Improved Sampling with Applications to Dynamic
Graph Algorithms

Monika Rauch Henzinger *

Mikkel Thorup T
December 15, 1995

Abstract

We state a new sampling lemma and use it to improve the running time of dynamic
graph algorithms.

For the dynamic connectivity problem the previously best randomized algorithm
takes expected time O(log®n) per update, amortized over Q(m) updates. Using the
new sampling lemma, we improve its running time to O(log?n). There exists a lower
bound in the cell probe model for the time per operation of Q(logn/loglogn) for this
problem.

Similarly improved running times are achieved for the following dynamic problems:
(1) O(log® n) to maintain the bridges in a graph (the 2-edge connectivity problem); (2)
O(klog?n) to maintain a minimum spanning tree in a graph with k different weights
(the k-weight minimum spanning tree problem); (3) O(log® nlogU/¢') to maintain a
spanning tree whose weight is a (1 4 ¢)-approximation of the weight of the minimum
spanning tree, where U is the maximum weight in the graph (the (14 €')-approximate
minimum spanning tree problem); and (4) O(log”n) to test if the graph is bipartite
(the bipartiteness-testing problem).

1 Introduction

We present the sampling lemma below, and use it to improve the running times of various
dynamic graph algorithms.

Lemma 1 Let R be a subsel of a sel S, and lel r,c € Rsq1. Set s = |S|. Then there is an
algorithm with one of two outcomes:

*Department of Computer Science, Cornell University, Ithaca, NY. (mhr@cs.cornell.edu.) Author’s
Maiden Name: Monika H. Rauch. This research was supported by an NSF CAREER Award, Grant No. CCR-
9501712.

tDepartment of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Kbh. @, Den-
mark (mthorup@diku.dk, hitp://www.diku.dk/~mthorup).

(1) It returns an element from R after having sampled an expected number of O(r) random
elements from S and having tested them for membership of R.

(ii) Having sampled and tested O(s/c) random elements from S, it states that |R|/|S| > 1/r
with probability < exp(—s/rc).

1.1 Dynamic graph algorithms

Let G = (V, F) be a graph with n nodes and m edges. A graph property P is a function
that (a) maps every graph G to true or false or (b) that maps every tuple (G, u,v) to true or
false, where G = (V, F) is a graph and u,v € V. An example for Case (a) is a function that
maps every bipartite graph to true and every non-bipartite graph to false. An example for
Case (b) is connectivity that returns true if v and v are connected in G and false otherwise.

A dynamic graph algorithm is a data structure that maintains any graph GG and a graph
property P under an arbitrary sequence of the following operations.

o Insert(u,v): Add the edge (u,v) to G.
e Delete(u,v): Remove the edge (u,v) from G if it exists.
e Query(u,v): Return yes if P holds for v and v in GG and false otherwise.

In this paper we study the following graph properties: connectivity, two-edge connec-
tivity, k-weight minimum spanning tree, (1 4 €¢')-approximate minimum spanning tree, and
bipartiteness-testing.

1.2 Previous Work

Dynamic graph algorithms are compared using the (amortized or worst-case) time per op-
eration. The best deterministic algorithms for the above graph properties take time O(y/n)
per update operation and O(1) or O(logn) per query [3, 4]. Recently [6], Henzinger and
King gave algorithms with polylogarithmic amortized time per operation using (Las-Vegas
type) randomization. Their algorithms achieve the following running times:

1. O(log®n) to maintain a spanning tree in a graph (the connectivity problem;
2. O(log* n) to maintain the bridges in a graph (the 2-edge connectivity problem);

3. O(klog®n) to maintain a minimum spanning tree in a graph with k different weights
(k-weight minimum spanning tree problem);

4. O(log®nlog U/¢€') to maintain a spanning tree whose weight is a (1+¢') approximation
of the weight of the minimum spanning tree, where U is the maximum weight in the
graph (the (1 4 €¢)-approximate minimum spanning tree problem);

5. O(log®n) to test if the graph is bipartite (the bipartiteness-testing problem).

Fredman and Henzinger showed lower bounds of (log n/ log log n) in the cell probe model
for the first four of these problems [5] (see also [8]).

1.3 New Results

We show in this paper the following improved running times:

1. O

log® n) for connectivity;

(

2. O(log®n) for 2-edge connectivity;

3. O(klog®n) for the k-weight minimum spanning tree problem;
O(

log® n(log U)/¢") for the (1+¢€') approximate minimum spanning tree problem, where
U is the maximum weight in the graph;

5. O(log®n) for bipartiteness testing.

1.4 Improved sampling in dynamic graph algorithms

Our improvements are achieved by locally improving a certain bottleneck in the approach by
Henzinger and King [6], henceforth referred to as the HK-approach. Rather than repeating
their whole construction, we will confine ourselves to a reasonably self-contained description
of this bottleneck. Our techniques for the bottleneck are of a general flavor and we expect
them to be applicable in other contexts.

Let T be a spanning tree of some graph G = (V, E). In the HK-approach, G is only one
of many sub-graphs of the real graph. If some tree edge e is removed from 7', we get two
sub-trees T}, T;. Consider the cut C, of non-tree edges with end-points in both 77 and T5.
Any cut edge f € C. can replace e in the sense that T'U {f} \ {e} is a spanning tree of G.
Our general goal is to find such a cut edge f. Alternatively it is acceptable to discover that
the cut C. is sparse as defined below.

For each vertex v € T, we have the set N(v) of non-tree edges incident to 7. Let
w(v) = [N(v)]. For any sub-tree U of T', set N(U) = U,ev @) N(v) and w(U) = 3, ev @) w(v).
Note that w(U) may be bigger than |N(U)| because edges with both end-point in U are
counted twice. Assume that 7T} contains no more nodes than 75. We say that the cut C. is
sparse if 8log, n|C.| < w(Ty). Otherwise C. is said to be dense. If the cut is sparse, a cost of
O(w(T1)) may be attributed other operations due to an amortization in the HK-approach.

We store all edges of N(7}) in the leaves of a balanced search tree. This allows us to pick
in time O(logn) a random edge from N(7}) (edges with both end-points in 7 are picked
with twice the probability of edges with one end-point in 71) and check if its other end-point
is in Ty. This is the desired approach for dense cuts. Alternatively, in time O(w(7T})), we
may scan all of N(71), identifying all the edges in C.. This is the desired approach for sparse
cuts where the O(w(T})) is paid for via amortization. Unfortunately, we do not know in
advance whether (', is sparse or dense.

In the HT-approach, in time O(log® n), they sample 16 logs n random edges from N(T}).
If the sampling successfully finds an edge from (., this edge is returned. Otherwise, in
time O(w(Ty)), they make a complete scan. If C. is sparse, the scan is attributed to the
amortization. The probability of C. not being sparse is the probability of the sampling not
being successful for a dense cut, which is < (1 — 1/(8log, n))&" < 1/n? = O(1/w(T})).
Hence the expected cost of an unduly scan (i.e. a scan even though the cut is dense) is

3

O(w(Ty)/w(Ty)) = O(1). Thus, the total expected cost is O(log®n). This cost remains a
bottle-neck for the HK-approach as long as the time per operation is Q(log”n).

We will now apply the sampling from Lemma 1 with R = C,, S = N(T}), w(11)/2 < s <
w(Ty) = O(n?), r = 8logy n, and ¢ = O(log n). Moreover, the cost of sampling and testing is
O(logn). Then, in case (i), we find an element from C. in expected time O(logn - 8log,) =
O(log®n). In case (ii), the cost is O(logn-w(T})/logn) = O(w(T;)) matching the cost of the
sub-sequent scanning. If the cut turns out to be sparse this cost is attributed to the amor-
tization. In case (ii) the probability of a dense cut is exp(—s/rc) = exp(—w(71)/O(log? n)),
so the expected contribution from unduly scanning is O(w(7})exp(—w(T1)/O(log® n))) =
O(log?n). Thus, our expected cost is O(log®n), as opposed to the O(log®n) cost achieved
by the HK-approach.

The removal of a factor O(log n) explains our improvements.

2 Proving the sampling lemma

In this section, we will prove Lemma 1 constructively, presenting a concrete algorithm. First
recall the statement of the lemma:

Let R be a subset of a set S, and let r,c € Rsq. Set s = |S|. Then there is an
algorithm with one of two outcomes:

(1) It returns an element from R after having sampled an expected number of
O(r) random elements from S and having tested them for membership of R.

(ii) Having sampled and tested O(s/c) random elements from S, it states thal
|R|/|S| > 1/r with probability < exp(—s/rc).

Proof: Let the increasing sequence ng,...,ny - be defined such that ng = 26* and for
t > 0, n; = exp(n}fi). Let the decreasing sequence rg,...,r;--- be defined such that

ro = 2r(1 + 2n51/4) =28/13 -r < 3r and for ¢ > 0, r;, = r;—1 /(1 + n:_11/4)
CrLAam 1A For all 1 >0,

(a) 2n; < niyq.

(b) 2n3/4 < n,}ﬁ

(¢) 2r <r; <3r.

PROOF: Both (a) and (b) are easily verified by insertion. The r; are decreasing, so r; <
ro < 3r. Finally, r; = 2r(1 + 2n51/4)/]_[;;11(1 + nj_l/4) > 2r exp(2n81/4 — Z;;ll nj_l/4) > 2r.

The last inequality uses (b). O

Algorithm A: Does the task described in Lemma 1.
Al. 2:=0;

A.2. While r;n; < 8s/e:

A.2.1. Let S; be a random subset of S of size r;n;.
A.2.2. R; .= 5,NAR.

A.2.3. If |R;| > n;, then return z € S; N R

A.24. =14 1;

A.3. Let S; be a random subset of S of size 8s/ec.

A4d. R;:=5;,NAR.

A5 If |R;| > 8s/(er;), then return = € S; N R.

A.6. Return “|R|/|S| > 1/r with probability < exp(—s/re).”

We show next a bound on the number of sampled edges (Claim 1B) and on the probability
that the algorithm return an element from R in round ¢ (Claim 1C). Afterwards we prove
that the Algorithm A satisfies the conditions of Lemma 1.

Let ¢ be the final value of ¢ - if we return an element from R in Step A.2.3, then ¢ is not
subsequently increased.

CrLAaM 1B Forallt > 1 >0, Z;:o |S;] = O(rn;).

PROOF: Note that in Steps A.3-A.5, |S;| = 8s/¢ < ryn;. Thus, for all ¢ > 0,

YIS <D0 rng <3r) 0y = O(rn).
J=0 =0 =0
The last inequality uses Claim 1Aa. 0

For ¢« > 0, let p; be the probability that the algorithm returns an element from R in round
t. Here the round refers to the value of 7 in Step A.2.3 or A.5.

Cramm 1C Foralle > 1, p; < n;2

PrOOF: We divide into two cases:
Case 1: |R|/|S] > (1 + n;_11/4/2)/r¢_1: In round ¢ — 1 we did not return, so |R;_1] is less
than © = n;_;. However, the expected value p of |R;_1| is at least n,_1(1 + n;11/4/2).

Note that
pi < Pr(|Ri—1| < (1 —6)p) with é = (p — z)/p.

Using the Chernoff bound (according to [1]),

Pr(|Ri—1| < (1 =6)p) < o= 021/2 — o—(n=2)?/(2u)

For p > n;_1(1+ n;_11/4/2) this function is maximized for g = n;_1(1 + n;_11/4/2). Thus,

3/4 1012 1/2
—(n>* /9 —n
(nz—1/_1)/4) < eXp(inl_l) < eXp(—Qn}fi) =n;?
2”2’—1(1 + 14 /2)

pi < exp(9 i

V4> it > 18 > 16.

71—

The inequalities use that n
Case 2: |R|/|S| < (1+n/*/2)/ri1: Note that

Len{2 v4n{Y2 1 —n{t200 4 0 g 1—n{*/2.1

ri_1 ri(1+ n:_11/4) B T Ty

The last inequality uses that n;_11/4 > n(l)/4 > 20. Thus we have |R|/|S] < (1 —
~1/4
ni_1 [2.1)/r;.
First suppose that we are returning in Step A.2.3. Then | R;| is at least x = n;. However,
the expected value p of |R;| is at most n;(1 — n;_11/4/2.1) =n;(1 —1/(2.1Inn;)). Note
that
pi < Pr(|Ric1] > (14 6)p) with 6 = (z — p)/p.

Using the Chernoff bound (according to [2, 9]),
Pr(|Rict| > (14 8)p) < e T3 = o= (=m)?/Gu),

For y < n;(1 —1/(2.11nn;)) this function is maximized for p = n;(1 — 1/(2.11nn;)).
Thus,

—(ni/(2.11nn;))?
3n;(1 —1/(2.11nny))

—n; _
< nl.

13(In nZ)Q) -

pi < exp() < exp(
For the last inequality, we use that n; > 26(In n;)? which follows from In n; > n(l)/4 = 26.

Next suppose that we are returning in Step A.5. Then |R;| is at least = 8s/(er;) and
p < (1=1/(2.1lnn;))8s/(cr;). Note that > n;_17;_1/r; > ni_1, since 8s/¢ > ri_1n;_1.

As above
—(x/(2.1n}19))? —x —n!/} e
pi < exp() < exp() < exp() <exp(—2n,7y) =n;".
32(1 — 1/(2.10/%)) 13072 '

For the last inequality, we actually require that nllﬁ > 26.

We are now ready to show that the Algorithm A satisfies the conditions of Lemma 1.

(i) First we find the expected number of samples if the algorithm returns an element from
R. By Claim 1C, for ¢ > 0, the probability p; of the algorithm returns an element from R
in round ¢ is bounded by n;?. Moreover, by Claim 1B, if the algorithm returns in round 1,
it has sampled O(rn;) edges. Finally, by Claim 1Aa, 2n; < n;41. The expected number of
samples is thus

ipz'@(?“m) = O(?“no + ir/nz) = O(rno + 2r/n1) = O(r),

(ii) Second we consider the case that the algorithm does not return an element from R,
i.e. that the conditions in Steps A.2.3 and A.5 are never satisfied. Using Claim 1B, the total
sample size is 3/ [Si| = O(rns—1) + 8s/c = O(s/¢).

Suppose |R|/|S| > 1/r. We did not return an element from R in Step A.5, so X = |Ry|
is less than = 8s/(cr;) < 4s/(cr) by Claim 1Ac. However, the expected value p of |Ry] is
at least 8s/(cr). The probability p is now calculated as in Case 1 of the proof of Claim 1C:

p < e < exp(_??%g;;2

as desired.]

) < exp(—=s/(er)),

At present, in case (i), we are making an expected number of < 2ngro = 6 - 26*r = O(r)
samples. The constant can be reduced by adding a round -1, with n_; = 1 (meaning that we
return if we find just one representative) and r_; = 3-14 =42 (14 > In26*(1 4 2/24)). This
gives an expected number of < 84r samples, which can be further reduced by introducing
more preliminary rounds.

References

[1] N. Alon, J. Spencer, P. Erdés, The Probabilistic Method. Wiley-Interscience Series,
Johan Wiley and Sons, Inc., 1992.

[2] D. Angluin, L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and
matchings. J. Comput. System Sei. (18), 1979, 155-193.

[3] D. Eppstein, Z. Galil, G. F. Italiano, Improved Sparsification. Tech. Report 93-20,
Department of Information and Computer Science, University of California, Irvine,

CA 92717.

[4] D. Eppstein, 7. Galil, G. F. Italiano, A. Nissenzweig, Sparsification - A Technique
for Speeding up Dynamic Graph Algorithms. Proc. 33rd Symp. on Foundations of
Computer Science, 1992, 60-69.

[5] M. L. Fredman and M. R. Henzinger. Lower Bounds for Fully Dynamic Connectivity
Problems in Graphs. Submitted to Algorithmica.

[6] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with Poly-

logarithmic Time per Operation. Proc. 27th ACM Symp. on Theory of Computing,
1995, 519-527.

[7] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. FATCS
Monographs on Theoretical Computer Science, Springer-Verlag, 1984.

[8] P.B. Miltersen, S. Subramanian, J.S. Vitter, and R. Tamassia. Complexity models for
incremental computation. Theoretical Computer Science, 130, 1994, 203-236.

[9] J. P. Schmidt, A. Siegel, A. Srinivasan. Chernoff-Hoeffding Bounds for Limited Inde-
pendence. SIAM J. on Discrete Mathematics 8 (2), 1995, 223-250.

[10] R.E. Tarjan and U. Vishkin. Finding biconnected components and computing tree
functions in logarithmic parallel time. STAM J. Computing, 14(4): 862-874, 1985.

