
ar
X

iv
:c

s/
98

10
02

6v
1

 [
cs

.S
E

]
 2

6
O

ct
 1

99
8

The Railroad Crossing Problem:
An Experiment with Instantaneous Actions and

Immediate Reactions

Yuri Gurevich⋆ and James K. Huggins⋆

EECS Department, University of Michigan, Ann Arbor, MI, 48109-2122, USA

Abstract. We give an evolving algebra solution for the well-known rail-
road crossing problem and use the occasion to experiment with agents
that perform instantaneous actions in continuous time and in particular
with agents that fire at the moment they are enabled.

1 Introduction

The well-known railroad crossing problem has been used as an example for com-
paring various specification and validation methodologies; see for example [6, 7]
and the relevant references there. The evolving algebras (EA) methodology has
been used extensively for specification and validation for real-world software and
hardware systems; see the EA guide [3] and the EA bibliography [1]. The merits
of using “toy” problems as benchmarks are debatable; not every methodology
scales well to real-world problems. Still, toy problems are appropriate for experi-
mentation. Here we present an evolving algebra solution for the railway crossing
problem and use the opportunity for experimentation with instantaneous actions
and reactions in real time.

In Sect. 2, we describe a version of the railroad crossing problem. It is not
difficult to generalize the problem (e.g. by relaxing our assumptions on trains)
and generalize the solution respectively. An interested reader may view that as
an exercise.

In Sect. 3, we give a brief introduction to evolving algebras (in short, eal-
gebras), in order to make this paper self-contained. We omit many important
aspects of ealgebras and refer the interested reader to a fuller definition in the
EA guide [3]. In Sect. 4, experimenting with instantaneous actions in real time,
we define special distributed real-time ealgebras appropriate to situations like
that of the railroad crossing problem.

In Sect. 5 and Sect. 6, we give a solution for the railroad crossing problem
which is formalized as an ealgebra. The program for the ealgebra is given in
Sect. 5. The reader may wish to look at Sect. 5 right away; the notation is self-
explanatory to a large extent. In Sect. 6, we define regular runs (the only relevant
runs) of our ealgebra and analyze those runs. Formally speaking, we have to prove

⋆ Partially supported by NSF grant CCR-95-04375 and ONR grant N00014-94-1-1182.

http://arxiv.org/abs/cs/9810026v1

the existence of regular runs for every possible pattern of trains; for technical
reasons, we delay the existence theorem until later.

In Sect. 7, we prove the safety and liveness properties of our solution. In
Sect. 8 we prove a couple of additional properties of our ealgebra. In Sect. 9, we
take advantage of the additional properties and prove the existence theorem for
regular runs and analyze the variety of regular runs.

The ealgebra formalization is natural and this allows us to use intuitive terms
in our proofs. One may have an impression that no formalization is really needed.
However, a formalization is needed if one wants a mathematical verification of
an algorithm: mathematical proofs are about mathematical objects. Of course,
we could avoid intuitive terms and make the proofs more formal and pedantic,
but this paper is addressed to humans and it is so much harder to read pedantic
proofs. It is a long standing tradition of applied mathematics to use intuitive
terms in proofs. Let us notice though that more formal and pedantic proofs have
their own merits; if one wants to check the details of our proofs by machine, it
is useful to rewrite the proofs in a pedantic way. In any case, we see a great
value in the naturality of formalization. No semantical approach makes inherent
difficulties of a given problem go away. At best, the approach does not introduce
more complications and allows one to deal with the inherent complexity of the
given problem.

Acknowledgments. Raghu Mani participated in an initial stage of the work [5].
During the final stage of the work, the first author was a CNRS2 visitor in the
Laboratoire Informatique Theoretique et Programmation, Paris, France [4].

2 The Railroad Crossing Problem

Imagine a railroad crossing with several train tracks and a common gate, such
as the one depicted in Fig. 1. Sensors along every track detect oncoming and
departing trains. Let us consider one of the tracks, shown in Fig. 2. It has four
sensors at points L1, L2, R1 and R2. Sensor L1 detects trains coming from the
left, and sensor L2 detects when those trains leave the crossing. Similarly sensor
R1 detects trains coming from the right, and sensor R2 detects when those trains
leave the crossing. Based on signals from these sensors, an automatic controller
signals the gate to open or close.

The problem is to design a controller that guarantees the following require-
ments.

Safety If a train is in the crossing, the gate is closed.
Liveness The gate is open as much as possible.

Several assumptions are made about the pattern of train movement. For
example, if a train appears from the left, it leaves the crossing to the right. It
is easiest to express those assumptions as a restriction on possible histories of
train motion on any given track.

2 Centre National de la Recherche Scientifique

[htbp]

Fig. 1. A railroad crossing.

[htbp]

✖✕
✗✔
R2 ✖✕

✗✔
L2✖✕

✗✔
L1 ✖✕

✗✔
R1

✂
✂
✂
✂✂✌

❇
❇
❇
❇❇◆

✂
✂
✂
✂✂✌

❇
❇
❇
❇❇◆

Fig. 2. Placement of sensors along a railroad track.

Assumptions Regarding Train Motion. For any given track, there is a finite or
infinite sequence of moments

t0 < t1 < t2 < t3 < . . .

satisfying the following conditions.

Initial State The moment t0 is the initial moment. The observed part [L1, R1]
of the track is empty at t0.

Train Pattern If t3i+1 appears in the sequence then t3i+3 appears in the se-
quence and we have that
– at t3i+1, one oncoming train is detected at L1 or R1,
– at t3i+2 the train reaches the crossing, and
– at t3i+3 the train is detected to have left the crossing at L2 or R2 re-

spectively.
Completeness There are no other trains.

Additional Assumptions. From the moment that an oncoming train is detected,
it takes time between dmin and dmax for the train to reach the crossing. In terms
of the sequence 〈t0 < t1 < t2 < t3 < . . .〉 above, this assumption can be stated
as follows:

1 Every difference t3i+2 − t3i+1 belongs to the interval [dmin, dmax].

Further, the gate closes within time dclose and opens within time dopen. This
does not necessarily mean that if the controller signals the gate to close (re-
spectively open) at moment t then the gate closes (respectively opens) by time
t+ dclose (respectively t+ dopen). Let us state the assumption more precisely as
a restriction on possible histories.

2 There is no interval I = (t, t+ dclose) (respectively I = (t, t+ dopen)) during
which the signal to close (respectively to open) is in force but the gate is not
closed (respectively opened) at any moment in I.

It is easy to see that the controller cannot guarantee the safety requirement is
satisfied if dmin < dclose. We ignore the case dmin = dclose and assume that

3 dclose < dmin.

Finally, we will assume that actions are performed instantaneously. Of course,
real actions take time and the use of instantaneous actions is an abstraction. But
this may be a useful abstraction. For example, in our case, it is natural to ignore
the time taken by the controller’s actions. It is not natural at all to view closing
and opening of the gate as instantaneous actions, and we will not do that. Let
us stress that the evolving algebra methodology does not require that actions
are necessarily instantaneous. See for example [2] where an instantaneous action
ealgebra is refined to a prolonged-action ealgebra.

The design part of the railway crossing problem is not difficult, especially
because the problem has been addressed in a number of papers. What remains
is to formalize the design in a specification language, in our case as an evolving
algebra, and prove the safety and liveness requirements are satisfied.

3 Evolving Algebras Reminder

We give a brief reminder on evolving algebras based on the EA guide [3]. We
present only what is necessary here and ignore many important features.

3.1 Static Algebras

Static algebras are essentially logicians’ structures except that a tiny bit of meta-
mathematics is built into it. They are indeed algebras in the sense of the science
of universal algebra.

A vocabulary is a collection of function symbols; each symbol has a fixed
arity. Some function symbols are tagged as relation symbols (or predicates). It

is supposed that every vocabulary contains the following logic symbols : nullary
symbols true, false, undef, a binary symbol =, and the symbols of the standard
propositional connectives.

A static algebra (or a state) A of vocabulary Υ is a nonempty set X (the
basic set or superuniverse of A), together with interpretations of all function
symbols in Υ over X (the basic functions of A). A function symbol f of arity
r is interpreted as an r-ary operation over X (if r = 0, it is interpreted as an
element of X). The interpretations of predicates (basic relations) and the logic
symbols satisfy some obvious requirements stated below.

Remark on notations and denotations. A symbol in Υ is a name or notation
for the operation that interprets it in A, and the operation is the meaning or
denotation of the symbol in A. In English, a word “spoon” is a name of a familiar
table utensil, and one says “I like that spoon” rather than a more cumbersome
“I like that utensil named ‘spoon’”. Similarly, when a state is fixed, we may say
that f maps a tuple ā to an element b rather than that the interpretation of f
maps a tuple ā to an element b.

On the interpretations of logic symbols and predicates. Intuitively, (the inter-
pretations of) true and false represent truth and falsity respectively. Accordingly,
the symbols true and false are interpreted by different elements. These two ele-
ments are the only possible values of any basic relation. The Boolean connectives
behave in the expected way over these two elements, and the equality function
behaves in the expected way over all elements.

Universes and typing. Formally speaking, a static algebra is one-sorted. How-
ever, it may be convenient to view it as many-sorted; here we describe a standard
way to do this. Some unary basic relations are designated as universes (or sorts)
and their names may be called universe symbols. One thinks about a universe
U as a set {x : U(x) = true}. Basic functions are assigned universes as domains.
For example, the domain of a binary function f may be given as U1 ×U2 where
U1 and U2 are universes. If f is a relation, this means that f(a1, a2) = false
whenever a1 6∈ U1 or a2 6∈ U2. Otherwise this means that f(a1, a2) = undef
whenever a1 6∈ U1 or a2 6∈ U2, so that f is intuitively a partial function.

Remark on the built-in piece of meta-mathematics. In first-order logic, an as-
sertion about a given structure does not evaluate to any element of the structure.
For technical convenience, in evolving algebras truth and falsity are represented
internally and many assertions can be treated as terms. This technical modifi-
cation does not prevent us from dealing with assertions directly. For example,
let f, g be nullary function symbols and P a binary function symbol. Instead of
saying that P (f, g) evaluates to true (respectively false) at a state A, we may
say P (f, g) holds (respectively fails) at A. In some cases, we may even omit
“holds”; for example, we may assert simply that f 6= g. Admittedly, this is not
very pedantic, but we write for humans, not machines.

3.2 Updates

Alternatively, a state can be viewed as a kind of memory. A location ℓ of a state
A of vocabulary Υ is a pair ℓ = (f, ā) where f is a symbol in Υ of some arity

r and ā is an r-tuple of elements of A (that is, of the superuniverse of A). The
element f(ā) is the content of location ℓ in A.

An update of state A is a pair (ℓ, b), where ℓ is some location (f, ā) of A and
b is an element of A; it is supposed that b is (the interpretation of) true or false
if f is a predicate. This update is trivial if b is the content of ℓ in A. An update
can be performed: just replace the value at location ℓ with b. The vocabulary,
the superuniverse and the contents of other locations remain unchanged. The
state changes only if the update is nontrivial.

Call a set S = {(ℓ1, b1), . . . , (ℓn, bn)} of updates of a state A consistent if the
locations are distinct. In other words, S is inconsistent if there are i, j such that
ℓi = ℓj but bi 6= bj. In the case that S is consistent it is performed as follows:
replace the content of ℓ1 with b1, the content of ℓ2 with b2 and so on. To perform
an inconsistent update set, do nothing.

A pedantic remark. The equality used in the previous paragraph is not the
built-in equality of A but rather the equality of the meta language. One could
use another symbol for the built-in equality, but this is not necessary.

A remark to theoreticians. At the point that updates are introduced, some
people, in particular Robin Milner [8], raise an objection that an update may
destroy algebraic properties. For example, an operation may lose associativity.
That is true. So, in what sense are static algebras algebraic? They are algebraic
in the sense that the nature of elements does not matter and one does not dis-
tinguish between isomorphic algebras. A standard way to access a particular
element is to write a term that evaluates to that element. Coming back to alge-
braic properties like associativity (and going beyond the scope of this paper), let
us note that, when necessary, one can guarantee that such a property survives
updating by declaring some functions static or by imposing appropriate integrity
constraints or just by careful programming.

3.3 Basic Rules

In this subsection we present the syntax and semantics of basic rules. Each rule
R has a vocabulary, namely the collection of function symbols that occur in R.
A rule R is applicable to a state A only if the vocabulary of A includes that of R.
At each state A of sufficiently rich vocabulary, R gives rise to a set of updates.
To execute R at such a state A, perform the update set at A.

A basic update rule R has the form

f(e1, . . . , er) := e0

where f is an r-ary function symbol (the head of R) and each ei is a ground
term, that is, a term without any variables. (In programming languages, terms
are usually called expressions; that motivates the use of letter e for terms.) To
execute R at a state A of sufficiently rich vocabulary, evaluate all terms ei at A
and then change f accordingly. In other words, the update set generated by R

at A consists of one update (ℓ, a0) where ℓ = (f, (a1, . . . , ar)) and each ai is the
value of ei at A.

For example, consider an update rule f(c1+ c2) := c0 and a state A where +
is interpreted as the standard addition function on natural numbers and where
c1, c2, c0 have values 3, 5, 7 respectively. To execute the rule at A, set f(8) to 7.

There are only two basic rule constructors. One is the conditional constructor
which produces rules of the form:

if g then R1 else R2 endif

where g is a ground term (the guard of the new rule) and R1, R2 are rules. To
execute the new rule in a state A of sufficiently rich vocabulary, evaluate the
guard. If it is true, then execute R1; otherwise execute R2. (The “else” clause
may be omitted if desired.)

The other constructor is the block constructor which produces rules of the
form:

block
R1

...
Rk

endblock

where R1, . . . , Rk are rules. (We often omit the keywords “block” and “end-
block” for brevity and use indentation to eliminate ambiguity.) To execute the
new rule in a state A of sufficiently rich vocabulary, execute rules R1, . . . , Rk

simultaneously. More precisely, the update set generated by the new rule at A

is the union of the update sets generated by the rules Ri at A.
A basic program is simply a basic rule.
In this paper we say that a rule R is enabled at a state A of sufficiently rich

vocabulary if the update set generated by R at A is consistent and contains a
non-trivial update; otherwise R is disabled at A. (The notion of being enabled
has not been formalized in the EA guide.) Rules will be executed only if they
are enabled, so that the execution changes a given state. This seems to be a very
pedantic point. What harm is done by executing a rule that does not change a
given state? It turns out that the stricter notion of being enabled is convenient
in real-time computational theory; see Lemma 7 in this connection.

3.4 Parallel Synchronous Rules

Generalize the previous framework in two directions. First, permit terms with
variables and generalize the notion of state: in addition to interpreting some
function names, a generalized state may assign values to some variables. (Notice
that a variable cannot be the head of an update rule.)

Second, generalize the notion of guards by allowing bounded quantification.
More formally, we define guards as a new syntactical category. Every term
P (e1, . . . , er), where P is a predicate, is a guard. A Boolean combination of

guards is a guard. If g(x) is a guard with a variable x and U is a universe
symbol then the expression (∀x ∈ U)g(x) is also a guard.

The semantics of guards is quite obvious. A guard g(ȳ) with free variables ȳ
holds or fails at a (generalized) state A that assigns values to all free variables
of g. The least trivial case is that of a guard g(ȳ) = (∀x ∈ U)g′(x, ȳ). For every
element b of U in A, let Ab be the expansion of A obtained by assigning the
value b to x. Then g(ȳ) holds at A if g′(x, ȳ) holds at every Ab; otherwise it fails
at A.

Now consider a generalized basic rule R(x) with a variable x and let U be a
universe symbol. Form the following rule R∗:

var x ranges over U

R(x)
endvar

Intuitively, to execute R∗, one executes R(x) for every x ∈ U . To make this
more precise, let A be a (generalized) state that interprets all function names
in the vocabulary of R(x) and assigns values to all free variables of R(x) except
for x. For each element b of the universe U in A, let Ab be the expansion of A
obtained by assigning the value b to x, and let Eb be the update set generated
by R(x) at Ab. Since x does not appear as the head of any update instruction
in R(x), each Eb is also a set of updates of A. The update set generated by R∗

at A is the union of the update sets Eb.
Call the new rule a parallel synchronous rule (or a declaration rule, as in

the EA guide). A parallel synchronous program is simply a parallel synchronous
rule without free variables. Every occurrence of a variable should be bound by
a declaration or a quantifier.

3.5 Special Distributed Programs

For our purposes here, a distributed program Π is given by a vocabulary and a
finite set of basic or parallel synchronous programs with function symbols from
the vocabulary of Π . The constitutent programs are the modules of A. A state
of Π is a state of the vocabulary of Π . Intuitively, each module is executed by
a separate agent.

This is a very restricted definition. For example, the EA guide allows the
creation of new agents during the evolution.

Intuitively, it is convenient though to distinguish between a module (a piece
of syntax) and its executor, and even think about agents in anthropomorphic
terms. But since in this case agents are uniquely defined by their programs, there
is no real need to have agents at all, and we may identify an agent by the name
of its program.

4 Special Distributed Real-Time Ealgebras

A program does not specify a (distributed) ealgebra completely. We need to
define what constitutes a computation (or a run) and then to indicate initial

states and maybe a relevant class of runs. In this section, we define a restricted
class of distributed real-time evolving algebras by restricting attention to static
algebras of a particular kind and defining a particular notion of run.

We are interested in computations in real time that satisfiy the following
assumptions.

I1 Agents execute instantaneously.
I2 Enviromental changes take place instantaneously.
I3 The global state of the given distributed ealgebra is well defined at every

moment.

Let us stress again that the three assumptions above are not a part of
the evolving algebra definition. The prolonged-action ealgebra [2], mentioned
in Sect. 2, satisfies none of these three assumptions.

Vocabularies and Static Structures. Fix some vocabulary Υ with a universe sym-
bol Reals and let Υ+ be the extension of Υ with a nullary function symbol CT;
it is supposed of course that Υ does not contain CT. Restrict attention to Υ+-
states where the universe Reals is the set of real numbers and CT evaluates to
a real number. Intuitively, CT gives the current time.

4.1 Pre-runs

Definition 1. A pre-run R of vocabulary Υ+ is a mapping from the interval
[0,∞) or the real line to states of vocabulary Υ+ satisfying the following re-
quirements where ρ(t) is the reduct of R(t) to Υ .

Superuniverse Invariability The superuniverse does not change during the
evolution; that is, the superuniverse of every R(t) is that of R(0).

Current Time At every R(t), CT evaluates to t.
Discreteness For every τ > 0, there is a finite sequence 0 = t0 < t1 < . . . <

tn = τ such that if ti < α < β < ti+1 then ρ(α) = ρ(β). ⊓⊔

Remarks. Of course, we could start with an initial moment different from 0,
but without loss of generality we can assume that the initial moment is 0. Our
discreteness requirement is rather simplistic (but sufficient for our purposes in
this paper). One may have continuous time-dependent basic functions around
(in addition to CT); in such cases, the discreteness requirement becomes more
subtle.

In the rest of this section, R is a pre-run of vocabulary Υ+ and ρ(t) is the
reduct of R(t) to Υ .

The notation ρ(t+) and ρ(t−) is self-explanatory; still, let us define it pre-
cisely. ρ(t+) is any state ρ(t + ε) such that ε > 0 and ρ(t + δ) = ρ(t + ε) for
all positive δ < ε. Similarly, if t > 0 then ρ(t−) is any state ρ(t − ε) such that
0 < ε ≤ t and ρ(t− δ) = ρ(t− ε) for all positive δ < ε.

Call a moment t significant for R if (i) t = 0 or (ii) t > 0 and either ρ(t) 6=
ρ(t−) or ρ(t) 6= ρ(t+).

Lemma2. For any moment t, ρ(t+) is well defined. For any moment t > 0,
ρ(t−) is well defined. If there are infinitely many significant moments then their
supremum equals ∞.

Proof. Obvious. ⊓⊔

Recall that a set S of nonnegative reals is discrete if it has no limit points.
In other words, S is discrete if and only if, for every nonnegative real τ , the set
{t ∈ S : t < τ} is finite. The discreteness requirement in the definition of pre-runs
means exactly that the collection of the significant points of R is discrete.

We finish this subsection with a number of essentially self-evident definitions
related to a given pre-run R. Let e be a term of vocabulary Υ+. If e has free
variables then fix the values of those variables, so that e evaluates to a definite
value in every state of vocabulary Υ+. (Formally speaking e is a pair of the form
(e′, ξ) where e′ is a term and ξ assigns elements of R(0) to free variables of e′.)

The value et of e at moment t is the value of e in R(t). Accordingly, e

holds (respectively fails) at t if it does so in R(t). Likewise, a module is enabled
(respectively disabled) at t if it is so in R(t). In a similar vein, we speak about
a time interval I. For example, e holds over I if it holds at every t ∈ I.

If e has the same value over some nonempty interval (t, t+ε), then this value
is the value et+ of e at t+ (respectively at t−). Similarly, if t > 0 and e has the
same value over some nonempty interval (t − ε, t), then this value is the value
et− of e at t−. Define accordingly when e holds, fails at t+, t− and when an
agent is enabled, disabled at t+, t−.

Further, e is set to a value a (or simply becomes a) at t if either (i) et− 6= a

and et = a, or else (ii) et 6= a and et+ = a. Define accordingly when an agent
becomes enabled, disabled at t.

4.2 Runs

Now consider a distributed program Π with function symbols from vocabulary
Υ+. Runs of Π are pre-runs with some restrictions on how the basic functions
evolve. Depending upon their use, the basic functions of Π fall into the following
three disjoint categories.

Static These functions do not change during any run. The names of these func-
tions do not appear as the heads of update rules in Π .

Internal Dynamic These functions may be changed only by agents. The names
of these functions appear as the heads of update rules and the functions are
changed by executing the modules of Π . For brevity, we abbreviate “internal
dynamic” to “internal”.

External Dynamic These functions may be changed only by the environment.
The names of these functions do not appear as the heads of update rules; nev-
ertheless the functions can change from one state to another. Who changes
them? The environment. Some restrictions may be imposed on how these
functions can change. For brevity, we abbreviate “external dynamic” to “ex-
ternal”.

Remark. It may be convenient to have functions that can by changed both
by agents and the environment. The EA guide allows that, but we do not need
that generality here.

Before we give the definition of runs, let us explain informally that one should
be cautious with instantaneous actions. In particular, it may not be possible to
assume that agents always fire at the moment they become enabled. Consider
the following two interactive scenarios.

Scenario 1 The environment changes a nullary external function f at moment
t. This new value of f enables an agent X . The agent fires immediately and
changes another nullary function g.

What are the values of f and g at time t, and at what time does X fire? If
f has its old value at t then X is disabled at t and fires at some time after t;
thus X does not fire immediately. If g has its new value already at t then X had
to fire at some time before t; that firing could not be triggered by the change of
f . We arrive at the following conclusions: f has its new value at t (and thus ft
differs from ft−), X fires at t, and g has its old value at t (and thus gt differs
from gt+).

Scenario 2 At time t, an agent X changes a function g and in so doing enables
another agent Y while disabling himself.

When does Y fire? Since X fires at t, it is enabled at t and thus g has its
old value at t. Hence Y is disabled at t and fires at some time after t. Thus Y

cannot react immediately.
The following definition is designed to allow immediate agents.

Definition 3. A pre-run R of vocabulary Υ+ is a run of Π if it satisfies the
following conditions where ρ(t) is the reduct of R to Υ .

1. If ρ(t+) differs from ρ(t) then ρ(t+) is the Υ -reduct of the state resulting
from executing some modules M1, . . . ,Mk at R(t). In such a case we say t is
internally significant and the executors of M1, . . . ,Mk fire at t. All external
functions with names in Υ have the same values in ρ(t) and ρ(t+).

2. If i > 0 and ρ(τ) differs from ρ(τ−) then they differ only in the values
of external functions. In such a case we say τ is externally significant . All
internal functions have the same values in ρ(t−) and ρ(t). ⊓⊔

Remark. Notice the global character of the definition of firing. An agent fires
at a moment t if ρ(t+) 6= ρ(t). This somewhat simplified definition of firing is
sufficient for our purposes in this paper.

In the rest of this section, R is a run of Π and ρ(t) the reduct of R(t) to
Υ . Let e be a term e with fixed values of all its free variables. A moment t is
significant for e if, for every ε > 0, there exists a moment α such that |α− t| < ε

and ea 6= et. Call e discrete (in the given run R) if the collection of significant
moments of e is discrete. In other words, e is discrete if and only, for every t > 0,
there is a finite sequence

0 = t0 < t1 < . . . < tn = t

such that if ti < α < β < ti+1 then eα = eβ.

Lemma4 (Discrete Term Lemma). If a term e is discrete then

1. For every t, e has a value at t+.
2. For every t > 0, e has a value at t−.

Proof. Obvious. ⊓⊔

Lemma5 (Preservation Lemma). Suppose that a term e with fixed values of
its free variables does not contain CT. Then e is discrete. Furthermore,

1. If e contains no external functions and t > 0 then et = et−.
2. If e contains no internal functions then et+ = et.

Proof. This is an obvious consequence of the definition of runs. ⊓⊔

It may be natural to have agents that fire the instant they are enabled.

Definition 6. An agent is immediate if it fires at every state where it is enabled.
⊓⊔

Lemma7 (Immediate Agent Lemma).

1. The set of moments when an immediate agent is enabled is discrete.
2. If the agent is enabled at some moment t then it is disabled at t+ and, if

t > 0, at t−.

Proof.

1. If the agent is enabled at a moment t, it fires at t and therefore (according to
our notion of being enabled) changes the state; it follows that t is a significant
moment of the run. By the discreteness condition on pre-runs, the collection
of significant moments of a run is discrete. It remains to notice that every
subset of a discrete set is discrete.

2. Follows from 1. ⊓⊔

Recall the scenario S2. There agent Y cannot be immediate. Nevertheless, it
may make sense to require that some agents cannot delay firing forever.

Definition 8. An agent X is bounded if it is immediate or there exists a bound
b > 0 such that there is no interval (t, t + b) during which X is continuously
enabled but does not fire. ⊓⊔

Notice that it is not required that if a bounded agent X becomes enabled at
some moment α, then it fires at some moment β < α+ b. It is possible a priori
that X becomes disabled and does not fire in that interval.

5 The Ealgebra for Railroad Crossing Problem

We present our solution for the railroad crossing problem formalized as an evolv-
ing algebra A of a vocabulary Υ+ = Υ ∪ {CT}. In this section, we describe the
program and initial states of A; this will describe the vocabulary as well. The
relevant runs of A will be described in the next section.

The program of A has two modules gate and controller, shown in Fig. 3.

[htbp]

gate

if Dir = open then GateStatus := open endif

if Dir = close then GateStatus := closed endif

controller

var x ranges over Tracks
if TrackStatus(x) = coming and Deadline(x) = ∞ then

Deadline(x) := CT+ WaitTime
endif

if CT =Deadline(x) then Dir := close endif

if TrackStatus(x) = empty and Deadline(x) < ∞ then

Deadline(x) := ∞

endif

endvar

if Dir=close and SafeToOpen then Dir := open endif

Fig. 3. Rules for gate and controller.

Here WaitTime abbreviates the term dmin − dclose, and SafeToOpen abbre-
viates the term

(∀x ∈ Tracks)[TrackStatus(x) = empty or CT + dopen < Deadline(x)].

We will refer to the two constituent rules of gate as OpenGate, CloseGate re-
spectively. We will refer to the three constituent rules of controller’s parallel
synchronous rule as SetDeadline(x), SignalClose(x), ClearDeadline(x), respec-
tively, and the remaining conditional rule as SignalOpen.

Our GateStatus has only two values: opened and closed. This is of course
a simplification. The position of a real gate could be anywhere between fully
closed and fully opened. (In [6], the position of the gate ranges between 0o and
90o.) But this simplification is meaningful. The problem is posed on a level of
abstraction where it does not matter whether the gate swings, slides, snaps or
does something else; it is even possible that there is no physical gate, just traffic
lights. Furthermore, suppose that the gate is opening and consider its position
as it swings from 0o to 90o. Is it still closed or already open at 75o? One may say

that it is neither, that it is opening. But for the waiting cars, it is still closed.
Accordingly GateStatus is intended to be equal to closed at this moment. It may
change to opened when the gate reaches 90o. Alternatively, in the case when the
crossing is equipped with traffic lights, it may change to opened when the light
becomes green. Similarly, it may change from opened to closed when the light
becomes red. If one is interested in specifying the gate in greater detail, our
ealgebra can be refined by means of another ealgebra.

The program does not define our evolving algebra A completely. In addition,
we need to specify a collection of initial states and relevant runs.

Initial states of A satisfy the following conditions:

1. The universe Tracks is finite. The universe ExtendedReals is an extension of
the universe Reals with an additional element ∞. The binary relation < and
the binary operation + are standard; in particular ∞ is the largest element
of ExtendedReals.

2. The nullary functions close and open are interpreted by different elements
of the universe Directions. The nullary functions closed and opened are in-
terpreted by different elements of the universe GateStatuses. The nullary
functions empty, coming, in crossing are different elements of the universe
TrackStatuses.

3. The nullary functions dclose, dopen, dmax, dmin are positive reals such that

dclose < dmin ≤ dmax.

One may assume for simplicity of understanding that these four reals are pre-
defined: that is, they have the same value in all initial state. This assumption
is not necessary.

4. The unary function TrackStatus assigns (the element called) empty to every
track (that is, to every element of the universe Tracks). The unary function
Deadline assigns ∞ to every track.

It is easy to see that, in any run, every value of the internal function Deadline
belongs to ExtendedReals.

6 Regular Runs

The following definition takes into account the assumptions of Sect. 2.

6.1 Definitions

Definition 9. A run R of our evolving algebra is regular if it satisfies the fol-
lowing three conditions.

Train Motion For any track x, there is a finite or infinite sequence

0 = t0 < t1 < t2 < t3 < . . .

of so-called significant moments of track x such that

– TrackStatus(x) = empty holds over every interval [t3i, t3i+1);

– TrackStatus(x) = coming holds over every interval [t3i+1, t3i+2), and
dmin ≤ (t3i+2 − t3i+1) ≤ dmax;

– TrackStatus(x) = in crossing holds over every interval [t3i+2, t3i+3); and

– if tk is the final significant moment in the sequence, then k is divisible
by 3 and TrackStatus(x) = empty over [tk,∞).

Controller Timing Agent controller is immediate.

Gate Timing Agent gate is bounded. Moreover, there is no time interval I =
(t, t + dclose) such that [Dir=close and GateStatus = opened] holds over I.
Similarly there is no interval I = (t, t + dopen) such that [Dir=open and
GateStatus = closed] holds over I. ⊓⊔

In the rest of this paper, we restrict attention to regular runs of A. Let R be
a regular run and ρ be the reduct of R to Υ .

6.2 Single Track Analysis

Fix a track x and let 0 = t0 < t1 < t2 < . . . be the significant moments of x.

Lemma10 (Deadline Lemma).

1. Deadline(x) = ∞ over (t3i, t3i+1], and Deadline(x) = t3i+1+WaitTime over
(t3i+1, t3i+3].

2. Let Dclose = dclose+(dmax−dmin) = dmax−WaitTime. If TrackStatus(x) 6=
in crossing over an interval (α, β), then Deadline(x) ≥ β−Dclose over (α, β).

Proof.

1. A quite obvious induction along the sequence

(t0, t1], (t1, t3], (t3, t4], (t4, t6],

The basis of induction. We prove that Deadline(x) = ∞ over I = (t0, t1);
it will follow by Preservation Lemma that Deadline(x) = ∞ at t1. Initially,
Deadline(x) = ∞. Only SetDeadline(x) can alter that value of Deadline(x),
but SetDeadline(x) is disabled over (t0, t1). The induction step splits into
two cases.

Case 1. Given that Deadline(x) = ∞ at t3i+1, we prove that Deadline(x) =
t3i+1 + WaitTime over I = (t3i+1, t3i+3); it will follow by Preservation
Lemma that Deadline(x) = t3i+1 + WaitTime at t3i+3. SetDeadline(x) is
enabled and therefore fires at t3i+1 setting Deadline(x) to t3i+1+WaitTime.
ClearDeadline(x) is the only rule that can alter that value of Deadline(x)
but it is disabled over I because TrackStatus(x) 6= empty over I.

Case 2. Given that Deadline(x) < ∞ at t3i where i > 0, we prove that
Deadline(x) = ∞ over I = (t3i, t3i+1); it will follow by Preservation Lemma
that Deadline(x) = ∞ at t3i+1. ClearDeadline(x) is enabled and therefore
fires at t3i setting Deadline(x) to ∞. Only SetDeadline(x) can alter that
value of Deadline(x) but it is disabled over I because TrackStatus(x) =
empty 6= coming over I.

2. By contradiction suppose that Deadline(x) < β −Dclose at some t ∈ (α, β).
By 1, there is an i such that t3i+1 < t ≤ t3i+3 and Deadline(x) = t3i+1 +
WaitTime at t. Since (α, β) and the in crossing interval [t3i+2, t3i+3) are
disjoint, we have that t3i+1 < t < β ≤ t3i+2. By the definition of regular
runs, dmax ≥ t3i+2 − t3i+1 ≥ β − t3i+1, so that t3i+1 ≥ β − dmax. We have

β −Dclose > Deadline(x) at t = t3i+1 +WaitTime
≥ β − dmax +WaitTime = β −Dclose

which is impossible. ⊓⊔

Corollary 11 (Three Rules Corollary).

1. SetDeadline(x) fires exactly at moments t3i+1, that is exactly when Track-
Status(x) becomes coming.

2. SignalClose(x) fires exactly at moments t3i+1 +WaitTime.
3. ClearDeadline(x) fires exactly at moments t3i with i > 0, that is exactly when

TrackStatus(x) becomes empty.

Proof. Obvious. ⊓⊔

Let s(x) be the quantifier-free part

TrackStatus(x) = empty or CT + dopen < Deadline(x).

of the term SafeToOpen with the fixed value of x.

Lemma12 (Local SafeToOpen Lemma).

1. Suppose that WaitTime > dopen. Then s(x) holds over intervals [t3i, t3i+1+
WaitTime − dopen) (the maximal positive intervals of s(x)) and fails over
intervals [t3i+1 +WaitTime− dopen, t3i+3).

2. Suppose that WaitTime ≤ dopen. Then s(x) holds over intervals [t3i, t3i+1]
(the maximal positive intervals of s(x)) and fails over intervals (t3i+1, t3i+3).

3. The term s(v) is discrete.
4. s(x) becomes true exactly at moments t3i with i > 0, that is exactly when

TrackStatus(x) becomes empty.
5. If [α, β) or [α, β] is a maximal positive interval of s(x), then SignalClose(x)

is disabled over [α, β] and at β+.

Proof.

1. Over [t3i, t3i+1), TrackStatus(x) = empty and therefore s(x) holds. At t3i+1,
Deadline(x) = ∞ and therefore s(x) holds. SetDeadline(x) fires at t3i+1 and
sets Deadline(x) to t3i+1 +WaitTime. Over (t3i, t3i+1 +WaitTime− dopen),

CT + dopen < (t3i+1 +WaitTime− dopen) + dopen

= t3i+1 +WaitTime = Deadline(x)

and therefore s(x) holds. Over the interval [t3i+1+WaitTime−dopen, t3i+3),
TrackStatus(x) 6= empty and CT+dopen ≥ t3i+1+WaitTime = Deadline(x)
and therefore s(x) fails.

2. The proof is similar to that of 1.
3. This follows from 1 and 2.
4. This follows from 1 and 2.
5. We consider the case when WaitTime > dopen; the case when WaitTime ≤

dopen is similar. By 1, the maximal open interval of s(x) has the form
[α, β) = [t3i, t3i+1 +WaitTime − dopen) for some i. By Three Rules Corol-
lary, SignalClose(x) fires at moments t3j+1 + WaitTime. Now the claim is
obvious. ⊓⊔

6.3 Multiple Track Analysis

Lemma13 (Global SafeToOpen Lemma).

1. The term SafeToOpen is discrete.
2. If SafeToOpen holds at t+ then it holds at t.
3. If SafeToOpen becomes true at t then some TrackStatus(x) becomes empty

at t.
4. If SafeToOpen holds at t then t belongs to an interval [α, β) (a maximal

positive interval of SafeToOpen) such that SafeToOpen fails at α−, holds
over [α, β) and fails at β.

Proof.

1. Use part 3 of Local SafeToOpen Lemma and the fact that there are only
finitely many tracks.

2. Use parts 1 and 2 of Local SafeToOpen Lemma.
3. Use parts 1 and 2 of Local SafeToOpen Lemma.
4. Suppose that SafeToOpen holds at t. By parts 1 and 2 of Local SafeToOpen

Lemma, for every track x, t belongs to an interval [αx < βx) such that s(x)
fails at αx−, holds over [αx, βx) and fails at βx. The desired α = maxx αx,
and the desired β = minx βx. ⊓⊔

Lemma14 (Dir Lemma). Suppose that [α, b) is a maximal positive interval
of SafeToOpen.

1. Dir = close at α.
2. Dir = open over (α, β] and at β+.

Proof.

1. By Global SafeToOpen Lemma, some TrackStatus(x) becomes empty at t.
Fix such an x and let 0 = t0 < t1 < t2 < . . . be the significant moments
of TrackStatus(x). Then α = t3i+3 for some i. By Three Rules Corollary,
SetDeadline(x) fires at t3i+1+WaitTime setting Dir to close. By Local Safe-
ToOpen Lemma, s(x) fails over I = (t3i+1 +WaitTime, t3i+3]. Hence Safe-
ToOpen fails over I and therefore every SignalClose(y) is disabled over I.
Thus Dir remains close over I.

2. By 1, SignalOpen fires at α setting Dir to open. By part 5 of Local Safe-
ToOpen Lemma, every SignalClose(x) is disabled over [α, β] and at β+.
Hence Dir remains open over (α, β] and at β+. ⊓⊔

Corollary 15 (SignalOpen Corollary). SignalOpen fires exactly when Safe-
ToOpen becomes true. SignalOpen fires only when some TrackStatus(x) becomes
true.

Proof. Obvious. ⊓⊔

We have proved some properties of regular runs of our ealgebra A, but the
question arises if there any regular runs. Moreover, are there any regular runs
consistent with a given pattern of trains? The answer is positive. In Sect. 8, we
will prove that every pattern of trains gives rise to a regular run and will describe
all regular runs consistent with a given pattern of trains.

7 Safety and Liveness

Recall that we restrict attention to regular runs of our ealgebra A.

Theorem16 (Safety Theorem). The gate is closed whenever a train is in
the crossing. More formally, GateStatus = closed whenever TrackStatus(x) =
in crossing for any x.

Proof. Let t0 < t1 < . . . be the significant moments of some track x. Thus, during
periods [t3i+2, t3i+3), TrackStatus(x) = in crossing. We show that GateStatus =
closed over [t3i+2, t3i+3] and even over [t3i+1 + dmin, t3i+3]. (Recall that dmin ≤
t3i+2 − t3i+1 ≤ dmax and therefore t3i+1 + dmin ≤ t3i+2.)

By Three Rules Corollary, SetDeadline(x) fires at t3i+1 setting Deadline(x)
to α = t3i+1 +WaitTime. If Dirα = open then SignalClose(x) fires at α setting
Dir to close; regardless, Dirα+ = close. By Local SafeToOpen Lemma, s(x) fails
over I = (α, t3i+3). Hence, over I, SafeToOpen fails, SignalOpen is disabled, Dir
= close, and OpenGate is disabled.

By the definition of regular runs, GateStatus = closed at some moment t

such that α < t < α+ dclose = t3i+1 +WaitTime + dclose = t3i+1 + dmin. Since
OpenGate is disabled over I, GateStatus remains closed over I and therefore over
the interval [t3i+1 + dmin, t3i+3). By Preservation Lemma, GateStatus = closed
at t3i+3. ⊓⊔

Let Dclose = dclose + (dmax − dmin) = dmax −WaitTime.

Theorem 17 (Liveness Theorem). Assume α + dopen < β − Dclose. If the
crossing is empty in the open time interval (α, β), then the gate is open in [α+
dopen, β − Dclose]. More formally, if every TrackStatus(x) 6= in crossing over
(α, β), then GateStatus = opened over [α+ dopen, β −Dclose].

Proof. By Deadline Lemma, every Deadline(x) ≥ β −Dclose > α + dopen over
(α, β). By the definition of SafeToOpen, it holds at α. If Dirα = close then
SignalOpen fires at α; in any case Dirα+ = open.

By Deadline Lemma, every Deadline(x) ≥ β − Dclose > CT over (α, β −
Dclose). Hence, over (α, β−Dclose), every SignalClose(x) is disabled, Dir remains
open, and StartClose is disabled.

By the definition of regular runs, GateStatus = opened at some moment
t ∈ (α, α+ dopen). Since StartClose is disabled over (α, β −Dclose), GateStatus
remains opened over (t, β−Dclose) and therefore is opened over [α+ dopen, β−
Dclose). By Preservation Lemma, GateStatus = opened at b −Dclose. ⊓⊔

The next claim shows that, in a sense, Liveness Theorem cannot be improved.

Claim18.

1. Liveness Theorem fails if dopen is replaced with a smaller constant.
2. Liveness Theorem fails if Dclose is replaced with a smaller constant.

Proof. The first statement holds because the gate can take time arbitrarily close
to dopen to open. The second statement holds for two reasons. Recall that
Dclose = dclose+(dmax−dmin). The term (dmax−dmin) cannot be reduced; to
be on the safe side, the controller must act as if every oncoming train is moving
as fast as possible, even if it is moving as slow as possible. The term dclose cannot
be reduced either; the gate can take arbitrarily short periods of time to close.
Now we give a more detailed proof.

Part 1. Given some constant copen < dopen, we construct a regular run of our
ealgebraA and exhibit an open interval I = (α, β) such that the crossing is empty
during I but the gate is not opened during a part of interval (α + copen, β −
Dclose).

We assume that dopen, Dclose < 1 (just choose the unit of time appropriately)
and that there is only one track.

The traffic. Only one train goes through the crossing. It appears at time 100,
reaches the crossing at time 100 + dmax and leaves the crossing at time 110 +
dmax, so that Dir should be changed only twice: set to close at 100+WaitTime
and set to open at 110 + dmax.

The run. We don’t care how quickly the gate closes, but we stipulate that
the time ∆ that the gate takes to open belongs to (copen, dopen).

The interval I: (110 + dmax, 110 + dmax + dopen).
Since the only train leaves the crossing at 110+ dmax, the crossing is empty

during I. However the gate takes time ∆ > copen to open and thus is not opened
during the part (110 + dmax + copen, 110 + dmax +∆) of I.

Part 2. Given some constant Cclose < Dclose, we construct a regular run of
our ealgebra A and exhibit an open interval I = (α, β) such that the crossing is
empty during I but the gate is not opened (even closed) during a part of interval
(α+ dopen, β − Cclose).

We assume that dopen, Cclose < 1, and that there is only one track with the
same traffic pattern as in part 1.

The run. This time we don’t care how quickly the gate opens, but we stipulate
that the time ∆ that the gate takes to close satisfies the following condition:

0 < ∆ < min{dclose, Dclose − Cclose}.

The interval I is (0, 100 + dmax), so that α = 0 and β = 100 + dmax.
Since the only train reaches the crossing at 100+dmax, the crossing is empty

during I. The gate is closed by 100 + WaitTime + ∆ and is closed during the
part (100 + WaitTime + ∆, 100 + WaitTime + (Dclose − Cclose)) of interval
(α+dopen, β−Cclose). Let us check that (100+WaitTime+∆, 100+WaitTime+
(Dclose−Cclose) is indeed a part of (α+dopen, β−Cclose). Clearly, α+dopen <

0 + 1 < 100 +WaitTime +∆. Further:

100 +WaitTime +∆

< 100 +WaitTime + (Dclose − Cclose)

= 100 + (dmin − dclose) + [(dclose + dmax − dmin)− Cclose] = β − Cclose.

⊓⊔

8 Some Additional Properties

Theorem19 (Uninterrupted Closing Theorem). The closing of the gate
is never interrupted. More formally, if Dir is set to close at some moment α,
then Dir = close over the interval I = (α, α+ dclose).

Recall that, by the definition of regular runs, GateStatus = closed somewhere
in I if Dir = close over I.

Proof. Since Dir is set to close at α, some SignalClose(x) fires at α. Fix such an
x and let t0 < t1 < . . . be the significant moments of track x. By Three Rules
Corollary, there is an i such that α = t3i+1 +WaitTime = t3i+1 + dmin − dclose.
Then α + dclose = t3i+1 + dmin ≤ t3i+2. By the definition of regular runs,
TrackStatus(x) = coming over I. By Deadline Theorem, Deadline(x) = α over
I, so that CT+dopen > CT > Deadline(x) over I. Because of this x, SafeToOpen
fails over I and therefore SignalOpen is disabled over I. Thus Dir = close over
I.

Theorem20 (Uninterrupted Opening Theorem). Suppose WaitTime ≥
dopen; that is, dmin ≥ dclose + dopen. Then the opening of the gate is not
interrupted; in other words, if Dir is set to open at some moment α, then Dir =
open over the interval I = (α, α+ dopen).

Recall that, by the definition of regular runs, GateStatus = opened some-
where in I if Dir = open over I.

Proof. It suffices to prove that every SignalClose(x) is disabled over I. Pick any
x and let t0 < t1 < . . . be the significant moments of track x. Since Dir is set to
open at α, SignalOpen fires at α, SafeToOpen holds at α, and s(x) holds at α.
We have two cases.

Case 1. α+ dopen < Deadline(x)α < ∞. Since Deadline(x)α < ∞, τ3i+1 < α ≤
t3i+3 and Deadline(x)α = t3i+1 +WaitTime for some i (by Deadline Lemma).
We have

α+ dopen < Deadline(x)α = t3i+1 +WaitTime < t3i+1 + dmin ≤ t3i+2 < t3i+3.

By Deadline Lemma, Deadline(x) does not change in I, so that CT remains
< Deadline(x) in I and therefore SignalClose(x) is disabled over I.

Case 2. α+ dopen ≥ Deadlineα(x) or Deadlineα(x) = ∞.
We check that t3i ≤ α ≤ t3i+1 for some i. Indeed, if TrackStatus(x)α =

empty then t3i ≤ α < t3i+1 for some i. Suppose that TrackStatus(x)α 6= empty.
Since s(x) holds at a, α + dopen < Deadlineα(x). By the condition of Case 2,
Deadline(x)α = ∞. Recall that TrackStatus(x) 6= empty exactly in intervals
[t3i+1, t3i+3 and Deadline(x) = ∞ exactly in periods (t3i, t3i+1]. Thus α = t3i+1

for some i.
The first moment after α that SignalClose(x) is enabled is t3i+1+WaitTime.

Thus it suffices to check that α + dopen ≤ t3i+1 + WaitTime. Since dmin ≥
dclose + dopen, we have

α+ dopen ≤ t3i+1 + dopen ≤ t3i+1 + (dmin − dclose) = t3i+1 +WaitTime.⊓⊔

Corollary 21 (Dir and GateStatus Corollary). Assume dmin ≥ dclose +
dopen.

1. If the sequence γ1 < γ2 < γ3 < . . . of positive significant moments of Dir is
infinite, then the sequence δ1 < δ2 < δ3 < . . . of positive significant moments
of GateStatus is infinite and each δi ∈ (γi, γi+1).

2. If the positive significant moments of Dir form a finite sequence γ1 < γ2 <

. . . < γn, then the positive significant moments of GateStatus form a se-
quence δ1 < δ2 < . . . < δn such that δi ∈ (γi, γi+1) for all i < n and δn > γn.

Proof. We prove only the first claim; the second claim is proved similarly.
Since Dir = open and GateStatus = opened initially, GateStatus does not

change in (0, γ1). Suppose that we have proved that if γ1 < . . . < γj are the first
j positive significant moments of Dir, then there are exactly j − 1 significant
moments δ1 < . . . < δj−1 of GateStatus in (0, gj] and each δi ∈ (γi, γi+1).
We restrict attention to the case when j is even; the case of odd j is similar.
Since j is even, Dir is set to open at γj . If γj is the last significant moment

of Dir, then the gate will open at some time in (γj , γj + dopen) and will stay
open forever after that. Otherwise, let k = j + 1. By Uninterrupted Opening
Theorem, the gate opens at some moment δj ∈ (γj , γk). Since Dir remains open
in (δj , γk), GateStatus = opened holds over (δj , γk). By Preservation Lemma,
GateStatus = opened at γk. ⊓⊔

9 Existence of Regular Runs

We delayed the existence issue in order to take advantage of Sect. 8. For simplic-
ity, we restrict attention to an easier but seemingly more important case when
dmin ≥ dclose + dopen. The Existence Theorem and the two Claims proved in
this section remain true in the case dmin < dclose + dopen; we provide remarks
explaining the necessary changes.

Let Υ1 = Υ − {GateStatus}, and Υ0 = Υ1 − {Deadline,Dir}. For i = 0, 1, let
Υ+

i = Υi ∪ {CT}.

Theorem22 (Existence Theorem). Let P be a pre-run of vocabulary Υ0 sat-
isfying the train motion requirement in the definition of regular runs, and let A
be an initial state of A consistent with P (0). There is a regular run R of A which
starts with A and agrees with P .

Proof. Let the significant moments of P be 0 = α0 < α1 < For simplicity, we
consider only the case where this sequence is infinite. The case when the sequence
is finite is similar. Our construction proceeds in two phases. In the first phase,
we construct a run Q of module controller (that is of the corresponding
one-module evolving algebra of vocabulary Υ+

1) consistent with A and P . In
the second phase, we construct the desired R by extending Q to include the
execution of module gate.

Phase 1: Constructing Q from P . Let β0 < β1 < . . . be the sequence that
comprises the moments αi and the moments of the form t + WaitTime where
t is a moment when some TrackStatus(x) becomes coming. By Three Rule and
SignalOpen Corollaries, these are exactly the significant moments of the desired
Q. We define the desired Q by induction on βi. It is easy to see that Q(T) is
uniquely defined by its reduct q(t) to Υ1.

Q(0) is the appropriate reduct of A. Suppose that Q is defined over [0, βj]
and k = j + 1. Let γ range over (βj , βk). If controller does not execute at
βj , define q(γ) = q(βj); otherwise let q(γ) e the state resulting from executing
controller at q(βj). Define q(βk) to agree with q(γ) at all functions except
TrackStatus, where it agrees with P (βk).

Clearly Q is a pre-run. It is easy to check that Q is a run of controller
and that controller is immediate in Q.

Phase 2: Constructing R from Q. We construct R by expanding Q to include
GateStatus. Let γ1 < γ2 < . . . be the sequence of significant moments of Q at
which Dir changes. Thus Dir becomes close at moments γi where i is odd, and
becomes open at moments γi where i is even.

There are many possible ways of extending Q depending on how long it takes
to perform a given change in GateStatus. Chose a sequence a1, a2, . . . of reals
such that (i) ai < γi+1 − γi and (ii) ai < dclose if i is odd and ai < dopen if i
is even. The idea is that gate will delay executing OpenGate or CloseGate for
time ai.

The construction proceeds by induction on γi. After i steps, GateStatus will
be defined over [0, gi], and GateStatusgi will equal opened if i is odd and will
equal closed otherwise.

Set GateStatus = opened over [0, γ1]. Suppose that GateStatus is defined
over [0, γi] and let j = i+ 1. We consider only the case when i is even. The case
of odd i is similar.

By the induction hypothesis, GateStatus = closed at γi. Since i is even, Dir
is set to open at γi. Define GateStatus = closed over (γi, γi + ai] and opened
over (γi + ai, γj].

It is easy to see that R is a regular run of A. ⊓⊔

Remark. If the assumption dmin ≥ dclose + dopen is removed, Phase 1 of the
construction does not change but Phase 2 becomes more complicated. After i

steps, GateStatus is defined over [0, gi], and GateStatusgi = closed if i is even;
it cannot be guaranteed that GateStatusgi = opened if i is odd. The first step
is as above. For an even i, we have three cases.

Case 1: ai < γj − γi. Define GateStatus over (gi, gj] as in the Existence
Theorem Proof.

Case 2: ai > γj − γi. Define GateStatus = closed over (gi, gj].
Case 3: ai = γj − γi. Define GateStatus = closed over (gi, gj] as in sub-case

2 but also mark gj (to indicate that OpenGate should fire at γj).
For an odd i, we have two cases.
Case 1: Either GateStatus = opened at γi or else GateStatus = closed at gi

but gi is marked. Define GateStatus over (gi, gj] as in the Existence Theorem
Proof.

Case 2: GateStatus = closed at γi and γi is not marked. Ignore ai and define
GateStatus = closed over (gi, gj].

Claim23 (Uniqueness of Control). There is only one run of controller
consistent with A and P .

Proof. Intuitively, the claim is true because the construction of Q was deter-
ministic: we had no choice in determining the significant moments of Q. More
formally, assume by reductio ad absurdum that Q1, Q2 are runs of controller
consistent with A and P and the set D = {t : Q1(t) 6= Q2(t)} is non-empty. Let
τ = inf(D). Since both Q1 and Q2 agree with A, τ > 0. By the choice of τ , Q1

and Q2 agree over [0, τ). Since both Q1 and Q2 agree with A and P , they can

differ only at internal functions; let q1, q2 be reductions of Q1, Q2 respectively to
the internal part of the vocabulary. By Preservation Lemma, q1 and q2 coincide
at τ . But the values of internal functions at τ+ are completely defined by the
state at t. Thus q1 and q2 coincide at τ+ and therefore Q1, Q2 coincide over
some nonempty interval [τ, τ + ε). This contradicts the definition of τ . ⊓⊔

Claim24 (Universality of Construction). Let R′ be any regular run of the
ealgebra consistent with A and P . In the proof of Existence Theorem, the sequence
a1, a2, . . . can be chosen in such a way that the regular run R constructed there
coincides with R′.

Proof. By Uniqueness of Control Claim, the reducts of R and R′ to Υ+

1 coincide.
The moments γ1 < γ2 < . . . when Dir changes inR are exactly the same moments
when Dir changes in R′. We have only to construct appropriate constants ai.

Let δ1 < δ2 < . . . be the significant moments of GateStatus in R′. With
respect to Dir and GateStatus Corollary, define ai = δi − γi. It is easy to check
that R = R′. ⊓⊔

Remark. If the assumption dmin ≥ close + dopen is removed, the proof of
Uniqueness of Control Claim does not change but the proof of Universality of
Construction Claim becomes slightly complicated. Let j = i+ 1. For an even i,
we have two cases.

Case 1: δi ≤ γj . Define ai = δi − γi.
Case 2: δi > γj . In this case γj−γi < dopen. The exact value of ai is irrelevant;

it is only important that ai ∈ (γj − γi, dopen). Choose such an ai arbitrarily.
For an odd i, we also have two cases.
Case 1: In R′, either GateStatus = opened at γi or else GateStatus = closed

at γi but OpenGate fires at γi. Define ai = δi − γi.
Case 2: In R′, GateStatus = closed at γi. The exact value of ai is irrelevant;

it is only important that ai < dclose. Choose such an ai arbitrarily.

References

[1] Egon Börger, Annotated Bibliography on Evolving Algebras, in ”Specification and
Validation Methods”, ed. E. Börger, Oxford University Press, 1995, 37–51.

[2] Egon Börger, Yuri Gurevich and Dean Rosenzweig: The Bakery Algorithm: Yet
Another Specification and Verification, in ”Specification and Validation Methods”,
ed. E. Börger, Oxford University Press, 1995.

[3] Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide”, in “Specification and Vali-
dation Methods”, Ed. E. Börger, Oxford University Press, 1995, 9–36.

[4] Yuri Gurevich and James K. Huggins, “The Railroad Crossing Problem: An Evolv-
ing Algebra Solution,” LITP 95/63, Janvier 1996, Centre National de la Recherche
Scientifique Paris, France.

[5] Yuri Gurevich, James K. Huggins, and Raghu Mani, “The Generalized Railroad
Crossing Problem: An Evolving Algebra Based Solution,” University of Michigan
EECS Department Technical Report CSE-TR-230-95.

[6] Constance Heitmeyer and Nancy Lynch: The Generalized Railroad Crossing: A
Case Study in Formal Verification of Real-Time Systems, Proc., Real-Time Systems
Symp., San Juan, Puerto Rico, Dec., 1994, IEEE.

[7] Ernst-Rüdiger Olderog, Anders P. Ravn and Jens Ulrik Skakkebaek, “Refining Sys-
tem Requirements to Program Specifications”, to appear.

[8] Robin Milner. A private discussion, Aug. 1994.

This article was processed using the LaTEX macro package with LLNCS style

