
Verification Support Environment

Frank Koob, Markus Ullmann, Stefan Wi t tmann

Bundesamt fuer Sicherheit in der Informationstechnik
Godesberger Allee 183

D-53133 Bonn, Germany
Tel.: x49-228-9582154
Fax.: x49-228-9582455

Emaih vse@bsi.de

Abs t rac t . Formal methods are recognized as the most promising way
to produce high assurance software systems. In reality this fact is not
enough to convince industry to use them. Formal methods must be ap-
plicable and usable in several areas (security, safety), engineers have to
accept a change in software development work but should not be asked
to give up the environment they are used to and bosses must realize that
higher effort during the design phase can save money and time later.
This paper describes the recently completed formal specification and ve-
rification tool Verification Support Environment (VSE). An advantage of
the design of the VSE tool is the possibility of using formal and semifor-
mal development methods combined in a unique working environment.
After official release of the VSE-system March 1995 several pilot pro-
jects were carried out with industry. The paper gives an overview of the
VSE-system and describes the results of the pilot applications.

1 G e n e r a l

This paper briefly describes the functionality of the Verification Support En-
vironmet System (VSE), its integration into the high assurance development
process and an outline of the result of an industrial pilot project recently carried
out.

In 1991, the Bundesamt fuer Sicherheit in der Informationstechnik (German
Information Security Agency) initiated a CASE tool project with emphasis on
formal specification and verification. Now, after four years of work, the Veri-
fication Support Environment (VSE) Tool has attained a status that permits
industrial application. This tool combines the two traditions of semiformal and
formal methods within a unique framework. Therefore the benefit 'of the VSE
tool is both to support migrat ion to formal methods where needed and, where
it is sufficient, to rely on semiformal methods ([1]).

455

2 Components of VSE

1. specification language VSE-SL

* formal language describing abstract data types and abstract state transi-
ton machines, using terms of First-Order Predicate Logic with Equality
and Dynamic Logic

| syntax controlled editor, consistency and type checking
2. graphical interactive development presentation
3. import/export functions
4. dual interactive verifier subsystems

| Dynamic Logic: KIV (Karlsruhe Interactive Verifier)
. Predicate Logic: INKA (INduction prover KArlsruhe)
| predifined proof strategies, tactics, heuristics

5. verification management system and database (multi-use capability)
6. standard design interface (ODS) to conventional CASE-tools

3 Functionality

The VSE-system supports the software development process from analysis to
code generation. During analysis it has to be determined which parts of the fu-
ture system are security (safety) critical. The non-critical parts can be developed
conventionally within the regular production environment. For the critical parts
VSE provides a specification language (VSE-SL) to structure them in a way to
support later proof activities. The top level specification formally describes the
functionality on an abstract level. The security (safety) model defines characte-
ristics of the objects that have to be fulfilled. With means of refinement the top
level specification is modified stepwise to abstract programs and, using the code
generator, ADA sourcecode.

The VSE prover (verifier) subsystem automatically generates proof obligati-
ons out of the specification and the refinement process.

* The top level specification fulfills the security (safety) model.
* The entire refinement process guarantees that the generated code has the

same functionality as the top level specification.

All proof obligations have to be verified in order to be able to call the source
code correct in accordance to specification and security (safety) model. The
functionality of the deduction subsystems includes the following features ([2]
and [3]):

�9 semi-automatic switch between Dynamic Logic (KIV) and Predicate Logic
(INKA)

456

�9 provision of proof tactics and empirically predifined heuristics running au-
tomatically

�9 provision of pre-selected deduction rules applicable to the current proof goal
in an interactive mode

�9 proof protocol (text and graphics), replay mode, restart at any proof step

4 A p p l i c a t i o n s

Two major case studies (disposition control and system and nuclear power plant
access control system) were carried out within the VSE-project to show that
VSE is applicable even on large projects (4100 verified lines of code, 20000 proof
steps, average automation rate 80 was used by eight industry companies and
government institutions from Germany and Italy for pilot applications dealing
with traffic control (railway), space flight, smart cards, hospital administration
and secure message handling. The pilot application presented is a drug admini-
stration component as a part of a hospital administration system. This part is
based on SEMA.

The product Health System 2000 (HS2000) was developed by SEMA Group
Ismaning, Germany. It is a hospital information system to administrate patient
files, medical means and accounting of a hospital. The subject of the pilot project
was an additional part to the existing HS2000 to control and check access to
and applicability of drugs in a hospital pharmacy. The security-critical kernel
was to be developed with the VSE-system. From April 20, 1995 until June 1,
1995 one expert from the University of Ulm and one company representative
worked on the project. The task of the VSE-expert was to give a basic training
in the VSE development method and the VSE-tool and to support the company
representative only as much as needed.

5 C o n c l u s i o n

The pilot projects reached almost all the goals that had been defned before
the start. Concerning the size of the problems and time/personal constraints
the results were surprising. This pilot project showed that formal methods are
applicable in industrial environments and they significantly improve the qua-
lity of software systems. Facts like less misinterpretations and incompatibilities
in the requirements and the reusability of verified components strengthen the
trustworthiness of the systems developed with the formal VSE method. Besides
that re-specifications helped to detect errors in existing systems and showed the
limitations of conventional software development.

Nevertheless six weeks of work with formal methods and the VSE-tool are
not enough to be prepared for independent formal development. There is still
a need for intensive training and support of experts to handle the specification
language and the verifier subsystems. But the cooperation of software engineers
and VSE-specialists turned out to be a very promising way to introduce formal

457

methods to industry and to transfer the new technology. New fields of industrial
services like formal design or proof engineering do not belong to science fiction.

All partners realized that formal methods solve a lot of problems in the area
of critical software development. A mathematically based engineering including
verification, all supported by a tool that minimizes the practical work showes
the way to a new dimension of software quality. But especially non-governmental
partners cannot ignore the rules of the market. Formal development, even using
VSE, takes considerably more effort. The result might be the better product but
it also might be too late and significantly more expensive than conventionally
developed products. The solution to this problem still has to be worked out. Soft-
ware applications that have to fulfill high security/safety standards (e.g. avionic
systems with the safety level 'catastrophe') already need an enormous amount
of quality assurance measures like tests, code inspections and simulation). Both
additional efforts for formal methods and conventional QA-activities should be
evaluated and compared. There was no time to do that during the pilot projects
but the results might be interesting. Not only the producers of high assurance
software have to be convinced that formal methods are applicable, improve the
quality and save money on testing and warranty acticities; potential clients have
to realize that it is worth to spend more money on a product developed with
means that guarantee high reliability.

VSE Version 1 is the first successful step to open the market for formal
methods in software development. Nevertheless the pilot projects showed that
VSE has to be modified and improved: better means of structurizing, batch mode
for proofs, better integration of the verifiers, applicability on embedded, reactive
systems, code generation C(++), interfaces to Z and model checkers, extension
of the interface to the CASE-tool TEAMWORK, etc. Major modifications and
improvements will be realized in a follow-on project VSE-II starting summer
1996. The Bundesamt fuer Sicherheit in der Informationstechnik will continue
to keep the public informed about changes, experiences and new developments.

References

1. Koob, F., Ullmalm, M., Wittmann, S.: The Formal VSE Development Method ~ A
Way to Engineer High-Assurance Software Systems. Eleventh Annum of the COM-
PUTER SECURITY APPLICATIONS Conference (1995) 196-204

2. Reif, W., Schellhorn, G., Stenzel, K.: Interactive Correctness Proofs for Software
Modules Using KIV. Proceedings of the Tenth Annual Conference on Computer
Assurance (1995) 151-162

3. Hutter, D. et al: Deduction in the Verification Support Environment (VSE). Springer
LNCS 1051 (1996) 268-286

