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Abstract. This paper addresses two modi of analogical reasoning. The
first modus is based on the explicit representation of the justification
for the analogical inference. The second modus is based on the repre-
sentation of typical instances by concept structures. The two kinds of
analogical inferences rely on different forms of relevance knowledge that
cause non-monotonicity. While the uncertainty and non-monotonicity of
analogical inferences is not questioned, a semantic characterization of
analogical reasoning has not been given yet. We introduce a minimal
model semantics for analogical inference with typical instances.

1 Introduction

Analogical reasoning is a process whereby similarities between a source and
a target are used to infer the probable existence of further similarities. Thus,
under certain conditions, an analogical inference can be employed to provide a
description of an aspect of the target, if the description of the same aspect is
known for the source.

What are the conditions that justify an analogical inference? There are sev-
eral answers to this question, but most of them agree in characterizing some
relevance knowledge as a justification for analogical inferences. Goebel [12], for
instance, emphasizes some relevant similarity as the knowledge required for an
analogical inference. Gentner [9] prefers by her systematicity criterion a map-
ping of predicates which are connected by a higher order relation explicitly to
be known for analogical inferences. The higher order relations she examined,
namely cause and implies, actually represent relevance knowledge of the form
“aspect A; is relevant for aspect A,”.

* Published in FAPR’96. This work was supported by the Deutsche Forschungsgemein-
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The maybe best-recognized proponent of justification is Russell, who defined
the so-called determinations as the crucial relevance knowledge. His total deter-
minations represent a strict form of connections between two aspects, expressing
“the values of a predicate A; determine the values of a predicate Ay”.

Let us look at an example: Knowing that the car cars was produced in 1990,
that its make is Honda-civic, and that its price is 13,000.00 DM you would
infer analogically that a car cary which was produced in 1990 and the make of
which is Honda-civic would probably cost about 13,000.00 DM. The relevance
knowledge that justifies this particular analogical inference is the determination
of the price of a car by its make and year of construction. But what happens if
you gain the additional knowledge that carr is rusty and was involved in many
severe accidents? Then you would no longer infer the price of 13,000.00 DM for
cary. This example provides a clue for the non-monotonicity of inferences called
connection-based analogical inferences.

For understanding the non-monotonicity of another kind of analogical rea-
soning, remember the classical Tweety story of non-monotonic reasoning: In this
story the non-monotonicity has a lot to do with the break down of an inheri-
tance in the concept “bird”. In (semantic net and frame) representations that
use prototypes, such as the TypicalElephant of [4], certain analogical inferences
provide new information by copying facts from the prototype to the individual.
Even though known as “inheritance”, actually this reasoning is another common
kind of analogical reasoning, which we shall call typical-example-based. As the
Tweety story shows, it is non-monotonic as well.

Analogical inference is commonly considered to be non-deductive, hypothet-
ical, tentative, and non-monotonic. These features of analogical reasoning have
been addressed explicitly in [12, 13, 24, 19] and implicitly presupposed in many
approaches to reasoning by analogy. Other questions have usually been the cen-
ter of attention of analogy research though. We discuss the additional justifying
knowledge needed for inferring a further similarity from a similarity of a source
and a target for two kinds of analogical reasoning. We propose how to represent
this knowledge and present a semantic characterization for the analogical infer-
ence with typical instances that is actually designed for non-monotonic logics.

This paper is organized as follows: We first recall the basic ingredients of
connection-based analogical reasoning. Then we introduce analogical reasoning
based on typical instances, which makes use of an exemplary knowledge rep-
resentation. We present the inference schemas for the two forms of analogical
reasoning and discuss a semantic that is appropriate for the analogical infer-
ence with typical instances and which captures its non-monotonicity. At last we
propose a hybrid framework integrating these two forms of analogical reasoning
using a hybrid knowledge representation®.

3 Thereby we add to the debate about logic-based versus non-propositional knowledge
representation in artificial intelligence, which dates back to McCarthy’s Advice Taker
[18] and Sloman’s analogical representations [26].



2 Connection-Based Analogical Reasoning

An important concept in analogical reasoning is the so-called aspect. In many
approaches to computational analogy, aspects are represented just by predicates
or fixed formulae. In order to capture a wider range of analogical reasoning and
to include inter-domain analogies, we define an aspect A as a partial function,
mapping the individuals (instances ¢ of a concept C') to non-tautological formulae
with at most one free variable z such that A{c)[z/c] is true.

Informally speaking, if ¢ is an instance and A an aspect then A{c) is a
formula describing A of c¢. For example: The value of safety{c) of a car ¢
might be airbag(x) A antiblock(x) A maz_speed(z) < 100. It is assumed that
airbag(c) A antiblock(c) A maz_speed(c) < 100 is true. For a bicycle b, safety(b)
might be frame_diameter(z, 3) A age(z) < 10.

The transfer of the value of an aspect As from a source case s to a target
case t based on the similarity of s and ¢ with respect to another aspect A; is
the standard form of justified reasoning by analogy, investigated, e.g. , in [7].
This kind of analogical inference requires for its justification some relevance
knowledge expressing that A; is relevant for A,. The relevance knowledge “A;
is relevant for Ay”, written as [A1, A2], is usually represented explicitly and
propositionally, as determinations [7], as schemata [11], as connections [19], or as
similarity transforms [6]. In modeling human analogical reasoning, the relevance
knowledge must allow for exceptions and uncertainty rather than being a logical
implication or a total determination. In the following we use the most general
notion, connection, that does not require a specific representation and may have
exceptions.

A connection is a pair of aspects [A1, A2]. An example of such connections is
[population, cars] expressing “if two cities have the same number of inhabitants,
then probably the same number of cars is registered in the cities”. This con-
nection is used in an analogical inference that yields a value of the aspect cars
for the target instance Rome. This inference takes as inputs the similarity of
Rome and another city, say Madrid, with respect to the number of inhabitants
and the connection. It infers the correspondence of Rome and Madrid with re-
spect to the aspect cars. Using the additional information of the actual value of
cars{Madrid) the value of cars(Rome) can be inferred.

Utilizing connections, the connection-based analogical inference can formally
be described by the schema

Ai(t) = Ai(s),[A1, As]
8 = A (s)

(AR)

A connection-based analogical inference is confirmed only if the resulting
target aspect Aa(t) does not contradict the knowledge inferable for the target
by deduction. The uncertainty of the connection and the consistency constraint

* Note that A{c) is a formula with a free variable z. A{c)[z/c] denotes the formula
A{c) in which the free variable z is substituted by c.



are responsible for the non-monotonicity of the connection-based analogical in-
ference.

But, what happens, if such explicit connections are not available? The kind
of analogical inference presented next allows for justified analogical reasoning
that is not necessarily based on explicit connections.?

3 Analogical Reasoning Based on Typical Instances

Russell [24] tries to interprete analogical inference based on typical instances as
a connection-based inference with “belonging to the same class” as the aspect
A of a connection [Aq, As]. However, psychological investigations provided ev-
idence that typical instances are the only, or at least the preferred sources for
analogical reasoning corresponding to inheritance among instances of a concept.
Consequently, connection-based analogical inference does not cover analogical
inferences which can have only a typical instance as the source rather than an
arbitrary instance.

The typicality of instances of concepts is a phenomenon investigated in em-
pirical psychology [17, 20, 23]. Reproducible typicality ratings that distinguish
typical instances have been found. Some experimental methods [17] for the ex-
traction of this typicality rating are the direct rating of representativity, the
examination of the reaction time to decide whether an instance belongs to a
category, the test of the reproduction of instances, and the use of instances in
generalizations and in analogical reasoning. Hence you find the notation struc-
tured concept in the psychological literature that refers to a set of instances with
a typicality relation which we denote® by Cc. The notion “concept structure”
denotes the structure of one single concept rather than the relationship between
different concepts like in KL-ONE. The typicality relations Co compare for each
concept C' the degrees of typicality (for example, a hammer is commonly consid-
ered a more typical tool than a compass saw) of similar instances. Within such
concept structures we define typical instances:

DEFINITION: An instance ¢ € C is called a typical instance if it is maximal
(that is, there is no ¢’ # ¢ with ¢ C¢ '), written as typex(c).

For example, a hammer is commonly considered a typical tool and a violin
a typical musical instrument. An example of a concept structure is given in
figure 1.

There are two kinds of aspects of typical instances: aspects that are impor-
tant for the typicality of the instance (e.g. the size of a city) and aspects that
are accidental (e.g. the number of research institutes of a city). Of course, justi-
fied analogical reasoning transfers only relevant information. This motivates the

5 Although the field of analogical reasoning is concerned with reasoning based on ex-
amples, surprisingly the importance of reasoning by typical instances, as for example,
investigated by Rosch [21] and Lakoff [17], has not been elaborated. Only an attempt
of Winston [30] was influenced by statistic prototypicality.

5 The subscript specifies the concept.
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Fig. 1. A concept structure of cities

following definition that describes a relevance different from that in the previous

section:

DEFINITION:

An aspect A is called relevant for an instance ¢ (written as

relevant(A, c)) iff A{c)[z/c] is true and for all instances ¢’ with ¢’ C¢ ¢ holds
A(c)[z/c] is either true or undefined.

Analogical inferences based on typical instances can formally be described

by the schema

(AT)

typex(s),t Ce s,relevant(As, s)

A (@) = Ax(s)




Again, an analogical inference based on typical instances is confirmed only if
the result does not contradict the knowledge inferable for the target by deduc-
tion. This consistency constraint and the uncertainty of the knowledge about the
relevance of an aspect for a typical instance of a concept are responsible for the
non-monotonicity of analogical inference based on typical instances.

Relationship between AR and AT

AT can be heuristically justified in terms of the known justification of AR: Let
s and t be examples, i.e. elements of a concept C', and let A; and As be aspects.
Assume:

(i) typex(s), t C¢ s, relevant(As, s).
According to Weiner [29] it follows heuristically that if s is a typical example
and t C¢ s, then there is an aspect A; with relevant(A4;,s) and A;(t) = A1(s).
Hence, we have

(ii) Ay (t) = Ai(s),relevant(A1,t), relevant(As,t), typex(t).
Because of the definition of “relevant”, relevant(Ai,s), relevant(As,s), and

typex(s) support the connection [A;, As] (at least for all instances rated un-
der s). Hence, from (ii) follows

(iii) A1 <t) = A1 <S>, [Al, AQ]
Because of (iii) and the inference rule AR we have

(iv) Ax(t) := Aa(s).
That is, we have the permission to define Ay for ¢t by As(s). Thus if AR is
justified, then AT is heuristically justified.

A Semantics for Analogical Reasoning with Typical Instances

The common way to cope with the meaning of logical formulae and inferences
is to find an appropriate semantics. For classical logic, the Tarski semantics
has been defined, for modal logics, Kripke semantics proved to be appropriate.
Several semantics have been developed for non-monotonic logics, e.g., Shoham’s
minimal model semantics. We shall relate the analogical inferences based on
typical instances to this minimal model semantics by introducing interpretations
which are compatible with the concept structure and by defining a partial order
on these interpretations.

Let 07 be a partial interpretation of formulae, that assigns to each pair
(instance, formula with one variable) one of the values true,false,unknown. It
can be thought of as the result of an inspection of the instances. In the case of
our city example

OZ(Rome, no_of _inhabitants(z) = 8million) = true

since a corresponding entry can be found in the concept structure. In contrast
OZ(Rome, no_of _cars(z) = Imillion) = undef, since there is no entry for cars
in the instance of Rome.



More precisely, for the following we assume a sorted (first-order) logic £,
where each sort can be viewed as a concept like car or city. We denote the
sorts by lowercase Greek letters such as k or u. £ is a set of sets {€,}, where
each & is called the set of examples of sort k. The &, are such that their
structure corresponds to the sort structure of £, that is, if u C & (i.e. p is
subsort of k) then £, C &,. £ forms the frame (the collection of universes)
for the partial interpretation of the terms. 97 is a fixed partial interpretation
function (corresponding to three-valued strong Kleene logic £¥ [16, 28]) in the
frame £. Each term ¢ of sort & is either interpreted by an example in &; or by
the bottom element L. Formulae may be evaluated by 07 to true, to false, or
to undef. Furthermore, we assume that for every element ef € & there exists
a constant ¢’ of sort k with 8Z(ct) = el € £, and that there are only finitely
many examples in £.

The partial interpretation of composed formulae is defined as usual, based
on the propositional connectives as defined by the following truth tables:

- \Y | false undef true
false| true false false undef true
undef|undef undef undef undef true
true [false true true true true

In order to fix the semantics of the universal quantifier, assignments £ for the
interpretation of the variables into the frame are necessary. If £ is an arbitrary
assignment, £[z < a] denotes the assignment equal to £ for all variables except
for z and &[z + d](z) = a.

true if 0Z¢[,q)(®) = true for all a € &
0T (Vx,p) := { false if 0Z¢[, q)(p) = false for one a € &
undef else

The semantics of A, =, <, and 3 can then be defined in the usual manner.

Note that these definitions do not assume a concrete representation of the
examples—the only requirement is that we get an answer to certain questions,
thus fixing the interpretation function. In other words, 8Z has to be effectively
computable for all ground formulae (i.e., variable free formulae) and, conse-
quently, for all formulae, since we assume the number of examples in £ to be
finite.

As usual, we give an (extended) set theoretic semantics for a formula set. Our
semantics is such that it is compatible with the examples. An interpretation of a

knowledge base A is defined as an extension of the partial interpretation, given
by (£,0T).

DEFINITION ({£,0Z)-INTERPRETATION): Let & = {£,}« be a given set of ex-
ample sets and let 87 be a partial interpretation function in £. An interpretation
({Dx}x,T) is called an (€, IT)-interpretation iff
— there are injective mappings inj, : & < Dy with Z(e,) = inj,(0Z(cy)) for
all constant symbols ¢, with 0Z(c,) # L. (When the sort is not important,
we omit the index k and simply write inj.)



— for all terms ¢ and arbitrary ground instances o(t) with 0Z(o(t)) # L holds
Z(o(t)) = inj(0Z(a(t)))-
— for all formulae ¢ and all ground instances o of ¢ holds, if Z(c(¢)) # undef
then Z(o(¢)) = 0Z(o())
If Z¢ () = true for all assignments & then Z is called an (£, 0Z)-model of . If
¢ has no (£,0Z)-model, it is said to be (£, L)-unsatisfiable. I' (£, 0T)-entails
the formula ¢ iff each (£,0Z)-model of I' is an (£,07)-model of ¢, too (i.e.
r |=(5,61) ®)-

So far all possible interpretations Z have to be considered for modeling formu-
lae. This is sufficient for capturing deductive reasoning as shown in [15]. However,
in order to model any form of non-monotonic reasoning (in particular analogical
reasoning), each conclusion drawn must potentially be withdrawn. In order to
describe non-monotonicity semantically, Shoham [25] has introduced an order
on the interpretations and weakened the notions of satisfiability, of consequence
etc. His key idea is to only consider distinguished minimal models for the sat-
isfiability and consequence relations. This approach is well-suited for analogical
reasoning which is based on preferred instances—the typical instances of a con-
cept.

Let us recall the notions of minimal model and preferential entailment in
Shoham’s approach:

DEFINITION: Assuming a partial order < on interpretations, an interpretation
T preferentially satisfies a formula ¢ (written as Z =« ¢) if 7 |= ¢ and if there
is no other interpretation Z' such that 7' < 7 and 7' |= ¢, that is, Z is a minimal
model of .

This definition attains a general semantic characterization of non-monotonic
inferences. The only point to be specified is that of a partial order < on the
interpretation Z. Now we want to give a semantic characterization for the infer-
ence scheme AT of section 3. For the case of analogical reasoning with typical
instances we define an interpretation to be smaller then another if it agrees in
more individuals with the typical instances. Put formally,

DerINITION: 7' < 7 if and only if7>8

" Nota bene: While the optimal models in Shoham’s approach are minimal, the typical
instances are mazimal with respect to the typicality relation.

8 In an alternative definition, the information is not taken from the typical instances,
but from the instances immediately above the instance in consideration. In this case
the definition looks as follows:

7' < T if and only if

1. for all instances a with 8Z(a) = L and b is a least instance with 0Z(a) C 9Z(b)
and 0Z(b) # L holds if Z'(a) = inj(0Z(b)) then Z(a) = inj(0Z(b)) and

2. for all predicates P with 9Z(P(a1,...,an)) = undef, for all i, the b; are
least instances such that 0Z(a;) T O0Z(b;) and OZ(P(b1,...,bn)) # undef
holds if Z'(P(a1,...,as)) = inj(dZ(P(b1,...,bs))) then Z(P(ai,...,an)) =
inj(OZ(P(b1,...,bn))).



1. for all instances a with 8Z(a) = L and b is typical instance with 8Z(a) C
OZ(b) and 9Z(b) # L holds if Z'(a) = inj(8Z(b)) then Z(a) = inj(0Z (b)) and
2. for all predicates P with 0Z(P(ay,...,a,)) = undef; for all ¢, the b; are
typical instances such that 8Z(a;) C 0Z(b;) and 0Z(P(by,...,b,)) # undef
and P is relevant for the b; then holds:
if 7/(P(ay,...,ay)) = inj(0Z(P(b1,...,by))) then
Z(P(ay,---,ay)) = inj(0Z(P(by1,-..,by)))-
3. an analogous relation holds for functions f (replace undef by L.)
That is, in minimal models all relevant information that is not fixed by the
knowledge base is transferred from typical instances.

Here is an example of how the semantics works: By definition, for a preferred
model 7 with the typical instance Berlin and the instance Rome the information
about public_transportation is transferred from Berlin to Rome if no additional
information is known. Concretely, since 0Z(Rome, no_of _cars(z)) = L, in a
minimal model Z} . holds

TL. (Rome,no_of _cars(z)) = inj(8Z(Berlin, no_of _cars(x))) = 1.3 Mio

Of course this is only the case if 7' is a model of the first formula at all,
that is, if there is no information that contradicts to the assumption that there
are 1.3 Mio cars in Rome. It is easy to see that this semantics is non-monotonic:
For instance, if the information that in Rome 2 Mio cars are one the roads, that
is, no_of _cars(Rome) = 2 Mio, is added to the knowledge base then 7! is no
longer a model at all, and in particular no minimal model. Hence, the analogical
conclusion cannot be inferred any longer.

The non-monotonicity can be concretely seen in the following form. Let ¢ =
no_of _cars(Rome) = 1.3 Mio and v = no_of _cars(Rome) = 2 Mio, then we
have:

0 &9 & put

DU {p} P o

4 Hybrid Framework

In order to computationally realize both kinds of analogy, a hybrid framework
is needed, that provides propositional and exemplary knowledge representations
and procedures to extract information from the non-propositional representation
(see, e.g., [27, 22]). Our framework consists of three parts: a hybrid knowledge
base, a reasoner, and procedures which deliver information from the knowledge
base to the reasoner [14]. The knowledge base itself has two parts: a collection
of propositions and non-propositional representations of concepts. The reasoner

3. an analogous relation holds for functions f (replace undef by _L.)



consists of inference methods that operate on the propositional part of the knowl-
edge base and of methods that use information contained in the conceptual part
of the knowledge base. Figure 2 displays this framework.

additional
Reasoner RULES RULES

Interpreter \ TYP, INT, RELV

Hybrid
Know edge
Base

Fig. 2. System structure

The Propositional Subsystem

The propositional subsystem consists, as usual, of a set I" of (sorted first order)
formulae. Aspects, as mentioned above, can be defined in this subsystem. The
propositionally represented connections of aspects—as far as they are available—
belong to this subsystem as well.

The Conceptual Subsystem

We extend the knowledge base by a conceptual part consisting of concept struc-
tures which are non-propositional representations of concepts. We use directed
acyclic graphs consisting of a set of instances and the typicality relation C¢ as
concept structures.

The instances themselves might be represented by neural nets, maps, dia-
grams or some other means including symbolic representations. The particular
type of these representations is of no concern for the rest of the paper. We con-
sider concepts C to be represented by a set of instances with a partial order C..
The elements of these concept structures represent concept instances. A con-
cept structure is displayed as a directed acyclic graph as in figure 1. In this city
example, the instances are not directly represented as maps, but we deal with
another concept representation which is similar to that employed by Barwise



and Etchemendy [3]. It encodes instances as tables. Nevertheless, the conceptual
part of the knowledge base is non-propositional because of the concept structure.

The Reasoner

In order to integrate the conceptual subsystem into the framework, its informa-
tional content has to be accessible. The semantics corresponds exactly to the
semantics given in section 3. Several inspection procedures work on the concep-
tual subsystem and provide the information that is needed by the rules of the
reasoner:

— A TYP-procedure provides access to the structural content of the concept
structures in that it finds a typical instance s with ¢ C¢ s for an instance ¢
of a concept C'. For example, TYP yields for the instance Rome the typical
instance Berlin by looking up the concept structure city.”

— An interpreting partial procedure, called ASP, computes the values of aspects
A for the typical instances c out of the representation of the instances. If
there is a value it is required to be a formula A{c) with Z(A(c)) = true.
For example, ASP yields a value of the aspect public_transportation for the
typical instance Berlin: subway(x) A bus(x) A tazi(x) A airport(z) by looking
up the representation of Berlin.

— A RELV-procedure provides true/false-information about the relevancy of
aspects for the typical instances that is encoded in the concept representa-
tion. An aspect A is relevant for an instance c iff Z(A{c)[z/c]) = true and
for all instances ¢’ C¢ ¢ holds Z(A({c)[z/c']) € {true,undefined}. This no-
tion of relevancy corresponds to a kind of modal operator. We assume that
every typical examples has at least one relevant aspect.

AR which finally provides information about a target case t takes as input:

— The similarity of a source case s and the target case t expressed by the
equivalence w.r.t. an aspect A;. For example, let be s = Madrid, t = Rome,
and A; = population. The input is population{Rome) = population{Madrid).

— A connection [A4;, A3] which belongs to the propositional part of the knowl-
edge base. Such a connection is [population, cars] which means that, if the
populations of two cities agree, then probably the number of cars registered
in these cities agrees too.

AR yields Ay(t) = Aa(s). For the example input above: cars(Rome) =
cars{Madrid). Using the additional information about the actual value of Ax(s),
which is explicitly given by the propositional subsystem, we can infer the value
of A2 (t)

At a glance: Let the following information be given

® This example shows that typical examples are not independent of the culture back-
ground. For Italians in general, Rome would be the typical example and not Berlin.



[population, cars]
population(Madrid) = population{Rome) =
no_of _inhabitants(z, 3million) no_of _inhabitants(z, 3million)
cars{Madrid) = cars{Rome)=
no_of _cars(x, 1million) ?

AR infers by analogy cars(Rome) = cars{Madrid).
Hence it is possible to infer cars(Rome) = no_of _cars(zx, 1million)

The AT rule of the reasoner takes as inputs:

— a typical instance s with t C¢ s which is computed by the TYP-procedure,
and

— information about the relevancy of A, for this s. This information is either
extracted by the RELV-procedure or explicitly represented in the proposi-
tional part of the knowledge base as, e.g., suggested by Gentner [10].

The AT rule then infers Ay(t) = As(s). Using the additional information
about the actual value of A5(s), which is computed by the ASP-procedure, Az (t)
can be inferred.

Let us look at an example where the individual concept structure of the
concept city is given. We want to compute Ay (t) = public_transportation{ Rome)
by analogy to a typical city. If there is no explicit connection for public_trans-
portation, then AR cannot be applied and we proceed as follows:

— The TYP-procedure computes the typical instance Berlin as a typical city
that is rated over Rome.

— RELV tests whether public_transportation is a relevant aspect for Berlin.
Provided that the result is true, AT yields
public_transportation{Berlin) = public_transportation(Rome).

— With the additional information
public_transportation{Berlin) = (subway(z) A bus(x) A tazi(x) A airport(x))
which is provided by the ASP-procedure or explicitly given in the propo-
sitional subsystem, we infer public_transportation(Rome) = (subway(z) A
bus(x) A taxi(x) A airport(z)) by analogy.

At a glance: let the following information be given

relevant(public_transportation, Berlin)
typex(Berlin) and RomeC iy Berlin.

public_transportation{Berlin) = public_transportation(Rome) =
(subway(x) A bus(z) A ?
tazi(z) A airport(z))

AT infers by analogy

public_transportation{Berlin) = public_transportation(Rome).



Hence it is possible to infer

public_transportation(Rome) = (subway(z) A bus(z) A tazi(z) A airport(z)).

5 Conclusion

In this paper we discussed two different kinds of analogical reasoning, connection-
based analogical reasoning and analogical reasoning based on typical instances.
The non-monotonicity of the connection-based analogical inferences stems from
the justifying connections that represent the relevance of an aspect for another
aspect. On the other hand, the non-monotonicity of the analogical inference
based on typical instances is caused by the knowledge about the relevance of an
aspect for a typical instance of a concept. For the latter we presented an appro-
priate semantics that is a special case of Shoham’s minimal model semantics.

The paper dealt with two different analogical inference schemas and with
their computational realization in a hybrid framework that is equipped with
different kinds of knowledge representation. Related work with typical instances
has been done for the machine learning systems PROTOS and COBWEB [2, 8] that
also use a representations of concepts with typical instances.
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