
A Conjunctively Decomposed Boolean Representation
for Symbolic Model Checking

K. L. McMillan

Cadence Berkeley Labs
1919 Addison St., suite 303

Berkeley, CA 94704-1144
mcmillan@cadence.com

Abstract . A canonical boolean representation is proposed, which de-
composes a function into the conjunction of a sequence of components,
based on a fixed variable order. The components can be represented
in OBDD form. Algorithms for boolean operations and quantification
are presented allowing the representation to be used for symbolic model
checking. The decomposed form has a number of useful properties that
OBDD's lack. For example, the size of conjunction of two independent
functions is the sum of the sizes of the functions. The representation also
factors out dependent variab]es, in the sense that a variable that is de-
termined by the previous variables in the variable order appears in only
one component of the decomposition. An example of verifying equiva-
lence of sequential circuits is used to show the potential advantage of the
decomposed representation over OBDD's.

1 Introduct ion

Symbolic model checking, and related finite-state verification techniques use
heuristically compact boolean representations, such as ordered binary decision
diagrams (OBDD's), to implicitly represent sets and relations (notably the tran-
sition relation of a model, and its set of reachable states). The implicit represen-
tat ion may be compact even thought the number of states or transitions is very
large, thus allowing systems with very large state spaces to be verified automat-
ically. However, in many cases the OBDD representation is not compact. To a
first approximation, the OBDD representing a set of states can be thought of as
a finite state automaton that reads the values of the state variables in some fixed
order, and finally accepts or rejects the given valuation. Figuratively speaking,
this automaton must "remember" some amount of information about the vari-
ables seen so far, in order to decide whether the remaining variable assignments
are consistent with those already seen. Hence, to obtain a compact representa-
tion, the variable order must be such that the mutual information across any cut
through the order is small. This implies that state variables that strongly corre-
late each other must be nearby in the variable order. Often, however, this is not
possible. For example, in a protocol, a state variable representing the contents of
a message buffer is likely to be correlated with both the state of the sender and

14

the state of the receiver. Since all pairs of senders and receivers cannot generally
be made close in the variable order, there is no suitable place for the variable
representing the message buffer.

In other cases, the relationships between variables are not fixed, but vary
according to some global control information. For example, suppose we wish
to verify that two hardware implementations of a bounded FIFO queue are
equivalent (see figure 1). This can be done by building a single model in which
the two implementations run in parallel, and verifying that the outputs always
agree. Let one implementation be a "shift register", in which the most recent
item is always stored in location 0, and all items shift over when a new item is
inserted. Let the other implementation be a "ring buffer", where a "head pointer"
points to the oldest item, and the items themselves remain fixed. Given the state
of the head pointer, there is a one-to-one correspondence between locations in
the two implementations. However, since the head pointer is not fixed, we cannot
fix an OBDD variable order that will put related state variables together.

shift register ring buffer

lilllll Ml l l l l l
t ? t

tail tail head
(out) (out) (in)

Fig. 1. Two implementations of FIFO queue.

This paper introduces a canonical boolean representation that may be com-
pact in such cases, where OBDD's are not. The intuition behind this represen-
tation is that many state variables, such as the message buffers in a protocol, or
the data items in the ring buffer, have a property of "conditional independence".
That is, once a core set of state variables is fixed, the remaining variables are
not mutually correlated. For example, once we the contents of the shift register
and the head pointer are fixed, the contents of the ring buffer are determined,
and hence uncorrelated. Similarly, the contents of the message buffers in a pro-
tocol may provide no mutual information, once the states of the communicating
processes are fixed. The representation introduced here decomposes the repre-
sentation of a boolean function into the conjunction of sequence of components.
Each component, which may" be represented as an OBDD, fixes the possible
values of just one state variable, given a feasible assignment to the previous
variables. The variable order used for this decomposition may be distinct from
the OBDD variable order. The decomposed form has the property that con-
ditionally independent variables are "factored out" into separate components,
thus eliminating the need to find a suitable place for these variables in a global
OBDD variable order. Among other things, this implies that the conjunction of

15

functions with independent support is additive (not true for OBDD's), as is the
conjunction of components in the transition relation of a state machine.

There are a number of examples of conjunctive forms in the literature, tIu
and Dill use a technique of checking conjunctive properties where fixed points are
computed in parallel, and each conjunct is used to simplify the other conjuncts
at each iteration [HD93]. This can yield a more compact representation than
an explicit conjunction, but the original decomposition of the problem must be
provided by the user. Also, the representation is not canonical, as it is here. Burch
and Long use implicitly conjoined transition relations, but do not decompose
the representation of the set of reached states, as we do here [BCL91]. Their
representation is also not canonical. Jain also describes a canonical disjunctive
representation [JABF92], which has a conjunctive dual. It is not directly related
to the current method, however, as is it obtained by dividing the truth table
into ad hoc regions and using one OBDD for each region.

This paper is organized as follows: Section 2 defines the decomposed repre-
sentation, and proves some useful theorems about the size of the representation
for certain classes of functions. Section 3 introduces algorithms for conjunction,
disjunction and existential quantification (projection) on the decomposed form.
Section 4 discusses model checking using the above algorithms~ and provides
performance results for verifying the equivalence of the two FIFO queue im-
plementations mentioned above. We find that as the depth of the queues is
increased, the size of the decomposed representation for the reachable states
increases quadradically, while the OBDD representation increases exponentially.

In this paper, most of the proofs have been omitted due to space limitations.

2 Conjunctive decompositions

Let f be a boolean function of independent boolean variables V = (v l , . . . , vn).
We will use the notation f (0 where 0 < i < n, to stand for the projection of f
onto (v l , . . . , vl). That is,

f(0 : ~(vi+l, . . . ,vn). f

In addition, we will use the notation fig, where f and g are two boolean func-
tions, denote the "generalized cofactor" of f relative to g. This function, which
can be read as "f given g', agrees with f whenever g is true [CBM89, TSL+90].
Those values where g is false are mapped to the "nearest" point where g is true,
according to a distance measure on truth assignments. Thus, if two functions
agree wherever g holds, then their cofactors relative to g are equal:

/ A g = / ' A g iff f fg=f tg

We will use the projection and cofactor operations to decompose a boolean
function f into a vector of boolean functions (f l , . . . , fn), where

fi = f(i)if(i-1)

]6

Intuitively, the component fi determines the set of possible values of variable vi,
given a feasible evaluation of the variables (v l , . . . , v~_l). We will show that the
function f is equal to the conjunction of the components fi:

r$

f=A
i = 1

2.1 G e n e r a l i z e d c o f a c t o r

If f and g are two boolean functions of boolean variables (v l , . . . , vi-1), then f ig
is a boolean function whose value is obtained for a given t ruth assignment x by
finding the "nearest" t ruth assignment to x that satisfies g, and evaluating f at
this point. For this purpose, the distance between two t ruth assignments x and
y is determined by treating their boolean difference (exclusive-or) as a binary
number. To be more precise,

D e f i n i t i o n l . Let A be the set of t ruth assignments V --+ {0, 1), and let W =
(w l , . . . , wn) be a permutation of V. For any x, y E A, let

v) = �9

Notice that we have an arbitrary choice of the order W on the variables that
defines the distance between t ruth assignments. Also note for future reference
that we have weighted the variables so that wl is the most significant, and w~
is the least significant.

D e f i n i t i o n 2 . Let B be the boolean algebra 2 A. For any x E A, and g E B,
where g r 0, let x -+ 9 be the unique y E g minimizing d(x, y).

Tha t is, x ---* g is the nearest point to x that satisfies g. Note that z -+ g is
uniquely defined for g r 0, because the boolean difference between x and any
other t ruth assignment is a unique number. This lets us define the generalized
cofactor as follows:

D e f i n i t i o n 3 . For any f , 9 E B, and any x E A:

- if g # 0, then (f]g)(z) - f (x ~ g),
- else fig = O.

As an example, suppose that W -= (vl,v2,v3), that f = v3, g = (~vl) A
(v2 V v3), and that we want to evaluate flY at the t ruth assignment x = (1, 0, 0).
The truth assignments satisfying g are (0, 0, 1), (0, 1, 0) and (0, 1, 1), of which
the nearest to x is y = (0, 0, 1), yielding a distance of d(x, y) = 5. The value of
(flg)(x) is thus f(y) = 1.

We note that generalized cofactor, as defined above, is exactly the "constrain"
operator on OBDD's [CBM89] in the special case when the OBDD variable order
is W. In the sequel, however, we will not assume that this is the case.

]7

2.2 P r o p e r t i e s of genera l ized cofactor

We will rely on a variety of properties of the generalized cofactor operation
in defining the conjunctive decomposition and in constructing algorithms on
decompositions. One very important property of f ig is that it agrees with f
everywhere that g is true. Another is that, if two function f and fr agree wherever
g is true, then f ig = f 'lg. That is, f ig is independent of the value of f anywhere
that g is false. Letting juxtaposition denote conjunction, and I associate to the
left, we also have:

T h e o r e m 4 . 1. fg = f 'g iff f ig = f ' lg.
2. (:Ig)g = fg
3. if g r O, then glg = l

4./lalg = fig
We also note that generalized cofactor distributes oyer pointwise operators:

T h e o r e m 5 . For any operator., such that (f . g)(z) = f (z) . g(z):

(: ' g) l h = (f lh) ' (glh)

The following theorem is key to the algorithms on conjunctive decomposi-
tions, since it allows us, in certain cases, to cofactor relative to a conjunction of
functions without explicitly forming the conjunction:

T h e o r e m 6 . For any f , g , h E B, if g = glh, then fl(gh) = f[hlg.

The name "generalized cofactor" derives from the following property [TSL+90]:

T h e o r e m 7 Touat i , e t al.. For any f E B and vi E V,

- f[vi = f[~,=1

- f l ~ = f l y , = 0

We say that a function f depends on vi when f[v~=o ~ f]v~=l. The support
of a function is the set of variables on which it depends. Two functions are said
to be independent when their supports are disjoint. When two functions are
independent, then cofactoring one by the other has no effect:

T h e o r e m S . I f f and g have independent support, then fig = f .

An immediate corollary of this result and theorem 6 is that cofactoring with
respect to two independent functions can be done in either order, without af-
fecting the result:

Coro l l a ry9 . I f g and h have independent support, then f[(gh) = flg[h = flh[g.

In addition, wecan show that projection distributes over cofactor in the much
the same way it distributes over conjunction:

C o r o l l a r y l 0 . I f g is independent of vi, then 3vi.(flg) = (3vi.f)lg.

]8

2.3 Definition of decomposition

We are now ready to define our canonical conjunctive decomposition of a boolean
function:

Def in i t ion l l . For all f E B, for all 1 < i < n, let f~ = f(i) l f(i-1)

We will refer to the functions (f l , . . . , f~) as the components of f (relative to
V and W). We now show that a function is equal to the conjunction of its
components:

n Theorem 12. f = Ai=lfi

Proof. We take as our inductive hypothesis that f(J) J = Ai=ifi , for all 1
j < n. For the case where f is identical to false, this clearly holds, since all the
components f~ are also false. Otherwise, in the base case we have f l = f(1)if(0) =
f(1)[1 = f(1). For the inductive step we have:

A~=lf~ = (A~=~f~)A f j (1)

_ f(~-z) A (f(J)lf (j-~)) (2)

= A f(5) (3)
= (4)

Note equation 3 is a case of theorem 4, part 2. That is, f(j) lf(J-1) agrees with
f(J) where f(j-1) is true.

Theorem 12 implies that the vector (f l , . . . , f~) is a canonical representation
of f , given a fixed V and W. That is, each function has exactly one decomposi-
tion, and no two functions have the same decomposition.

There are a number of useful facts about this representation, independent of
the component representation and of the choice of permutation W, that defines
the generalized cofactor operation. For example, if a function f ~: 0 does not
depend on some variable vi, then the corresponding component fi is identical to
true. That is, if f is independent ofvi, then f(0 = f(i-1). Hence f~ = f(i)]f(0 =
1, by theorem 4. More generally, we can show that the the ith component of f
constrains only variable vi. That is:

T h e o r e m 13. I f f ~ O, then 3v~.fi = 1.

2.4 Decompositions and disjointness

If two functions f and g have disjoint support, then the components of their con-
junction can be obtained by simply taking the conjunction of the corresponding
components of f and 9, regardless of V or W. Since disjointness implies that
every component must be identically true in either f or g or both, it follows that
the size of the conjunction is less than or equal to the sum of the sizes of f and
g.

Theorem14. I f f and g have independent support, then

- (fg)i = fi when f depends on vi, and

19

- (.fg)i = gi when g depends on vi, and
- otherwise (fg) i = 1.

From the above, it follows immediately that the size of f g is bounded by"
the sum of the sizes of f and g. This result is independent of the underlying
representation of the components.

C o r o l l a r y l h . I f f and g have independent support, then

It is worth noting that the OBDD representation [Bry86] has this property
only in case the OBDD variable order separates the supports of f and g.

2.5 Decomposi t ions and dependent variables

We now consider the special case where the permutation W is the identity (that
is, the order of the components f~ is the same as the order that determines the
distance measure for generalized cofactor). In this case, if a given variable vi is
functionally determined by its predecessors vl . . . vi-1 in the variable order, then
we can show that variable vl appears only in component fi.

Definit ion 16. Given a function f , a variable vi is funct ional ly determined by
a set of variables S _C V when any two truth assignments agreeing on S must
also agree on vi. If this condition holds, we write f : S -+ vl.

T h e o r e m 17. I f W = (v l , . . . , v n) and f : (v l , . . . , v i -1) --* vi, then f j depends
on vi only i f j = i.

The fact that the decomposed representation is capable of factoring out de-
pendent variables is useful for verifying certain kinds of sequential circuits, as
we will observe. It is also a heuristic argument for using W = V in practice.

2.6 Decomposi t ions and conditional independence

The following result generalizes the previous results on independent functions
and dependent variables. We will say two variables are conditionally independent,
relative to a function f , when fixing the value of the preceding variables in the
order makes the choice of values of the two variables independent. For example,
suppose the function f is (a ~ 5)(a ~ c). If we fix the value of a, then our
choices for b and c become independent. Assuming that the variable order W
is (a, b, c), it follows that b and c are conditionally independent. From this we
can infer that b occurs only in component f2, while c occurs only component f3.
That is, conditionally independent variables factor out in the decomposition. In
general, we have the following result:

Theorem 18. Let f , g E B , such that f (i) = g(i), and f and g have disjoint
support over vi+l �9 �9 �9 Vn. Then

- (f g) j = f j when f depends on vj , and

20

- (fg) j = gj when g depends on vj, and
- otherwise (fg) j = 1.

Once again, the conjunction of f and g requires additive space. Note that
the result for disjoint functions (theorem 14) is the special case where i = 0,
while the fact that dependent variables factor out (theorem 17) is the special
case where v~ is independent of later variables because its value is fixed.

3 Algorithms

To use our decomposed form as a representation for symbolic model checking, we
need algorithms for computing boolean combinations and for existential quan-
tification (projection) over boolean variables.

3.1 Logical conjunction

We begin with the algorithm for conjunction. It should be noted at the outset
that in general it is not the case that (fg) i = figi (though this is true for the case
when f and g are independent). In general, it may be the case that, though f(i)
and g(i) are both true for a given assignment to (v~ , . . . , vi), the assignments to
the remaining variables that make them true may be different, and hence (fg) i
may be false. Thus (fg) i may be stronger than f igi .

To avoid this problem, we first compute appropriate approximations ki to
(fg) i for all i. These terms are computed by conjoining the terms f igi in de-
scending sequence, projecting out vi at each stage. This "early quantification"
step is justified by the fact that the remaining terms in the descending sequence
do not depend on vi, and prevents computing an explicit conjunction of all the
terms, which would defeat the purpose of a decomposed representation.

Next, we must "normalize" the representation by cofactoring each approxi-
mation to ki by (fg)(i -1) . Since we have no direct representation of the latter,
we obtain the desired effect by cofactoring each ki by the preceding components
(fg) t . . . (fg) i -1 in sequence. This result derives from the following lemma:

L e m m a 19. For any funct ions x and h,

Proof.

�9 = A (5)

= (6)

= (7)

which by induction gives us the lemma. Equation 6 is a case of theorem 6, while
equations 5 and 7 are by theorem 12.

21

We will state the conjunction algorithm formally in terms of a theorem:

T h e o r e m 2 0 . Let h = f g and let

= A g n (8)

ki-1 = f i - l g i -13V i . k i (9)

Then

hi =: k i l h l l h21 . . . I h i_ l (IO)

A conjunction operation on the decomposed representation involves O(n)
conjunction operations on the underlying representation, O(n) one-variable pro-
jection operations, and O(n 2) cofactor operations. The latter is unfortunate, but
seems to be necessary in order to avoid explicit construction of the terms (fg)(i) .

3.2 Logical d i s junc t ion

We now consider computing logical disjunction of two functions represented
by their components. First, we should note that in general (f V g)i # f~ V gi.
Consider, for example, Computing h = f V g , where f = 5D~d... and g = abed
The components of these functions are, respectively, f l = ~t, f2 = b, etc., and
gl = a, g2 = b, etc. Thus, the disjunction of fi and gi is 1, for every i, which is
clearly wrong. The problem here is that because we are forming a disjunction,
hi is "defined" over a potentially larger domain than fi and gi. To correct this
problem, we would like to broaden the domains of fi and gi before taking the
disjunction. That is, we would like to compute:

L(= f(~) Ih(~-l)

However, we would like to do this without explicitly computing f (i) g(i) and
h (i-1). This leads us to the following algorithm:

T h e o r e m 21. Let h = f V g and

= f l gl = gl

Then hi - f[V g~.

3.3 P r o j e c t i o n

The approach to existential quantification over boolean variables is very similar
to the disjunction algorithm. The algorithm is as follows:

T h e o r e m 2 2 . Let h = S S . f , where S C V, and

f~ = fl (11)

f~+1 = fi+l (f[Ihi) (12)

Then hi = 3S . f [.

22

The above algorithm is effective in practice for projecting out small numbers
of variables. However, if we consider the limiting case, where S --- V, we see that
h = 1, and therefore f~n = f , which clearly defeats the purpose of the decompo-
sition. For projecting out a large number of variables, an effective strategy is to
successively project out small groups of variables, in descending order. In this
way, each step tends to simplify the problem for the next step.

3.4 Imp lemen t ing the a lgor i thms with OBDD~s

Ordered binary decision diagrams (OBDD's) are a particularly effective repre-
sentation for the components of a function because of the efficient algorithms
for conjunction and disjunction [Bry86] and for generalized cofactor [CBM89].
The OBDD representation for a function is determined by a permutation U =
(u l , . . . , un) on the boolean variables. In the special case where U -- W, there
is a quadratic-time algorithm for generalized cofactor on OBDD's. In the case
U = V = W, we can also show that the size of the decomposed representation
of f is never larger than n times the size of the direct OBDD representation of

f:
Theorem23 . I f U = Y = W, then IfilOBDD <_ [f]OBDD

4 S y m b o l i c m o d e l c h e c k i n g a n d d e c o m p o s i t i o n s

In symbolic model checking, we use a boolean formula to represent the transi-
tion relation of a model, and we use fixed point iterations to evaluate formulas
in certain modal logics relative to this model. The most important operation
in these iterations is computing the image of some set of states, relative to the
transition relation. The transition relation is represented by using a set of vari-

t ables v l , . . . , vn to represent the "pre-state", and a corresponding set v~, . . . , v,~
to represent the "post-state". A boolean formula over these variables character-
izes the set of transitions. In other words, a set of states is represented thus:
S = $V.xs, while a transition relation is represented thus: R =)t(V, Vt).XR.
The forward image of S w.r.t. R is

Image(R, S) = ^ n(Y, V'))

while the reverse image is

Image(R -1, S) =)~V.3V'.(S(V') A R(V, V'))

Evaluating images thus requires conjunction, projection and variable substitu-
tion. The fixed point computations required to compute, for example, the set of
states reachable from set S, also use the disjunction operation. Negation is not
strictly needed, since all formulas can be put in positive normal form, in which
negation applies only to literals.

Thus, we have all of the operations necessary to do symbolic model checking
based on the component representation of functions. It is necessary only to

23

choose appropriate orders V, W and U. We note that transition relations are
often of the form XR = An=IC~(v~, vz , . . . , v,~). That is, each post-state variable
is typically constrained relative to the pre-state variables, but the post-state
variables are independent given a valuation ofthe prestate variables. In addition~
for each i, 3v~.Ci - 1. That is, the transition relation does not constrain the pre-
state variables in any way. If this is the case, then there is a distinct advantage

�9 . ~ ~ 1 I to using the order V = (vl,. v,~, 1, . . . ,vn). In this case, by theorem 18, the
component in the decomposition corresponding to v~ is exactly Ri, while all the
components corresponding to vi are equal to 1. That is, the conjunction of the
transition relation parts is formed essentially for free. This makes it unnecessary
to the "conjunctive partitioning" technique to avoid an explosion in the size of
the transition relation [BCL91].

4.1 Example

One of the advantages of the decomposed representation is the fact that con-
ditionally independent variables are "factored out". As an example of this phe-
nomenon, we consider verifying the equivalence of the two FIFO queue imple-
mentations of figure 1. The basic technique is to compute the reachable states of
the two running in parallel [CBM89]. As mentioned previously, there is no fixed
correspondence between locations in the two queues. However, once we fix the
shift register contents and the ring buffer "head pointer", the ring buffer data
elements become independent (since they are either uninitialized, or determined
by the corresponding shift register element)�9 This suggests that in the variable
order V control should precede shift register data, which in turn should precede
ring buffer data (or the roles of the two implementations could be reversed)�9 In
this case, when representing the set of reachable states, each component corre-
sponding to a ring buffer data bit is a linear-size OBDD, which in essence reads
the value of the head pointer, tt~en compares the ring buffer bit to the corre-
sponding shift register bit. As a result, the overall size of the representation is
quadratic in the number of data bits.

On the other hand, since there is no fixed correspondence between the data
bits, there is no interleaving of the bits that will yield a small OBDD for the
reachable state set. This is illustrated in the graphs of figures 2-4. In these
graphs, the ordinal axis is the number of data bits in each queue (the queues are
one bit wide, however essentially the same results apply to wider queues)�9 In the
first graph, we see the size of the decomposed representation of the transition
relation. This is the same as the size of the conjunctively partitioned transition
relation, for reasons mentioned above. The second figure shows the size of the
decomposed representation for the largest state set obtained in the reachable
states iteration (which happens to be last iteration in all cases). This is well fit
to a quadratic curve, as expected. The third figure shows the size of the OBDD
representation of the reachable states�9 Note that the scale here is two orders
of magnitude larger than the previous graph�9 This graph shows the expected
exponential explosion, since the OBDD representation must in essence record
the entire contents of one queue in order to compare it to the.other queue.

24

It should also be noted here that there exists a compact "free BDD" [GM94]
representation for the reachable state set in our example. However using free
BDD's would require the user to provide the correct O(n 2) DAG that determines
the free BDD "type". Using decompositions, the simple heuristic "control before
data" is sufficient.

m 40O
~350

soo

i 2so I
200!
150

~1ooI
5O

1600
1400

.~ 1200
o .~ t000

800
"~ 600

400
200

i , i i t i 141"1----"~6
2 4 6 8 10 12

Number of Cells

Fig. 2. Space used to represent the tran-
sition relation for queue example.

120000

~100000

8oooo

60000
2

40000

20000 O
Q

0

2 4 6 8 10 12 14 16
Number of Cells

Fig. 3. Space used for decomposed repre-
sentation of the reachable states for queue
example.

.~ 5oo
~ 700

600
5OO

4O0
OBDD 300

2 O O

- ~ J L L ~ 1 0 0
J

2 4 6 8 10 12 14 16
Number of Cells

Fig. 4. Space used for OBDD represen-
tation of the reachable states for queue
example.

decomp /

1 2 3 4 5 6 7 8 9 10 11 12 13141516
Number of CLusters

Fig. 5. Time used for computation of the
reachable states for queue example.

Finally, figure 5 shows the CPU time in seconds used to compute the reach-
able state set using both representations. Here, we find the CPU time increas-
ing rapidly in both cases (although the decomposed representation is more ef-
ficient as we increase the number of bits). In the decomposition case, it is un-
clear whether this is an exponential expansion or a fairly high order polynomial
(though the difference may be of no practical interest). The algorithms operating
on decompositions are not necessarily polynomial, even when measured relative
to the result. Therefore, it is possible that exponential time is actually being
used. On the other hand, one expects a factor n in the number of iterations
due to increasing diameter of the state space. In addition to this, each itera-
tion involves a conjunction, which uses n 2 OBDD operations, each of which is
proportional to the transition relation component size (O(log n)) and the state
set component size O(n). This would imply at least time proportional to O(nS),
which fits the available data. From a practical point of view, however, it appears
that any gains made in space in using the decomposed representation might be

25

offset by losses in time. The question of improving the time performance of the
algorithms (at least heuristically) needs to be addressed.

5 Conclusions

We have seen that a boolean representation conjunctively decomposed using
generalized cofactor provides a canonical form that exploits "conditional inde-
pendence" between variables. This property can provide a more compact repre-
sentation than OBDD's alone, especiMly in the case when the correspondence
between state variables is not fixed, but varies as a function of control. Algo-
rithms for logical operations and projection on this form were described, making
the representation usable for symbolic model checking.

The most important practical problem that remains to be solved regarding
decompositions is the time required to apply O(n 2) OBBD operations for each
operation on a decomposition (where n is the number of variables). The number
of variables could, for example, be reduced by grouping them into many-valued
variables, though this could make the representation exponentially larger. Also,
tight bounds on the complexity of the algorithms should be obtained.

Acknowledgements : This work benefited greatly from discussions with
Robert Kurshan of AT~zT Bell Labs.

References

[BCL91]

[Bry86]

[CBM89]

[GM94]

[HD93]

[JABF92]

[TSL + 90]

Jerry R. Butch, Edmund M. Clarke, and David E. Long. Symbolic model
checking with partitioned transition relations. In A. Halaas and P.B.
Denyer, editors, Proceedings of the IFIP International Conference on Very
Large Scale Integration, Edinburgh, Scotland, August 1991.
R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.
Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification
of synchronous sequential machines based on symbolic execution. In Joseph
Sifakis, editor, Automatic Verification Methods for Finite State Systems, In-
ternational Workshop, Grenoble, France, volume 407 of Lecture Notes in
Computer Science. Springer-Verlag, June 1989.
J. Gergov and C. Meinel. Efficient boolean manipulation with obdd's can
be extended to fbdd's. IEEE Transactions on Computers, 43(10):1197-209,
Oct. 1994.
A. J. Hu and D. L. Dill. Efficient verification with bdds using implicitly con-
joined invariants. In C. Courcoubetis, editor, Computer Aided Verification.
5th International Conference, CAV "93, pages 3-14, Berlin, Germany, 1993.
Springer-Verlag.
J. Ja~n, J. A. Abraham, •. Bitner, and D. S. Fussell. Probabilistic verifica-

tion of boolean functions. Formal Methods in System Design, 1(1):61-115,
July 1992.
H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-

Vincentelli. Implicit state enumeration of finite state machines using BDD~s.
In ICCAD, pages 130-133, 1990.

