991

[Ditt95] K.R. Dittrich, S. Gatziu, A. Geppert, The Active Database Management System
Manifesto: A Rulebase of ADBMS Features, Proc. of the 2nd Workshop on Rules in
Databases (RIDS), T. Sellis (ed.), Springer LNCS, Athens, Greece, Sept. 1995

[Eder95] J. Eder, H. Groiss, Ein Workflow-Managementsystem auf der Basis aktiver Daten-
banken (A Workflow Management System Based on Active Databases), Ge-
sch~iftsprozeBmodellierung und Workflow-Management, G. Vossen, J. Becker
(eds.), International Thomson Publishing, Bonn, 1995 (in German)

[Emb192] D.W. Embley, B.D. Kurtz, S.N. Woodfield, Object-Oriented System Analysis - A
Model-Driven Approach, Yourdon Press, 1992

[Fugi92] M. Fugini, O. Nierstrasz, B. Pernici, Application Development through Reuse: The
ITHACA Tools Environment, ACM SIGOIS Bulletin, 13 (2), pp. 38-47, August
1992

[Gamm94] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of Reus-
able Object-Oriented Software, Addison-Wesley Professional Computing Series,
1994

[Geha92] N.H. Gehani, H.V. Jagadish, O.Shmueli, Composite Event Specification in Active
Database Systems, Proc. of the 18th Int. Conference on VLDB, August 1992

[Gert93] M. Gertz, U.W. Lipeck, Deriving Integrity Maintaining Triggers from Transition
Graphs, Proc. of the 9th Int. Conf. on Data Engineering (DE'93), IEEE Computer
Society Press, Vienna, 1993

[Hare88] D. Harel, On Visual Formalisms, Communications of the ACM, 31 (5), May 1988

114

[Helm90]

[Herb95]

[Ho1192]

[Kapp94a]

[Kapp94b]

[Kapp95a]

[Kapp95b]

[Kapp95c]

[Kno194]

[Kris93]

[Lehr93]

[Lieb96]

[Louc91]

[Meye88]

[Mins87]

[Mins91]

R. Helm, I.M. Holland, D. Gangopadhyay, Contracts: Specifying Behavioral Com-
positions in Object-Oriented Systems, Proc. of the conjoint OOPSLA/ECOOP
Conf., ACM Press, pp. 169-180, Ottawa, Canada, 1990

H. Herbst, A Meta-Model for Business Rules in Systems Analysis, Proc. of the 7th Int.
Conf. on Advanced Information Systems Engineering (CAiSE'95), J. Iivari, K.
Lyytinen, M. Rossi (eds.), Springer LNCS 932, Jyv~iskyl~i, Finland, June 1995

I.M. Holland, Specifying reusable components using Contracts, Proc. of ECOOP92,
O, Lehrmann Madsen (ed.), Springer LNCS 615, Utrecht, 1992

G. Kappel, S. Rausch-Schott, W. Retschitzegger, S. Vieweg, TriGS - Making a Pas-
sive Object-Oriented Database System Active, Journal of Object-Oriented Program-
ming (JOOP), 7(4), July-August, 1994

G. Kappel, S. Rausch-Schott, W. Retschitzegger, Beyond Coupling Modes - Imple-
menting Active Concepts on Top of a Commercial ooDBMS, Int. Symposium on Ob-
ject-Oriented Methodologies and Systems (ISOOMS), Springer LNCS 858, 1994

G. Kappel, B. Pri)ll, S. Rausch-Schott, W. Retschitzegger, TriGSflo w - Active Object-
Oriented Workflow Management, Proc. of the 27th Hawaiian Int. Conf. on System
Sciences (HICSS'95), 1995

G. Kappel, P. Lang, S. Rausch-Schott, W. Retschitzegger, Workflow Management
based on Objects, Rules and Roles, IEEE Bulletin of the Technical Committee on
Data Engineering, 18 (1), March, 1995

G. Kappel, S. Rausch-Schott, W. Retschitzegger, Rule Patterns for Designing Active
Object-Oriented Database Applications, Technical Report, Dept. of Information
Systems, University of Linz, June 1995 (also available at http://www.ifs.uni-
linz.ac.at/ifs/publications.html)

G. Knolmayer, H. Herbst, M. Schlesinger, Enforcing Business Rules by the Applica-
tion of Trigger Concepts, Proc. Priority Programme Informatics Research, Informa-
tion Conference Module 1, Swiss National Science Foundation, Bern, 1994

B. B. Kristensen, Transverse Activities: Abstractions in Object-Oriented Program-
ming, Object Technologies for Advanced Software, S. Nishio, A. Yonezawa (eds.),
Springer LNCS 742, 1993

O.Lehrmann Madsen, B. Moeller-Pedersen, K.Nygaard, Object-Oriented Program-
ming in the BETA Programming Language, Addison-Wesley, 1993

K. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns, PWS Publishing Company, 1996 (to be published)

P. Loucopoulos, C. Theodoulidis, D. Pantazis, Business Rules Modelling: Concep-
tual Modelling and Object-Oriented Specifications, IFIP WG8.1 Working Conf. on
the Object-Oriented Approach in Information Systems, F. Van Assche, B. Moulin,
C. Rolland (eds.), North-Holland, Quebec City, Canada, October 28-31,1991

Bertrand Meyer, Object-oriented Software Construction, Prentice Hall, 1988

N. H. Minsky, D. Rozenshtein, A Law-Based Approach to Object-Oriented Pro-
gramming, Proc. of the OOPSLA '87 Conf. (Orlando, Florida, 1987), N. Meyrowitz
(ed.), ACM SIGPLAN Notices, 22 (12), pp. 482-493, December 1987

N. H. Minsky, Law-Governed Systems, The lEE Software Engineering Journal, Sep-
tember 1991

1t5

[Nier93]

[Oriel94]

[Petr94]

[Pree95]

[Rein93]

[Risc92]

[Rumb91]

[Rubi94]

[Schr95]

[Sk6195]

[Tsa191]

[Tsic89]

[Urba92]

[Yone87]

O. Nierstrasz, Composing Active Objects, Research Directions in Concurrent Ob-
ject-Oriented Programming, G. Agha, P. Wegner, A. Yonezawa (eds.), MIT Press,
1993

J.J. Odell, Specifying requirements using rules, Journal of Object-Oriented Program-
ming (JOOP), 6 (2), 1994

I. Petrounias, P. Loucopoulos, A Rule-Based Approach for the Design and Imple-
mentation oflnformation Systems, Proc. of the 4th Int. Conf. on Extending Database
Technology (EDBT'94), M. Jarke, J. Bubenko, K. Jeffery (eds.), Springer LNCS
779, UK, March 1994

W. Pree, Design Patterns for Object-Oriented Software Development, Addison-
Wesley, 1995

B. Reinwald, Workflow Management in Verteilten Systemen (Workflow Manage-
ment in Distributed Systems), Teubner, Stuttgart-Leipzig, 1993 (in german)

T. Risch, M. Sk61d, Active Rules based on Object Oriented Queries, IEEE Bulletin
of the Technical Committee on Data Engineering, Vol. 15, No. 1-4, Dec. 1992

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modeling and Design, Prentice Hall, 1991

K.S. Rubin, P. McClaughry, D. Pellegrini, Modeling rules using Object Behavior
Analysis and Design, Object Magazine, June 1994

M. Schrefl, G. Kappel, Modelling Object Behavior: To use methods or rules or both ?
Workshop "Semantics in Databases", Prague, 1995

M. Sk61d, E. Falkenroth, T. Risch, Rule Contexts in Active Databases - A Mechanism
for Dynamic Rule Grouping, Proc. of the Rules in Database Systems Conference
(RIDS'95), Athens, Greece, 1995

A. Tsalgatidou, P. Loucopoulos, An Object-Oriented Rule-Based Approach to the
Dynamic Modelling oflnformation Systems, Proc. of the Int. Working Conf. on Dy-
namic Modelling of Information Systems, H.G. Sol, K.M Van Hee (eds.), pp. 165-
188, North-Holland, 1991

D. Tsichritzis, Object-Oriented Development for Open Systems, Proc. of Informa-
tion Processing 89 - IFIP World Computer Congress, G.X. Ritter (ed.), North-Hol-
land, 1989

S.D. Urban, A.P. Karadimce, R.B. Nannapaneni, The Implementation and Evalu-
ation of Integrity Maintenance Rules in an Object-Oriented Database, Proc. of the
8th Int. Conf. on Data Engineering (DE'92), 1992

A. Yonezawa, E. Shibayama, T. Takada, Y. Honda, Modelling and Programming in
an Object-Oriented Concurrent Language ABCL/1, in: Object-Oriented Concurrent
Programming, A. Yonezawa, M. Tokoro (eds.), MIT Press, 1987

