
Developing an Information System using TROLL -

an application field study *

M. Krone**, M. Kowsari, P. Hartel, G. Denker, H.-D. Ehrich

Technische Universit~t Brannschweig, Informatik, Abt. Datenbanken
Postfach 3329, D-38023 Brannschweig, Germany

e-mail: {M.Kowsari[P.HartelIG.Denker [HD.Ehrich} ~tu-bs.de

Abstract. In this paper we present a national project located in the
area of computer aided testing and certifying (CATC) of physical de-
vices. The objective of this project is to develop an Information System
that supports the various activities of different user groups in a Ger-
man federal institute of weights and measures. We decided to use formal
methods right from the beginning of the project. Our approach is based
on the formal object oriented specification language TROLL . Starting
point of the development is an abstract model of the organization which
will serve later on as a formal basis for implementation. We present parts
of this specification and its relations with the underlying formal seman-
tics. The experiences we made so far are rather positive and we expect
further effects in the future.
keywords: object oriented specification, case study, information system,
information modelling, requirements engineering, formal method

1 I n t r o d u c t i o n

The development of a large Information System is by far no trivial task. One
main problem with it is to ensure "that we get what we want". In the past
25 years many suggestions have been made on how to tackle complex software
engineering projects. However, there is no silver bullet yet [Bro87]. There is
a small but growing community of people who propose and promote formal
methods in Software Engineering [WL93, BH94]. Most times these people come
from academia. The acceptance of formal methods in industry is still low. This
is mainly due to the fact that formal methods are thought to be complex, hard
to handle and not suitable for real world applications [GSW93].

In order to make formal methods attractive for industry they have to fulfill
several requirements. They have to be easy to learn and to teach [Har95] [BS93].
In today's organizations we do not find many people who know formal methods
[BH94]. This means we have to invest in their education. If this investment is

* Work reported here was partially supported by CEC under ESPRIT-II Basic
Research Working Group No. 6112 COMPASS and by CEC under ESPRIT BRA
WG 6071 IS-CORE, PTB, OBLOG SOFTWARE S.A. Lisbon.

** Now at Siemens AG, Transportation Systems, Systems Engineering, P.O.Box 3327,
D-38023 Brannschweig, email:Maren.Krone~bwg4.erll.siemens.net

137

too high or people feel that they are not able to master the formalism then
there will be a low chance of success. Formal methods have to be supported by
tools (e.g. semantic editor, testing, prototyping) [Esp93]. The formalism allows
us to build intelligent tools which allows us to speed up development drastically.
Graphical representations help to overcome the fear of embarking on formalisms.
Methodological guidelines [BS93] axe another important issue for the acceptance
of formal methods.

We present in this paper the use of formal methods for the development of
an Information System in an industrial environment. The project is located in
the area of computer aided testing and certifying (CATC) which is conducted
by the federal institute of weights and measures of Germany. About 100 em-
ployees settled in three labs will use the system. When the project s tar ted in
the beginning of 1994 no formal methods were applied. At the end of the year
it got clear that the chance of success with the chosen approach was rather low
[HS94]. At that time we decided to use a formal approach [KH95]. This paper
presents the problem domain of our project and gives a brief introduction into
the mathematical formalisms underlying our approach. It exemplifies the use of
the method by presenting a small part of the development. After almost one year
we have already collected several experiences, positive as well as negative ones.
Furthermore, we will give some hints, why our first approach without formal
methods did not succeeded.

The objective of the project is to develop an Information System that sup-
ports the activities of different user groups in the federal institute. Such activities
are often called business processes [HJ95]. The complexity of the organization
and the system that is supposed to support this organization is rather high. Be-
sides, the system has to integrate already existing applications and re-specified
ones. In order to be able to develop such a system we have to get a deep under-
standing of the organizational structures. This understanding is the prerequisite
for deciding which part of the organization shall be computerized and how this
system is embedded into the organization.

An abstract model of the organization can help us to achieve the required un-
derstanding. This model has to cover all aspects which are relevant with respect
to the organizational activities. These aspects define what we call the Universe
of Discourse (UoD).

Based on the UoD model we decide what will actually be supported by the
Information System. The model defines the functional requirements of the later
system. It abstracts from non-functional requirements, like technologies that
shall be used for implementation.

A formal adequate method should allow for the modelling of the intended
system on a high abstract level. Existing and widely accepted formal languages
like Z [Spi89], VDM [Jon89] do not provide the right level of abstraction for
modelling. Further on they emphasize on structural aspects and do not allow for
an intuitive modelling of complex behavioral aspects. On the other hand there
exist numerous formal approaches towards process modelling. Most of them ei-
ther neglect the static aspects like CSP [Hoa85] or do not come with the concepts

138

needed for Information Systems modelling.
Object orientation is a typical answer towards this problem. The object ori-

ented paradigm recognizes as primary concept the object. An object allows for an
intuitive presentation of real world entities and may reflect their behavioral and
static properties. Methods like OMT [RBP+91] or "Object-Oriented Software
Engineering" [Jac92] are quite popular. However, they miss the required formal-
ity. The project we are going to present started with such an informal method
and did not achieve the desired results. This resulted in a loss of confidence in
such informal approaches.

The solution of this dilemma can be the combination of formalisms and object
oriented methods. Some formal specification languages have already object ori-
ented extensions e.g., VDM++ [DK92], MooZ [MCg0]. Even with this adaption
of object orientation they still cope with a low level of abstraction.

We decided to apply the formal and object-oriented specification language
TROLL [JSHS96]. The TROLL approach incorporates many ideas which have
been developed over the past 8 years. Much work in the theoretical foundations
[SSE87, ESS88, EJDS94, DE95, ES95] and on methodological [SJ92, SJH93,
HJ95] issues has been done.

The TROLL approach supports the declarative specification of conceptual
models. It integrates concepts for the modelling of dynamic, structural and
process aspects. With the TBench [KHHS95] a specification tool for TROLL
is available. The TROLL method [JWH+94] combines an intuitive diagrammatic
notation with a textual one.

In this paper we introduce the problem domain, the Information System to
be developed and our first experiences we made by using a formal approach. In
the next section we give an introduction to the application field of the federal in-
stitute. Section 3 depicts an overview of the formalisms underlying our method.
We introduce in Sect. 4 a small part of the conceptual model, some method01ogi-
cal guidelines and the relationship between the mathematical formalism and the
conceptual model. Our first experiences are summed up in Sect. 5. We end the
paper in Sect. 6 with future expectations and some conclusions.

2 D e s c r i p t i o n o f the problem d o m a i n

In this section we provide an introduction to the problem domain of our case
study. We want to give some idea about important aspects of our specific appli-
cation, the requirements of the intended system, and the complexity we have to
deal with.

Our case study is located in the area of the Physikalisch-Technische Bundes-
anstalt a (PTB).

The PTB [JB87] is a federal institute for science and technology and the high-
est technical authority for metrology and physical safety engineering in Germany.
Its tasks are research in physics and technology, realization and dissemination

3 federal institute of weights and measures

139

of SI units 4, cooperation in national and international technical committees,
physical safety engineering serving the protection against explosions etc.

The group 3.5 'explosion protected electrical equipment' is concerned with
the testing and certifying of explosion proof electrical equipment. The basis are
the European standards EN 50014-50028 [EN 78a, EN 78b]. Such equipment is
allowed to be set into hazardous areas because it has been approved and certi-
fied due to European harmonized standards. The assessment procedure consists
of testing the formal and informal documents, checking the design papers (i.e.,
technical drawings) and the tests which are carried out according to European
standards. There are experimental tests such as explosion tests, flame propa-
gation tests and thermal-electrical investigations. Currently, all steps which are
necessary for this are carried out manually by the staff in charge and are worked
out individually. About 100 employees settled in three labs of the group 3.5. are
now concerned with testing and certifying.

On average 1000 certificates a year are issued. It is important that all infor-
mations in connection with a certificate are available and reusable at any time.
Because of the huge amount of data a standardized archive and catalogue of
all existing certificates of explosion proof equipment is planned which will be
integrated in a software package called CATC (Computer Aided Testing and
Certifying). The design and modelling of CATC is the long-term aim of the
cooperation with the database group of TU Braunschweig started in 1994.

The technical constraints fixed by PTB for CATC are as follows: In order to
support rapid communication between staff and operators on the one hand and
between staff and the secretaries who are settled in different buildings on the
other hand the group 3.5 is operating a local network. The employed client/server
system (IBM LAN SERVER 4.0) supports database application programs. The
database management system (DB2/2) is based on the relational model.

CATC has to support several different problem domains. As such it has to:

1. support experimental test like PRESSTEST JOINTTEST and others.
JOINTTEST will serve as the case study of this paper, which will be intro-
duced in detail in Sect. 4.

2. manage basic administration data and
3. allow for design approval.

Fig. 1 illustrates the hierarchical structure of the intended Information Sys-
tem.

The administration management includes the registration of formal informa-
tion of the manufacturer, the settlement of accounts and legal matters. This
information is essential for the following tests in the certification process and
has to be permanently available.

The subsystem dealing with design approval includes the assessment of design
papers for the equipment based on descriptions and its accordance with the
European Standards. It provides the relevant clauses of the standards such that

4 internat ional s y s t e m of uni t s

140

Fig. 1. C A T C - Overview

the certification becomes more efficient. Required data can be carried out faster
and easier at every desk.

The subsystem for the e x p e r i m e n t a l t e s t s performed by operators in the test
lab stores all relevant data. The focus is to ensure that for example with flame-
proof enclosure the parts which potentially can ignite an explosive atmosphere
are placed in an enclosure which can withstand the pressure developed during an
internal explosion of an explosive mixture and which prevents the transmission of
the explosion to the explosive atmosphere surrounding the enclosure. During the
explosion every 0.2 second 30 kbyte data are produced. Thus, there is a conflict
between hardware, which works in real time, and the multi-tasking operating
system (OS/2).

CATC has via LAN access to the central database of the PTB, where common
data are stored. There are further programs for administration (RBEZ 5, HASY 8)
which access tha t database (see Fig. 1, Ex-Link). C A T C is not a standalone In-
formation System but it has to be embedded in an existing environment. Besides,
we have to deal with existing application programs which have to be re-specified
(e.g., JOINTTEST) because they were erroneous. These re-specified parts have
to be embedded in the new Information System structure. In addition, there is
the link to the multiply accessed PTB wide database.

5 archive and documentation application
6 settlement and calculation application

141

To summarize, we have a safety-critical application area that comprises tech-
nical aspects as well as database aspects in a heterogeneous complex environment
and that has to consider existing and re-developed applications.

3 A formal model for concurrent object systems

In this section we introduce our basic understanding of systems and objects. We
give an introduction to the underlying semantic framework that serves for the
formalization of system specifications.

Our intuitive understanding of concurrent object systems can be described as
follows: An object system is composed of a number of concurrent objects. These
objects are the nodes of the system. Every object describes a set of sequential life
cycles which are sequences of local actions of the object. Objects may interact
with each other, i.e., an object may call a local action of another object. Such a
global action forces a synchronization of the participating objects, i.e., all local
actions which compose the global action must occur simultaneously.

An object system describes a global web of local life cycles which are glued
together at shared communication points. TROLL is a specification language that
allows for the modelling of such concurrent object systems. The basic features
of the language are:

- A system specification is a set of data type, object type, and object class
specifications.

- Parameterized data types allow for the construction of new date types based
on a fixed universe of predefined data types.

- An object type specification consists of a set of attributes, actions and con-
straints. Attributes describe the state of an object of that type and the
actions determine the possible object evolution. Constraints allow for the
definition of static and transitional invariants over the object state.

- Object types may be constructed over other object types (aggregation). Such
types describe complex objects, i.e., objects which are composed of compo-
nent objects. The specifications of the component objects are embedded into
the specification of the aggregation. This allows us to define constraints over
the aggregation, i.e., the objects in composition. It also enables the definition
of local interactions inside the complex object. In this way we may construct
complex local actions of the local actions of the object in composition. Thus,
a local action of an aggregated object may consist of different local actions
of its components.

- An object type may be the specialization of another object type. The special-
ized type may have additional properties to the inherited ones. Inheritance
may be monotone. In this case we talk about save inheritance, i.e., all axioms
being valid for an object of the supertype are always satisfied by an object
of the subtype.

- Object classes are declared over object types. They describe the potential
sets of objects in the system. Interactions between the objects of different
classes describe the global synchronization relations.

142

The case study which will be introduced in Sect. 4 illustrates some of the
language features. There we will explain the concepts in more detail.

Semantics is given to TROLL specifications using different techniques: the
static structure of an object system is semantically described with algebraic
methods, statements over object states are expressed with a logic calculus, the
dynamic structure of the system, i.e., the systems evolution, is reflected via a
temporal logic which is interpreted in terms of event structures. An exhaustive
description of the model theory is given in [ES95]. In the following we intuitively
explain these semantic ingredients. Moreover, in Sect. 4 the semantic notions are
illustrated by example.

Static structures are needed to describe the state of objects. Such static
structures are defined by data signatures and their algebraic interpretation. We
assume a data signature ZD = (SD, <~, ~D) with a given number of data sorts SD
which are the predefined ones and the constructed sorts, a partial order on data
sorts <__, and data operations over these sorts ~ n , whereby every constructed
sort induces a number of operations. For instance, for the data sort 11s t there
are predefined operations c o n c a t , append, etc. The interpretation of such a sig-
nature is a ~D-algebra. In order to make statements over object states we adapt
a logic calculus [Her95, GH91]. This calculus is especially suited in the domain
of Information Systems since it provides powerful means to express queries over
objects in a declarative way. It goes beyond this paper to explain all the features
of this calculus. The interested reader is referred to [Her95, GH91].

In order to specify object systems we have to extend the data signature
by sorts and operations which describe objects. For this purpose we introduce
so-called extended data signatures. This signature extends the data sorts SD
by a special data sort S~ of objects identities and the data operations by S~,
the object actions. Thus, data terms are built over an extended data signature

= (S, <_, I2), S = SDUS~US~, f2 = ~D U ~2~ U f2~), which is the basis of data
terms as well as identity and action terms, i.e., i E T~(X)id and a E TE(X)ac,
respectively.

Skipping some technical details which can be found in [ES95] we arrive at a
so-called instance signature ~I = (Id, Ac), which consists of a set of identities
Id representing all objects of the system, and a set of actions Ac~ for every
object i e Id. With the help of the case study which will be presented in the
next section we illustrate these notions. Instance signatures will be the basis for
constructing models in the framework of event structures. Up to this point we
have covered all structural aspects of an object system description.

We introduce a temporal logic to deal with system dynamics. This logic is
a first order predicate logic extended by two predicates on actions (enabling
and occurrence of actions) and temporal operators for the future (tomorrow and
sometimes in the]uture) and for the past (yesterday and sometimes in the past).

Let E -- (S, _<, ~) be an extended data signature over an S-indexed family
of sets of variables X = {Xs}ses and let Ts be the set of ~ data terms. The
set of formulae L~ of the object logic is inductively defined as follows:

143

- if t l , t2 e TE(X), then tl = , , t2 E LE(X);
- if (x e T~(X)ac then ~>~ e L~(X) (enabled action) and | e L~(X) (oc-

curred action);
- if ~o,r e L~(X) and x E X , then -%o,~o V r ~o e L~(X) ;
- if~o �9 L~(X) and i �9 T~(X)ia then Xi~o �9 L~(X) (tomorrow), Fifo �9 L~(X)

(sometimes in the future), Yi~o �9 Lv(X) (yesterday), and Pi~o �9 LE(X) (some-
times in the past);

We will give some examples of formulas in Sect. 4 by translating our case
study.

Instance signatures together with temporal logic formulas which describe the
behavior of objects are interpreted over labelled event structures. Each node of
an object system has a labelled sequential event structure as a model, and the
object system is modelled by a concurrent labelled event structure built of the
sequential event structures by event sharing. Thus, nodes have sequential models
whereas concurrency comes into play in the object system.

A sequential event structure is a triple E = (Ev,--+*, #) , where Ev is a set
of events, -~* is a partial order (causality), and # is a symmetric reflexive
order (conflict). Moreover it satisfies three conditions: (1 / there exists a unique,
minimal element r �9 Ev, (2) all configurations Se := {e] e' -~* e} are totally
ordered, and (3) e#e' ~=~ -~(e --+* e' V e' -+* e) for all e, e' E Ev.

Thus, a sequential event structure is a rooted tree where every branching
point indicates conflict. Since conflict is a derived concept we denote sequential
event structures by E = (Ev, --+), where -+* is the reflexive transitive closure of
the irreflexive step relation --~.

These sequential event structures are put together via event sharing to form
concurrent event structures which are models of the system. In the system model
concurrency arises and conflict remains to be local, i.e., e # f for e, f �9 Ev iff
there is an object i and locally conflicting events e', f ' �9 Evi : e' # f ' such that
e' -+* e and f ' -->* f . Events are concurrent, e co e', iff ~(e --+* e' V e' --~*
e Y e # e ') .

Models of object systems are labelled event structures /~ = (E, p) which
are built for locally sequential event structures Ei: /~ --- Ui~la(Ei,/~i). The
labelling function # maps each event to a global action, i.e., set of local actions:
t* : Ev --+ P] (Ac), # = Uiezd #~, #i : Evi -> Aci.

In Sect. 4 we will come back to this. First we specify our case study and
afterwards we will depict part of the model.

4 T h e c a s e s t u d y

In Sect. 2 we described our problem domain. For illustrating the use of TROLL
in the design of Information Systems, we focus on one part of the CATC system,
namely JOINTTEST.

In the following we will describe in detail the relevant aspects. First we briefly
explain some technical notions which are necessary for the specification. Then

144

we will introduce the specific requirements of JOINTTEST especially the process
of JOINTTEST. We exclude details of complex obligatory calculations, because it
would go beyond the scope of this paper. Afterwards, we present the modelling
of the Universe of Discourse with TROLL. The textual object oriented specifica-
tion language TROLL comes along with the graphical notation OMTROLL. After
a brief introduction to the development methodology of TROLL we partially
present the design of the JOINTTEST. The specification of JOINTTEST which
corresponds to the real world is much more complex than the restricted version
we present in this paper. We restrict ourselves because of space limitations. In-
stead of explaining the whole complexity we rather give an intuitive specification
of JOINTTEST explaining most of the concepts of TROLL and illustrating their
use in requirements analysis and design specification.

The last part semantics will forge the link back to Sect. 3 by presenting parts
of the semantics of the case study.

Technical N o t i o n s
The flame proof-joint, joint for short, is the place where corresponding surfaces
of two parts of an enclosure come together and prevent the transmission of an
internal explosion to the explosive atmosphere surrounding the enclosure [HO71].

In Fig. 2 we illustrate a test surrounding for flame proof joint tests. The
main components to measure and estimate joints according to the standard
given are the width and the gap of a joint. The width of a joint is the shortest
distance from the inside to the outside of an enclosure. The gap of a joint is
the distance between the corresponding surfaces when the electrical apparatus
has been assembled. The prototype tests on flame proof is comprised of tests
on the ability of the enclosure to withstand pressure and of tests on the non-
transmission of an internal ignition. Therefore the enclosure is placed in a test
chamber called autoclave and some explosive mixture is introduced into the
enclosure.

The European Standard specifies the design of flame proof joints in detail.
During the testing procedure it is important to compare the standards values of
the widths and gaps of the joints with the applicants value resulting from the
explosion tests.

P r o c e s s o f JOINTTEST
There are two groups: staff and operators who can manipulate joints. The ap-
plicant, i.e., the one who wants some device to be certified by PTB, sends the
table of flame path joints (see Fig. 3). There are three different kinds of values:

Columns 2-4 give the data according to EN 50018.
Columns 5-8 include data according to construction drawings.

- The last three columns of the table are values resulting from tests.

The staff compares the data according to EN50018 with construction draw-
ing and decides, whether the values are satisfactory. The operators verify the
values provided by the applicant and report their results to the staff. The staff
is responsible for the assessment of the values measured by the operator.

145

- - - 2

i
i IIIIIIIII II

Fig. 2. Flame proof joint test, 1: autoclave , 2: enclosure, eA : explosion atmosphere,
s: spark, ~ surrounding temperature

M o d e l l i n g t h e U n i v e r s e o f D i s c o u r s e w i t h TROLL
In Sect. 1 we mentioned the problems arising with developing huge Information
Systems in complex organizational structures. Our method to overcome these
problems is to specify the Universe of Discourse of the problem domain rather
than the application program itself. The object oriented paradigm is well suited
for this. Anyhow, one major problem in UoD modelling is the identification of
the relevant objects. The process of finding them is a rather creative one and
we believe that there do not exist prefixed rules for it. However, if an entity has
been identified to be relevant, we can follow some methodological guidelines to
build a model of it.

In order to elaborate a UoD model, the TROLL method integrates a number
of diagrams which allow for a pictorial presentation of static and dynamic aspects
of the model. These diagrams are easy to understand and therefore welt suited
for discussing the essential aspects of the system with the client. Thus, we use
TROLL in the requirements analysis to fix the functional requirements. Due to
the formalism the usual misunderstandings between the developer and the client
in what the system really shall do carl be diminished. Even in the case when
the client does not yet know, what he wants, the formalism helps him and the

KI

K2

Data ace. to
EN 50 018 - 1977/
VDE 0171

' o ~" "~ .N',~

~ .~.~ ~ = ~

12.5 0.15

12.5 0.15

146

140

141

all to consa'uction drawing

. Y--

Z

e
, ~.

Q~ z
~'~ o

7.5+00.5

!

" ~

0.05 0.15
7.45-0.05

7.5+00.5

7.45-0.05

test sample

m

7.57 15.42 %~ 0.225

7,57
0,051 0A48 15.43 - - 0.227

7.333

Fig. 3. Table of flame path joints

developer in understanding the general setting of the problem domain.
The diagrams also model different aspects like communication, object com-

position and hierarchies etc. of the system. The textual representation in TROLL
syntax is the result of the design specification stage. There is a smooth boundary
between these two life cycles and therefore we prefere the database terminology
of conceptual design (fixing the functional requirements, UoD) and logical design
(textual representation of the model in TROLL syntax). Together they form an
evolutional software engineering process consisting of iterations of analysis and
design stages.

The following enumeration gives a short overview about the different dia-
grams textual notation respectively and their usage:

1. The Community Diagram (see Fig. 4) defines the static structure of the sys-
tem. It consists of all object types, their composition and inheritance hier-
axchies, specialization and aggregation of object types and is the first raw
design of the system. As such, it provides a simple and intuitive means to
illustrate the structure of the system. The notation is quite similar to OMT
and was adapted to TROLL [JWH+94].

2. The next step is to define an Object Declaration Diagram (see Fig. 5) for
each object type of the community diagram in order to declare its actions
and attributes. The attributes are declared by their signature, i.e., name
plus optional parameters, and optional classifications (e.g. derived, history,
optional, constant). The actions are declared by an identifier and a list of
parameters.

147

3. With the Object Behavior Diagram (see Fig. 6) one can define explicitly
the lifecycle of an object. The nodes represent the states of an object. The
edges represent state transitions and are labelled with the action that causes
the state transition. Additionally, constraints can be attached to the state
transitions. The diagram is pret ty much like state charts of Harel [Har88].

4. Then the Object Communication Diagram (see Fig. 7) depicts the communi-
cation between object types. A set of interactions may be declared for each
action and constraints for each occurrence of an action. These diagrams can
be compared to Fusion diagrams [CAB+94].

5. Finally the Data Type Diagram represents user defined da ta types over stan-
dard data types.

6. The result of the design is always a textual description in the TROLL syntax.
It can now be written down and comprises the details represented in the
figures. This is only a frame of the system specification which has to be
refined by defining additional constraints, updates, . . .

Please keep in mind, that there are usually several iterations of the following
described process.

We start our specification of the UoD of JOINTTEST with the Object Commu-
nity Diagram of JointNode which is depicted in Fig. 4. In this part of CATC we
deal with the six object types: JointNode, JointTable, Joint, ExpJointPart,

ConstJos and JointPart.

JointNode

JointTable
1

Joint(JointNr)

1
I I~162 t -J!7 Joint]ointPart]

ConstlointP',ul

ExpJointPart
[1.2] I

Fig. 4. Object Community Diagram of JointNode 7

Jo in tNode is the object type that depicts the special part of CATC concern-
ing joint tests. In this universe we have joints and joint tables. We simplified the
specification because of space limitation to one joint table and several joints. 1-n
relationships between objects are shown as lines with filled circles at the object
type which might occur more than ones. The diamond stands for aggregation of
object types and the triangle is the diagrammatic notion for specialization. Thus
Jo in tNode is an aggregation of one J o i n T a b l e and one or more J o i n t s . Joints

7 Do not confuse the word table with relational database table.

148

can be constructed of several parts, a constructive part (ConstJointPart) and
an experimental part (ExpJointPart). The constructive part is concerned with
comparing data according to the standard with data according to the construc-
tion drawing (see Sect. 4, Process of JOINTTEST). The experimental part deals
with the results of test measurement. Up to five parts can belong to one joint
which form one row in the table of flame path joints (see Fig. 3). There may be
one to three constructive parts and one to two experimental parts. The object
type J o i n t P a r t depicts a specialization, which consists of those attributes and
actions, the constructive and experimental parts have in common.

Joint

cons: map (range (1,3)) to ConstJointPart
esp: map (range (1,2)) to ExpJointPa~

row :/deriyed

* create

Fig. 5. Object Declaration Diagram of Joint

Now we can refine each component of the JointNode and represent it by
Object Declaration Diagrams. The diagram for the object joint is represented in
Fig. 5.

start
print JointTable

1o

remove JointTable i v
f No JointTable) (JointTable exists) ~ build lointTable /

logout ~ / logout

~ (~) ~
end

Fig. 6. Object Behavior Diagram of the staff

The behavior of the staff is illustrated in Fig. 6. A staff object is born by login
and by it she is in the "NoJointTable" state. This is the beginning of the lifecycle
of the object. A staff object may logout immediately after login and by this she

149

will leave the system. Therefore, logout is the death action of a staff object and
terminates a life cycle. After a login a staff object may build a joint table. By
this action the life cycle state changes to the "JointTable exists" state. Now she
can work with the joint table, e.g., print it or do other things not specified here.
From this life cycle state a staff object may logout or remove the joint table. The
latter action will change back to the life cycle state where no joint table exists.

JointNode

createJointTable

create Joint

JointTable

createJointTable

Joint

createJoint

Fig. 7. Object Communication Diagram between J o i n t N o d e , JointTable and Joint

The communication between object type JointNode and object types Joint-
Table and Joint is depicted in Fig. 7. The action create Joint of object type
JointNode corresponds directly to a create Joint action of the object type Joint.
The action createJointTable of object type JointNode corresponds to a create-
JointTable action of object type JointTable. Here the simplification we made is
easy to see: in the real world specification of JOINTTEST usually the relations
between actions are more complex.

Now we can start with the last step of our specification procedure by col-
lecting all developed details of the figures and constructing TROLL frames which
can be enhanced by further details.

object type Jo in tNode
uses J o i n t T a b l e , J o i n t
components

Joint(nr:int) : Joint

JointTable : JointTable

attributes JNr: i n t initial 1
actions

new birth
c r e a t e J o i n t calls J o i n t (JNr) . c r e a t e

updates JNr :=JNr+l
c r e a t e J o i n t T a b l e calls J o i n t T a b l e . c r e a t e

end

150

We start with object type JointNode: There are two components: A joint
node has several joints which are identified by a number (J o i n t (nr : i n t)) and a
joint table (J o i n t T a b l e) as components. Moreover, an at tr ibute JNr is specified
to save the current joint number. The initial value of the at tr ibute is 1. Thus,
after a JointNode has been born by new, JNr has value 1. There are two actions
specified, one for creating joints another one for creating a joint table. The former
one takes the current joint number JNr, calls synchronously the birth action in
J o i n t and assigns the new joint to the name J o i n t (J N r) . These birth actions
are specified in the corresponding object types, i.e., J o i n t T a b l e and J o i n t ,
respectively.

object type JointTable
uses Joint
attributes Joints : HstOf Joint
actions

c r e a t e birth;
insert Joint (j : Joint) = updates Joints : = append(Joints, j)

end

The object type J o i n t T a b l e has a list of joints as attributes. These are
object-valued attributes. In contrast to components, object-valued attributes do
not belong to J o i n t T a b l e , instead they are readable from J o i n t T a b l e . In this
sense object-valued attributes are links to other objects such that their attributes
can be read and used for some computations. J o i n t T a b l e has a list of joints as
attributes. Besides the birth action there is one action specified to append new
joints to this list, i .e , to append further links, i n s e r t J o i n t is the action which
takes a joint as parameter and appends this joint to the list J o i n t s .

Before we specify J o i n t we introduce the object types C o n s t J o i n t P a r t and
E x p J o i n t P a r t , as well as the generalization of both J o i n t P a r t . Object type
J o i n t P a r t comprises all attributes which are also part of the specializations.
Every joint has a gap, a width, and further attributes named a, b, etc. See the
table of flame path joints in Fig, 3 where these attributes appear.

object type J o i n t P a r t
uses real ...

attributes
gap, width, a, b ... : real

actions

end

The object types C o n s t J o i n t P a r t and E x p J o i n t P a r t are specializations of
J o i n t P a r t which have further attributes. The inheritance relation is monotone.
Tha t means, tha t we carry over all axioms of the supertype into the subtype.
The behavior of the subtype is in full compliance with that of the supertype. For
our case study, we specialize J o i n t P a r t to C o n s t J o i n t P a r t which has a derived
attribute:

151

object type C o n s t J o i n t P a r t
inherits J o i n t P a r t monotone
attributes

1 : r e a l derived (a+b) ;
actions

~

end

Now we come to object type J o i n t :

object type J o i n t
uses C o n s t J o i n t P a r t , E x p J o i n t P a r t , . . .
components

cons : map (range (1 , 3)) t o C o n s t J o i n t P a r t
exp : map (range (1 , 2)) t o E x p J o i n t P a r t

attributes
row : listOf(record(a: r e a l 1: r e a l))

derived
concat(toList(select j p . a , j p . b , j p . w i d t h , j p . g a p , j p . 1

from j p in r a n g e (c o n s)) ,
toList(select j p . a , j p . b , j p . w i d t h , j p . g a p , 0 .0

from j p in r a n g e (e x p)))
actions

c r e a t e birth
end

An object of type J o i n t has up to five components. Three components are
constructive Joint parts and another two are experimental joint parts. The former
ones are those which will be derived from the construction drawings, whereas the
latter are fixed by explosion test done by the operators in the labs. There is an
at t r ibute called row for joints. This a t t r ibute corresponds to one row of the table
of flame path joints in Fig. 3. The sort of this a t t r ibute is quite complex. This
is due to the fact that in row the information of all components are collected.
We specified a s e l e c t s ta tement to extract this information and exploited this
way the logic calculus which provides concepts for querying object states. We
explain this by start ing from the innermost select clauses: The select clause
returns a bag of records. Each record incorporates five real numbers representing
width, gap, etc. of one joint. We query the constructive joints as well as the
experimental joints. We get all joints by the implicitly defined operat ion r a n g e
for maps. Range gives the set of all elements of the co-domain of a map. Here,
r a n g e (c o n s) delivers all constructive joint parts. We select the values of the
at t r ibutes and transform the bag to a list. To be able to concatenate exper imental
and constructive joint par t list, we introduced 0.0 as 1 value of ExpJo in tPar t .
The result of this concatenation is one row.

Up to now we only specified object types. Thus, we still have no instances
of the object types. Those will be generated by specifying object classes. For

152

space limitations we simplify our sets of instances such that we have one object
of type s t a f f and one object of type Jo in tNode. The TROLL specification of
s t a f f corresponds to the behavior diagram in Fig. 6.

object type staff
actions

l o g i n birth
new J o i n t
b u i l d J o i n t T a b l e

end

object class Manager : s t a f f
interactions

Manager.new J o i n t calls J N . c r e a t e J o i n t
Manager.buildJointTable calls JN.createJointTable

end
object class JN: Jo in tNode end

We showed a part of the specification of the UoD of JointNode. We ab-
stracted from a lot of details because of space limitations. Though we illustrated
the use of TROLL for specifying Information Systems of industrial size, especially,
we explained the adequacy of its concepts. Besides the expressive power one of
the main advantages of our approach is the well-defined semantics.

Semant ics
We will define the semantics of our case study in terms of the notions given
in Sect. 3. According to Sect. 3 we will reflect the statical part of the system
through an extended data signature. Each object type in the diagram estab-
lishes an object sort b 6 So. For instance, we have as object sorts Jo in tNode ,
J o i n t T a b l e , J o i n t , C o n s t J o i n t P a r t , . . . C So. In Sect. 3 we pointed out
tha t each object sort gives rise to two data sorts, i.e., object identities S~ and
object actions S$. The former are fixed by the object class definitions. Thus,
Manager6 Manager i and JN6 Jo in tNode i. Each object will constitute a node in
the system and each node will be interpreted by a sequential event structure.
We will later come back to this. Object actions are given by the specification,
i.e., we have c r e a t e J o i n t , c r e a t e J o i n t T a b l e 6 Jo in tNode a.

Passing some technical details which can be found in [ES95] we arrive at an
instance signature EI = (Id, Ac) with

Id = {Manager, JN}

ACManager = {newJoint,buildJointTable}

ACjN = {new, create Joint, createJointTable,
Joint (1).create, Joint(2).create,...,

Jo intTable, creat e, Jo intTable, insert Joint (Joint (i)),...}.

So far we only reflected the statical part of the specification. TROLL features
like calls, updates determine the behavior of objects of the corresponding type.

153

To cover the behavior formally we use temporal logic. For illustration purposes
we translate parts of Jo in tNode into temporal formulas. A birth action can only
take place at the beginning of an object life cycle. After it has occurred it cannot
be executed for the rest of the object life. Thus, we receive for every object 0 of
type Jo in tNode , 06 Jo in tNode i, x6 i n t the following formula

0 : (Dnew ~ FO-~ E> new.

The formula asserts tha t whenever the birth action has occurred, in the future
it will never be enabled.

All other actions are enabled after the execution of the birth actions. The
following formula reflects this:

0 : | >createJoint A>createJointTable.

The updates part of the specification intuitively expresses, tha t after the
occurrence of a c r e a t e J o i n t action at t r ibute JNr is increased by one. Therefore,
whenever it was possible to read a value n for the a t t r ibute in a previous state,
and when action c r e a t e J o i n t happened in the current state, it must be possible
to read the value n+l for the attr ibute. The reading of a t t r ibutes is expressed
via an action r.

0 : Y0 ~> JNr.r(x) A QcreateJoint ~ ~>JNr.r(x+l)

The local interaction between components of JointNode is translated into
the following formula:

0 : (DcreateJoint =~ Q Joint (x) .createA JNr.r(x).

Tha t means, whenever a joint is created with a specific number synchronously
the birth action has to take place in the corresponding component.

The global interaction between Manager and Jo in tNode corresponds to:

Manager : QnewJoint :~ (DJN. create Joint.

We only illustrated the translation of some TROLL concepts to temporal logic
formulas.

Now we are able to explain the interpretation structures. Models for single
objects are sequential event structures. In Fig. 8 we depicted par ts of the models
of Manager and JN. Events are framed and labelled with the actions which occur.
Lines between events denote causality.

Each branch of a sequential event s tructure is a possible run of the corre-
sponding object. For JN the following life cycles are depicted. After the creation
of JN either a new joint is created or a joint table is created. In the former case
two actions take place concurrently. This corresponds to the interaction rule
specified for c r e a t e J o i n t in Jo in tNode. Analogously, the c r e a t e J o i n t T a b l e
takes place together with the birth action in the corresponding component . After
the creation of the joint table, joints may inserted. Similarly, after the creation
of a joint further actions may take place.

154

JN

create Joint
Joint(1).create]

crea I teJo" t I createJointTable I
Joint(2).create JointTable.create

I I

createJointTable
JointTable.create

I JointTable.insertJoin(Joint(1)i I ...

I

Manager

buildJointTable
I I

Fig. 8. Sequential event structures of nodes

new Joint] [buildJointTable
create Joint I I createJointTable

Joint(1).create I JointTable.create

I I
. . ,

Fig. 9. Concurrent event structure

For Manager we specified the beginnings of two life cycles. After the object
has been created, a manager may build a new joint table or a new joint.

In sequential event structures events are either causally related or in conflict.
There is no concurrency in sequential models. Concurrency comes into play when
these sequential event structures are pu t together to form a concurrent event
structure via shared events. For instance, in Fig. 9 we illustrate how this is done.
After the concurrent creation of both objects JN and Manager either the manager
may create a new joint and by this calls the c r e a t e J o i n t action of JN, which
again calls J o i n t (1) . c r ea t e . Thus, three actions take place concurrently, one
of the object manager and another two of the compound object JN. Analogously,
the right branch in Fig. 9 represents the life cycle, where after the concurrent
creation of both objects a joint table is built. To summarize, in Fig. 9 the creation
events are concurrent, whereas the other two events are in conflict and therefore,
denote different possible runs.

155

5 E x p e r i e n c e s

The project we described in this paper is in its initial state. We are still in
the phase of modelling the Universe of Discourse of CATC. However, we made
already several positive experiences.

The first a t tempts of managing the project with a popular object oriented
analysis and design method [HS94] failed. The team that is developing the system
is composed of students and full-time employees. Students did not just have to
cope with implementation tasks, they were also involved in the modeling of
the system. Since they typically stay for 6 months in the project we had a high
personal fluctuation. Students that left the team took a lot of knowledge that was
supposed to be documented in their models with them. This was the information
supposed to be giving the semantics of the models. Due to the informality there
was no common understanding of many models and a lot of things had to be
discussed over and over again whenever new people entered the project. This
was one of the major reasons for us to restart the project following a formal
approach. It turned out to be much less critical when members leave the project.
The documentation they leave is less ambiguous.

The current team developing the system is now composed of 11 students and
three full-time employees. All team members have similar backgrounds (com-
puter science, mathematics) and therefore use the same terminology. One em-
ployee is settled in the federal board and fortunal has a background of computer
science and of the problem domain. The two other employees are settled in the
university with special interests in formal methods and mathematics. But none
of the students had knowledge about TROLL , SO we trained them in a special
TROLL seminar taking place every two weeks at the very beginning. Both em-
ployees at the university are TROLL specialists and one of them is the designer
of additional TROLL concepts. He spent a lot of time on answering to specific
questions, the students had.

An advantage often mentioned in relation with formal method is the possi-
bility to verify correctness. The verification issue is not of central importance in
our project.

The project is located in an federal institute but many developers are stu-
dents. These students have to communicate with staff member respectively op-
erators. The gap between students and federal board employees in their under-
standing of technical and administrational processes is evident. Therefore it was
important to improve the communication skills. Here especially the support by
diagrammatic notations had proven valuable and was confirmed by all project
members. The diagrams are based on concepts well known in computer science
e.g., enti ty/relationship diagrams (community diagram), finite au tomata (be-
havior diagram) or programming languages (textual representation of TROLL).
Indeed, both the diagrams and the TROLL text were intuitive for students as well
as for federal board employees. Furthermore the fact that they had to develop
with TROLL and thus were compelled to formalize their ideas, brought out a lot
of misunderstanding in early stages. Here we had to handle the usual problem,
tha t the federal board employees had some ideas about what the needed in gen-

156

eral but not in all details. We had long term discussions about the overall model
and this lead in our opinion to a quite good understanding of the general setting
of the P T B world.

The specification phase is an iterative process since the discovered misunder-
standings came up gradually. Here more tool support is necessary. Re-specifying
is an important part of the work and re-doing already developed parts over and
over is disappointing enough. Tool support turned out to be one key factor in
order to avoid frustration when having to change a model again.

Roughly spoken the specification is twofold: First we dealt with more general
aspects by developing the diagrams and secondly we attacked more fine grain
problems with the textual notation. This involves two different views of the
world, a global and a detailed one. The advantage is that we achieve first a
rather stable global view before we consider details. Changes to the finer grained
specification documents did not affect the global view.

Most probably the project will move from a pure national one to an inter-
national one. This turned out just recently. If this happens, we hope t o have a
high degree of reuse. Since most business facts and rules are formalized we ex-
pect that we can easily adapt our models to this new dimension of the problem
domain. This potential future may prove the strategical advantage of our choice
of a formal approach.

The specification phase which we have already left behind, has much clarified
our minds and helped us to understand what should be implemented. We are
still working on the implementation at the moment. About 40000 of C + + code
whith 100 object classes resulting from 5000 lines of TaOLL have been written
so far. Tha t makes a factor of 1:8.

For the next steps we expect little problems with the how and we are almost
sure tha t "we get what we want", due to the fact, that we solved the question
of "what to do" in the specification phase. Of course we will have to deal with
minor programming errors in the currently coding phase. But these are not the
typical problems that result in a failure of the project.

As soon as the first user interface windows are compiled, we can test and
verify the functionality of the system and thus compare wether our assumptions
meet reality.

6 C o n c l u s i o n s a n d O u t l o o k

In this paper we presented a field-study where we applied the formal specifi-
cation language TROLL to the modelling of an Information System of a rather
reasonable size.

In the previous sections we introduced the industrial context of our applica-
tion domain, picked one small part out of it and illustrated the specification of it.
We said less about the implementation issues and the integration of existing and
re-specified applications since the project is still in its initial state. We are sure
tha t the next stages will bring up much more details /rod worthy information
with respect to these subjects.

157

Furthermore we think about an automat ic generation of application programs
or frames from specifications. First steps in tha t directions have already been
made, e.g., an approach to generate a relational database model from TROLL
specifications [Dan95] has been developed.

Tool support is crucial for the success of big projects. We do not yet have
the Support we wished to have. The project lead to a vast list of requirements
for adequate tool support . Most important are tools tha t allow for a fast change
of specification documents while ensuring the consistency of the whole project .
For presentation and discussion of the models we need documentat ion support .
These documents have to show different views of the models. An example for a
specification environment is the O B L O G workbench [Esp93]. Besides providing
comfortable support for the modelling of systems based on a mathemat ica l for-
malism, it facilitates the generation of end applications which serve for model
validation. Unfortunately, our system platform made it impossible for us to use
this environment.

The reification from specification to implementat ion is one objective we want
to reach in the near future. The first theoretical results have been developed
[DE95]. We hope tha t future developments will provide us with a basis for a
practical reification method that allows for error free implementat ions of speci-
fications.

References

[BH94]

[Bro87]

[BS931

[CAB+94]

[Dan95]

[DE95]

[DK92]

�9 [EJDS94]

J.P Bowen and M.G. Hinchey. Seven More Myths of Formal Methods: Dis-
pelling Industrial Prejudices. In M. Naftalin, T. Denvir, and M. Bertrani,
editors, FME'94: Industrial Benefit of Formal Methods, pages 105-117.
LNCS 873, Springer, Berlin, 1994.
F.P. Brooks. No Silver Bullet - Essence and Accidents of Software Engi-
neering. IEEE Computer, 20(4):10-19, Apr. 1987.
J. Bowen and V. Stavridou. The Industrial Take-up of Formal Methods in
Safety-Critical and Other Areas: A Perspective. In [WL93], pages 183-195,
1993.
D. Coleman, P. Arnold, S. Bodoff, S. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremes. Object-oriented Development - The Fusion Method. Prentice-
Hall, 1994.
C. Danker. Transformation of TROLLobject specifications into schema of
relational databases. Diploma Thesis at Techn. Univ. Braunschweig, 1995.
G. Denker and H.-D. Ehrich. Action Reification In Object Oriented Specifi-
cation. In R. J. Wieringa and R. B. Feenstra, editors, Information Systems -
Correctness and Reusability, Selected Papers from the IS-CORE Workshop,
pages 103-118. World Scientific, 1995.
E.H. Dfirr and J.v. Katwijk. VDM++, A formal specification language for
object-oriented design. In Proceedings of TOOLS7 (Technology of object-
oriented languages and systems). Prentice-Hall, 1992.
H.-D. Ehrich, R. Jungclaus, G. Denker, and A. Sernadas. Object-Oriented
Design of Information Systems: Theoretical Foundations. In J. Paredaens

158

[EN 78a]

[EN 78b l

[ES95]

[Esp93]

lESS88]

[GH91]

[GSW93]

[Hat88]

[Har95]

[Her95]

[H J95]

[HO71]

[Hoa85]

[HS94]

[Jac92]

[JB87]

[Jon89]

and L. Tenenbaum, editors, Advances in Database Systems, Implemen-
tations and Applications, pages 201-218. Springer Verlag, Wien, CISM
Courses and Lectures no. 347, 1994.
VDE: EN 5001,~ Elektrische Betriebsmittel fiir explosionsgefEhrdete Bere-
iehe - Allgemeine Bestimmung. VDE-Verlag, 1978.
VDE: EN 50018 Elektrische Betriebsmittel fiir explosionsgef~hrdete Bere-
iche - druckfeste Kapselung 'd'. VDE-Verlag, 1978.
H.-D. Ehrich and A. Sernadas. Local Specification of Distributed Families
of Sequential Objects. In E. Astesiano, G. Reggio, and A. Tarlecki, edi-
tors, Recent Trends in Data Types Specification, Proc. lOth Workshop on
Specification of Abstract Data Types joint with the 5th COMPASS Work-
shop, S.Margherita, Italy, May/June 1994, Selected papers, pages 219-235.
Springer, Berlin, LNCS 906, 1995.
Espirito Santo Data Informatica, Lisbon. OBLOG CASE VI.0 - The User's
Guide, 1993.
H.-D. Ehrich, A. Sernadas, and C. Sernadas. Abstract Object Types for
Databases. In K. R. Dittrich, editor, Advances in Object-Oriented Database
Systems, pages 144-149, Bad M/inster am Stein, 1988. LNCS 334, Springer,
Berlin, 1988.
M. Gogolla and U. Hohenstein. Towards a Semantic View of an Ex-
tended Entity-Relationship Model. ACM Transactions on Database Sys-
tems, 16(3):369-416, 1991.
T. G/inther, K.-D Schewe, and I. Wetzel. On the Derivation of Executable
Database Programs from Formal Specifications. In [WL93], pages 351-366,
1993.
D: Hard. On visual formalisms. Communications of the ACId, 31(5):514-
530, 1988.
T. Hartmann. Entwurf einer Sprache ~iir die verhaltensorientierte konzep-
tionelle Modellierung yon Informationssystemen. Reihe DISBD. infix-
Verlag, Sankt Augustin, 1995. To appear.
R. Herzig. Zur Spezifikation yon Objektgesellschaflen mit TROLL light.
Fortschritt-Berichte Reihe 10, Nr. 336. VDI-Verlag, D/isseldorf, 1995.
P. Hartel and R. Jungclaus. Modeling Business Processes over Objects.
Int. Journal of Intelligent and Cooperative Information Systems, 1995. To
appear.
W. Wettisch H. Olenik, H. Rentzsch. Handbuch fiir den Explosionsschutz.
W.Girardet, Ziirich, 1971.
C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs, N J, 1985.
T. Hohnsbein and H. Schafiee. Reengineering des Programms
DRUCKMESS in der PTB. Doppelstudienarbeit an der Universit~it Braun-
schweig, Abt.Datenbanken, 1994,
I. Jacobson. Object-Oriented Software Engineering. Addison-Wesley, Read-
ing, MA, 1992.
H. Rechenberg J. Bortfeld, W. Hanser. 100 Jahre Physikalisch-Technische
Reichsanstalt/Bundesanstalt 1887-1987. VCH Verlagsgesllschaft, Miinchen,
1987.
C.B. Jones. Systematic Software Development using VDM. Prentice-Hall,
Englewood Cliffs, N J, 1989.

159

[JSHS96]

[JWH+94]

[KH95]

[KHHS95]

[MC90]

[RBP+91]

[SJ92]

[SJH93]

[Spi89]

[SSE871

[WL93]

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. TROLL - A Lan-
guage for Object-Oriented Specification of Information Systems. A CM
Transactions on Information Systems, 1996.' To appear.
R, Jungclaus, R.J. Wieringa, P. Hartel, G. Saake, and T. Hartmann. Com-

bining TROI~L with the Object Modeling Technique. In B. Wolfinger, editor,
Innovationen bei Rechen- und Kommunikationssystemen. GI-Fachgespriich
FG 1: Integration yon semi-formalen und formalen Methoden fiir die Spez-
ifikation yon Software, pages'35-42. Springer, Informatik aktuell, 1994.
M. Kowsari and P. Hartel. Ein Fallbeispiel zur Evaluation einer Objektori-
entierten Methodik. In C. Eckert, H.J. Klein, and T. Polle, editors, 7. Work-
shop Grundlagen yon Datenbanken, pages 88-93. Universit~it Hildesheim In-
stitut fiir Informatik~ Juni 1995.
J. Kusch, P. Hartel, T Hartmann, and G. Saake. Gaining a Uniform View
of Different Integration Aspects in a Prototyping Environment. In Proc. 6th
Int. Conf. on Database and Expert Systems Applications (DEXA '95), pages
38-47. Springer Verlag, Berlin, LNCS 978, 1995.
S.L. Meira and A.L.C. Cavalcanti. Modular Object-Oriented Z Specifica-
tions. In Z User workshop, Oxford. Springer-Verlag, 1990.
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hail, Englewood Cliffs, N J,
1991.
G. Saake and R. Jungclaus. Specification of Database Applications in the
TROLL-Language. In D. Harper and M. Norrie, editors, Proc. Int. Work-
shop Specification of Database Systems, Glasgow, July 1991, pages 228-245.
Springer, London, 1992.
G. Saake, R. Jungclaus, and T. Hartmann. Application Modelling in Het-
erogeneous Environments using an Object Specification Language. Int.
Journal of Intelligent and Cooperative Information Systems, 2(4):425-449,
1993.
J.M. Spivey. The Z notation - a reference manual. Prentice-Hall, Englewood
Cliffs, N J, 1989.
A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-Oriented Specifica-
tion of Databases: An Algebraic Approach. In P.M. Stoecker and W. Kent,
editors, Proc. 13th Int. Conf. on Very Large Databases VLDB'87, pages
107-116. VLDB Endowment Press, Saratoga (CA), 1987.
J.C.P Woodcock and P.G. Larsen, editors. FME'93: Industrial-Strength
Formal Methods. LNCS 670, Springer, Berlin, 1993.

