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Abstract. In this paper, I show that methods from computational algebraic ge- 
ometry can be used to carry out symbolic model checking using an encoding of 
Boolean sets as the common zeros of sets of polynomials. This approach could 
serve as a useful supplement to symbolic model checking methods based on Or- 
dered Binary Decision Diagrams and may provide important theoretical insights 
by bringing the powerful mathematical machinery of algebraic geometry to bear 
on the model checking problem. 

1 Introduction 

Symbolic model checking [8, 13] with Ordered Binary Decision Diagrams (OBDDs), 
or variants of OBDDs, is a widely used and successful technique for verifying properties 
of concurrent systems, both hardware and software. But there are many systems for 
which the OBDDs are too large to make model checking feasible and, aside from a few 
results like McMillan's theorem on bounded width circuits [13] or Bryant's theorem on 
integer multiplication [5], there is little theoretical guidance to indicate precisely when 
the OBDD methods are practical. 

It therefore seems worthwhile to investigate alternative "symbolic" representations 
of Boolean sets that could be used for model checking. Such representations, if they are 
practical at all, would presumably allow efficient model checking of somewhat different 
classes of systems than OBDDs, and thus supplement existing symbolic model check- 
ing methods. Furthermore, an alternative representation might lead to new theoretical 
insights into the practicality of symbolic model checking, thereby providing guidance 
to system developers choosing methods for verifying properties of their systems. This is 
especially true if there is already a substantial body of theory concerning the proposed 
representation. 

In this paper, I show how computational algebraic geometry can provide represen- 
tations of Boolean sets suitable for symbolic model checking. The basic idea is that 
any Boolean set can be regarded as the common zeros of a finite set of polynomials 
with coefficients in the field of two elements. Such a set of polynomials then provides 
a symbolic representation of the Boolean set, For example, the common zeros of the 
set of polynomials {xl + x2 + . . .  + Xn, XlX2} are exactly the points ( a l , . . . ,  an) for 
which an even number of the a~ are 1, and at least one of Xl and x2 is zero (all the 
arithmetic is done modulo 2). A Gri~bner basis is a canonical choice of such a set of 
polynomials, and there exist algorithms for finding the Grtbner basis corresponding to 
a particular Boolean set and for carrying out, at the level of Grtbner bases, the manip- 
ulations of Boolean sets required for model checking. Thus, Gr6bner bases can be used 
for symbolic model checking in essentially the same way that OBDDs are. 
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Algebraic geometry is the study of the geometric objects arising as the common 
zeros of collections of polynomials. It is an old and rich area of mathematics, and one 
in which there has been enormous activity and progress in the last few years. In par- 
ticular, algebraic geometers have studied questions related to the action of groups of 
symmetries and to the mappings that correspond to abstraction techniques, and con- 
siderable attention has been given to computational issues�9 An approach to symbolic 
model checking making use of methods from algebraic geometry therefore seems to 
have considerable promise, both as a supplement to existing methods and as a way to 
bring a large body of powerful mathematical machinery to bear on the model checking 
problem�9 

In the next two sections, I sketch some of the necessary background in algebraic 
geometry and Grtibner basis methods. The fourth section briefly illustrates the ideas 
with a small example, and the last section contains a discussion of some of the directions 
for further investigation of this approach. 

2 Some Algebraic Geometry 

This section contains an extremely brief presentation of the algebraic geometry needed 
in the sequel. Any standard text will provide the details and proofs omitted here; the 
interested reader might consult, for example, the books by Cox, Little, and O'Shea [10] 
and Hartshorne [12]. 

We start by setting up some machinery for describing sets of polynomials. Let k be a 
field (for our applications, k will usually be the field of two elements, the integers mod- 
ulo 2), and let k [ x l , . . . ,  Xn] be the ring of polynomials in the variables x l , . . . ,  Xn with 
coefficients in k, under the standard addition and multiplication of polynomials. That 

�9 a ,  where is, a polynomial is a finite k-linear combination of monomials z~ 1 z~ 2 .. x n , 
the ai  are nonnegative integers, and multiplication of polynomials is defined by setting 

aX Or2 o~n /31 /32 ~n al-{-131 ~ 2 + ~ 2  O~n'q-/3n X 1 X 2 . . . X  n �9 x a x 2 . . . x  n : x 1 x 2 . . . x  n and extending linearly 
to products of arbitrary polynomials. Note that the multiplication is commutative and 
that the element I = x l x  2 ~  0 . . .  xnO is an identity element for multiplication. 

The basic structure of polynomial rings (or any commutative rings) is given in terms 
of subsets called ideals. In this setting, ideals are not subrings in general, but they play 
a role in commutative ring theory analogous to that played by normal subgroups in the 
theory of groups. An ideal is a nonempty subset of k [ x l , . . . ,  Xn] that is closed under 
addition and closed under multiplication by any element of the ring. If F = { fa  I a E 
~r } is a set of polynomials in k [ x l , . . . ,  Xn] indexed by the (not necessarily finite) set 
~r the ideal generated by F is the set of sums of the form Y]ae~ hafa, where the 
ha E k [ x l , . . . ,  xn] and only finitely many of the h ,  are nonzero. We will write (F) 
for the ideal generated by F. When F = { f l , . . .  , fs} is a finite set, we often write 
( f l , .  �9 �9 f s ) fo r  (F), and we say that F is a basis for the ideal ( f l , .  �9 �9 re). The Hilbert 
Basis Theorem tells us that every ideal in the ring k[Xl , . . . ,  x,~] is generated by some 
finite set of polynomials. 

We can think of the polynomials as k-valued functions on the vector space k n irt the 
usual way: we evaluate f ( x l , . . . ,  xn) at the point ( a l , . . . ,  an) by substituting al for 
zl ;  a2 for x2, and so on. We say that ( a l , . . . ,  an) is a zero o f f  if f ( a l , . . . ,  an) = O. 



28 

Let F be a (not necessarily finite) subset of k [ x i , . . . ,  Xn]. The variety defined by F,  
written V(F ) ,  is the set of points in k n that are zeros of all the polynomials in F.  Thus 
V ( F )  = { ( a l , . . . , a n )  E k n I f ( a l , . . . , a n )  = 0 for all f E F } .  

As usual, if F = { f i , . . . ,  fs} is a finite set, we sometimes write V ( f i , . . . ,  f s )  
rather than V(F ) .  It is not hard to see that V ( f i , . . . ,  fro) = V ( ( f l , . . . ,  f,~)), so we 
can think of every variety as being the variety defined by some ideal. 

If Vi = V( I i )  and V2 = V(I2) are the varieties defined by ideals I i  and/2,  then 
V1 f3V2 = V ((I1,12)) and V1UV2 = V(/1 .I2), where i l  .Is = ( f i r s  [ f i  E I1, fs E 
/2). I f l i  = ( f l , . . . f r )  and I2 = (g i , . . . , g s ) ,  then/1 �9 12 = (f igj  ] 1 < i < r, 1 < 
j < s ) .  

In general, not every subset of k n is the variety of some ideal (the varieties are the 
closed sets of a certain topology on k'~), but each point (a l , .  �9 an) is the variety of the 
ideal (xl - al ,  xs - as, �9 �9 xn - an). Since the union of a finite collection of varieties 
is a variety, any finite set of points is a variety. If k is finite, as will be the case in our 
application, any subset of k n is finite, and therefore is a variety. 

For the rest of this section, assume that k is the field of two elements. 
As just mentioned, we can regard any set of points in k n as the variety of some 

ideal. We can then use the ideal, or any basis for the ideal, as a way of encoding the set 
of points, just as we might use an OBDD. For instance, k r~ is the variety of the ideal 
consisting of the constant polynomial 0, and the empty subset of k n is the variety of the 
constant polynomial 1. A somewhat more interesting example is the following. 

Choose a positive integer r and let s = 2 r. Regard a point ( a i , . . . ,  ars) E k rs 
as a list of s numbers between 0 and s - 1 by treating each block of r coordinates 
ari+l ~ ari+2~. . . ,  ar(i+l) as the binary representation of a nonnegative integer, and let 
V be the set of points corresponding to lists in which each number from 0 to s -  1 occurs 
exactly once. To construct an ideal I such that V = V(I ) ,  let fi,j be the polynomial 
(Xri+l + Xrj+l + 1) (xri+2 + xrj+2 + 1) . - .  (xr(i+l) + xr(j+l) + 1). The polynomial fi,j 
is zero at a point (a i , .  �9 �9 a~ )  if and only if a~i+k # a~j+~ for some k, so if and only 
if the ith and j th  entries in the list corresponding to ( a l , . . . ,  ars) are different integers. 
Then V = V(  f4J [ i < j) .  Other examples are given in Section 4. 

Note that there will be more than one ideal I defining a given variety. For instance, 
the ideals {0} and (x~ + x l , .  �9 �9 z 2 + xn) both define the variety k '~ (since both 0 and 1 
satisfy the equation x s + x  = 0 when we are working modulo 2). In order to do symbolic 
model checking, we need to be able to determine when two ideals represent the same 
set of points. We first describe how to do this over a larger field. Let k be the algebraic 
closure of k (this is the smallest extension of k in which every polynomial over k has a 
root, as every polynomial with coefficients in R has a root in C). Since k [ x l , . . . ,  x,~] C. 
k [ x i , . . . ,  xn], we can regard polynomials in k [ x i , . . . ,  xnl as functions on ~n, and, 
for a subset F of k [ x i , . . . ,  xn], we define V ( F )  to be the points in k'~ where all the 
elements of F are zero. For an ideal I, the radical o f  I, denoted by v ~  is the ideal 
{ f E k[Xl , . . . ,xr~] l f s E I forsomeposi t ive in tegers} .  If I1 and I2 are ideals 
of k [ X l , . . . ,  Xn], then V(I1)  = V(I2) if and only if v /~  - = v/~'2. (This is Hilbert's 
Nullstellensatz.) The Grfbner basis methods described in the next section provide good 
algorithms for determining when v/Ii'l = Vt~, so we can determine when two ideals 
determine the same variety over the algebraic closure of k. 
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In general, this does not tell us anything about whether V(I1) = V(I2),  but it does 
settle the question for a certain class of ideals. Let Z = { x~ + xi [ i = 1 , . . . ,  n }. As 
noted above, every point in k ~ is a zero of all the elements of Z, so, for any ideal I,  
V ( I )  = V( I )  fq V(Z)  = V( ( I ,  Z}). This means that every set of points in k n is the 
variety defined by some ideal containing the set Z. However, the only elements of 
satisfying x 2 + x = 0 are 0 and 1, the elements of k, so V (Z)  = k n and V( ( I ,  Z)) = 
V( I ) .  Thus, if we restrict ourselves to ideals containing Z, we can still represent every 
subset of k r~ and we can determine when two ideals represent the same set of points. 
As we will see in the next section, restricting our representations to ideals containing Z 
has some other advantages, as well. 

3 Griibner Bases 

In this section, we sketch some of the theory of Grtbner bases. Although this theory has 
roots in the work of Macaulay as early as 1916, it really dates from Buchberger's thesis 
in 1965 [6]. There are now several good introductions to the subject; the reader seeking 
more details might consult the book by Cox, Little, and O'Shea [10] mentioned earlier 
or those by Becker and Weispfenning [4] and Adams and Loustaunau [1]. 

3.1 Motivation 

To understand a little of the motivation for Gr6bner bases, consider the problem of 
determining whether a given polynomial f belongs to an ideal ( f l ,  �9 �9 �9 fs). If we work 
over a polynomial ring in one variable, the ideal is generated by a single polynomial, 
the greatest common divisor d of the set { f l , . . . ,  .is}. There exist unique polynomials 
q and r with the degree of r strictly smaller than the degree of d and f = qd + r, and 
then f belongs to the ideal {d) if and only if the remainder r is 0. The polynomials d, 
q, and r are computed by standard algorithms. 

For polynomials in more than one variable, the problem is more difficult. First, the 
ideal ( f l , . . . ,  fs) need not be generated by a single polynomial, so we must generalize 
our division algorithm to compute a remainder of f on division by the set {f l ,  �9 �9 fs) .  
This is relatively straightforward, but it turns out that the remainder obtained this way 
is not uniquely determined. To get a unique remainder, which will be 0 if and only if 
f E { f l , . . . ,  fs), we need to use a special kind of generating set for the ideal. These 
generating sets are called Grtbner bases, and they provide the foundation for the algo- 
rithmic solution of many problems involving polynomials and ideals. 

3.2 Definitions and basic properties 

To define Gr6bner bases, we need to specify an ordering on the set of monomials that 
satisfies certain conditions. It is somewhat more convenient to state things in terms of 
the n-tuples ( a l , .  �9 an)  rather than the monomials x~l , . . .  XnC,~, so let N n be the set 
of n-tuples of nonnegative integers. There is an obvious isomorphism of semigroups 
between the set of monomials under the multiplication given in the previous section 
and N n with component-wise addition. 
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Again, let k be an arbitrary field. A monomial or term order on k [ x t , . . . ,  xn] is a 
relation ~ on N n (or equivalently on the set of monomials) satisfying the conditions 
that ~- is a total order, ~- is a well-ordering, and a ~- fl implies a + 7 ~- fl + 7 for 
all ~ E N n . The  third condition is essentially a compatibility requirement between the 
order and the multiplication of monomials. We want to use the order to distinguish 
a leading, or highest, term in each polynomial. The third condition say s that, if we 
multiply a polynomial by a monomial, the leading term of the result will be the product 
of the monomial and the leading term of the original polynomial. 

Two commonly used monomial orders are the lexicographic order, in which a ~ fl 
if and only if the leftmost nonzero entry in the difference ~ - fl is positive, and the 
graded reverse lexicographic order, in which a ~- fl if and only if ~ i  ai > ~ i  f~i or 
~ i  ai = ~ i  fli and the right-most nonzero entry in a - ~ is negative. Note, however, 
that each of these orders is defined only up to a permutation of the variables; there are 
really n! versions of the lexicographic and graded reverse lexicographic orders. There 
are results indicating that, for many applications, the graded reverse lexicographic order 
is most efficient [3]. As we will see soon, some special orders, perhaps constructed from 
the graded reverse lexicographic, are also required for certain operations on ideals that 
are used in symbolic model checking. 

We need some additional notation. For t~ = ( a l , . . .  ,a,~) E N n, we write x ~ for 
the monomial x 1 ~1 x2 ~2 . . .  x n ~ .  Let f = ~ a~x ~ be a polynomial in k[xl , .  . . ,  x~], 
and let ~- be a monomial order. The degree of f ,  deg(f) ,  is max(  a E N n [ aa ~ 0 ). 
The leading coefficient of f ,  LC(f),is adeg(l). The leading monomial of f ,  LM(f), is 
x deg(f), and the leading term of f ,  LT(f), is Lc(f) .  LM(/) = ad~g(f)xdeg(S). 

Fix a monomial order. A finite subset G = {g l , . . . ,  gt} of an ideal I is a Gr5bner 
basis for I (with respect to the given order) if and only if, for every f E I,  LT(f) is 
divisible by one of the LT(gi). It is easy to see that every nonzero ideal has a Grtbner 
basis, and that any Grtbner basis for an ideal is also a basis for the ideal. 

Suppose ~- is a fixed monomial order on k[x l , . . .  ,xn] and F = { f l , . . . ,  fs} is 
an ordered s-tuple of polynomials. Then we can generalize the division algorithm for 
polynomials in one variable to show that every f E k[Xl , . . . ,  Xn] can be written as a 
sum of multiples of the f~ and a polynomial r that is either 0 or a sum of monomials not 
divisible by any of LT( f l ) , . . . ,  LT(fs). We say that r is a remainder of f on division by 
F.  The polynomial r depends on the way that the set F is indexed. 

Buchberger gave an algorithm for constructing a Grtbner basis for a given ideal. 
The algorithm starts with a set of generators for the ideal. It then constructs an S- 
polynomial for a pair of elements of this set, and adds the remainder of the S-polynomial 
on division by the generating set to the set. It continues in this fashion until all the re- 
mainders are 0; at this point, the set of generators is a Grtbner basis. Various improve- 
ments in efficiency can be made by carefully choosing which S-polynomials to compute 
at a particular stage [7]. 

If G is actually a Grtbner basis for an ideal I and f E k [ x l , . . . ,  xn], then the 
remainder r of f on division by G is uniquely determined (i.e., does not depend on 
the order in which the elements of the basis are listed), and f E I if and only if r = O. 
Buchberger's GrSbner basis algorithm thus yields an algorithm for determining whether 
a polynomial belongs to a given ideal. As noted in the previous section, we can also use 
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Gr6bner bases to determine whether a polynomial is in the radical of a given ideal. 
We say that a Gr6bner basis G is reduced if the leading coefficients of the elements 

of G are all 1 and no monomial of an dement of G lies in the ideal generated by the 
leading terms of the other elements of G. The key result is that, for a fixed monomial 
order, a nonzero ideal has a unique reduced Gr6bner basis. The algorithm for finding 
a GrSbner basis can easily be extended to output this reduced Gr6bner basis. Thus, we 
have an algorithm for determining whether two ideals ( f l , .  �9 �9 fs) and (h i , . .  �9 h~) are 
equal. 

3.3 Projections 

Suppose that a concurrent system can be described in terms of n Boolean state vari- 
ables, and let F be the field of two elements. We then represent the possible states 
of the system by the elements of the vector space F n. The transition relation of the 
system can then be regarded in the usual fashion as a subset T of F zn, where a point 
(bl, � 9  bn, b ' l , . . . ,  b'n) E T if and only if there is a transition from the state represented 
by (b l , . . . ,  bn) to the one represented by (b~, . . . ,  b ') .  Suppose we have a set of points 
C C_ F n corresponding to a formula r For symbolic model checking, we need to be 
able to describe the points corresponding to, for.instance, the formula E X r  These 
are the points ( b l , . . . ,  bn) E F '~ such that there exists a point (b~, . . . ,  b'~) E C with 
( b l , . . , b n , b '  t �9 1 , " ' ,  bn) E T.  In the framework of algebraic geometry, this amounts 
to finding the projection of a subset of F 2n onto the first n coordinates. We can use 
GrSbner bases, with suitable monomial orders, to accomplish this. 

Let R be the polynomial ring F i x 1 , . . . ,  xn, X ' l , . . . ,  x~n] in 2n variables. We regard 
R as a ring of Boolean functions on F 2n, as usual. Let I = ( f l , . . . ,  fs), and assume 

2 + xi and (x~) 2 + x~ is con- that the set Z consisting of the polynomials of the form x i 
tained in {f l ,  �9 �9 �9 fs}.  (Recall that adding Z to the generating set of I does not change 
V(I ) . )  Let R1 be the subring consisting of polynomials in the variables x l , . . . ,  xn and 
let /1 be the ideal I M R1 of the ring R1. We can show that any ( h i , . . . ,  bn) E V(I1) 
extends to an element (b l , . . . ,  bn., b~, . . . ,  b~n) E V(I ) .  In particular, if we take I to be 
an ideal with variety { ( b l , . . . ,  b,~, b l , . . .  , Un) E T I ( b l , ' ' - ,  b~n) E C ), then V ( / I )  is 
the projection of this set on the first n coordinates. It is this projection that we need for 
model checking. 

So the problem is to find/1.  Let ~ be a monomial order satisfying the property 
is greater than any monomial involving only that any monomial involving one of the x i 

x l , . . . ,  xn, and let G = { g l , . . . ,  gs) be a GrObner basis of I with respect to ~-. If  I 
contains Z, it can be shown that G M R1 is a GrSbner basis for 11. So we can find a 
Gr6bner basis for/1 as long as we can produce a suitable monomial order, and we can 
do that by, for example, modifying: the graded reverse lexicographic order. 

3.4 Complexity 

It is natural to measure the size of a finite set F of polynomials in terms of the number 
of variables, the number of polynomials in F,  the maximum degree of the polynomials, 
and the size of their coefficients. Given F,  we are interested in these measures for 
a GrObner basis for (F),  as welt as for the intermediate sets constructed in finding 
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a Gr6bner basis. In the general case, all of these measures behave fairly badly. For 
instance, examples are known where the construction of a Grrbner basis for an ideal 
generated by polynomials of degree less than or equal to d can involve polynomials of 
degree 22d [13]. Over the field of two elements, however, all the coefficients are 0 or 1, 
and when our ideal includes all the x~ 2 + xi, the only polynomials we have to consider 
are those in which no variable appears with degree greater than 1. I am not aware of 
specific complexity results for this case. Of course, just as with OBDDs, there are too 
many Boolean sets for all of them to have small representations in terms of Grrbner 
bases, so the interesting question is really one of characterizing the Boolean sets that 
do have such nice representations and understanding when the model checking process 
involves only such sets. 

It is worth noting that there has been work on dynamic modification of the monomial 
order as the Grrbner basis calculation proceeds [11]. 

4 An Example 

In this section we show how the machinery described in the preceding sections can 
be applied to verify a property of a small system. Consider the SMV code shown in 
Figure 1 (the numbers on the left in the module p r c  are inserted for reference, and are 
not part of the SMV program). This is the "mutexl" example distributed with SMV, 
with the fairness declarations deleted for simplicity. This system implements a mutual 
exclusion protocol. 

We begin by describing the state variables. We can use one state variable for t u r n  
and two state variables for each of s 0 and s 1 to describe the state of the system, so we 
need 11 state variables for the transition relation (five for the current state, five for the 
next state, and one to keep track of which process is currently running, as required by 
the semantics of SMV). Figure 2 shows how we partition the variables. We encode the 
enumerated variables s 0 and s 1 by-setting the corresponding pair of bits to (0, 0) for 
noncritical, to (0, I) for trying, and to (I, O) for critical. 

The next step is to find an ideal J such that V ( J )  is the transition relation, T. We 
have to capture the assignments made by the processes prO and p r l .  Our approach is 
to find polynomials whose zeros correspond to pairs of states in which the appropriate 
assignments are made. 

Consider first prO. Line (1) tells us that, if the system is in a state where p r o  is 
running (i.e., when xe = 0), and sO is n o n c r i t i c a l  (Le., when (Z2,~73) --~ (0,0)) ,  

I I the value of sO in the next state will be n o n c r i t i c a l  or t r y i n g  (i.e., (x2, x3) = 
;x' x'  ~ = (0, 1)). So we need to find a set of polynomials whose common (0,0) or ~ 2, 3J 

zeros are the points ( X l , . . . , x s , x ~ , . . . , x ~ , x r )  with x6 = 0, x2 = 0, xa = 0, x~ = 
0, and x J' = 0 or 1. Since the condition on x~ holds at all points, we can use the 

3 

set { xs, x2, xs, x~ }. For calculations, it seems somewhat more convenient to take the 
single polynomial 

fl=(x~+1)(x2+1)(xz+1)(x~+l)+1, 

which has the same zeros. 
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MODULE main 

VAR 

sO: {noncritical, trying, critical}; 

s'l: {noncritical, trying, critical); 
turn: boolean; 

prO: process prc(s0, sl, turn, 0); 

prl: process prc(sl, sO, turn, I); 

ASSIGN 
init(turn) := 0; 

SPEC 

EF((s0 = critical) & (sl = critical)) 

MODULE prc(state0, state1, turn, turn0) 

ASSIGN 
init(state0} := noncritical; 

next(state0) := 

case 
(1) (state0 = noncritical) : {trying,noncritical}; 

(2) {state0 = trying) & (state1 = noncritical): critical; 

(3) (state0 = trying) & (statel = trying) & (turn = turn0): critical; 

(4) (state0 = critical) : {critical,noncritical}; 

(5) i: state0; 

esac; 

next(turn) := 

case 

(6) turn = turn0 & state0 = critical: [turn; 
(7} 1: turn; 

esac; 

Fig. 1. SMV program for mutual exclusion protocol 

turn s 0 s i turn s 0 s 1 

I I I 
Current State Next State 

Fig. 2. State variables for transition relation 

running 

In a similar fashion, lines (2)-(4) yield polynomials 

f2 = (zo + 1)(x2 + 1)Xa(X4 + 1)(x5 + 1)x~(x~ + 1) + 1 
/ / 

Ya = (z0 + 1)(x2 + 1)xs(z, + 1)x5(I/~l + 1 ) z z ( z  a + 1) + 1 

f4 = (x0 + 1)x2(xa + 1)(x~ + 1) + 1. 

Line (5) must be treated a little differently. It asserts that, if  p r o  is running and 
none of  the first four guards in the case statement is true, then n e x t  ( s 0 ) = s 0. There 
are two ways all the guards could fail: sO = s l  = t r y i n g  but t u r n  = 1, and 
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sO = t r y i n g  while s l  = c r i t i c a l .  We willrepresenteach of these conditions 
with apolynomial: 

= (x6 +l)(x2 + i)x3(x4 +l)xsxi(x  +l)x~ +I 
fSb = (x6 + l)(x2 + l)x3x4(x5 +l)x  +I. 

We note that it would also be possible to represent the negation of the guards on lines 
(1)-(4) directly, rather than explicitly listing the remaining cases. This approach is il- 
lustrated in the treatment of line (7) below. 

Lines (6) and (7) describe the possible values of n e x t  ( t u r n )  while prO is run- 
ning. From line (6), we have 

f r =  (x~ + 1)(xl + 1)x2(x3 + 1)x~ + i, 

using the fact that, for prO, t u r n 0  = 0. 
Line (7) tells us that, while p r o  is running, t u r n  does not change unless the guard 

of line (6) is satisfied. We want a polynomial that is zero at exactly the points where 
x6 = 0, the guard of line (6) is false (so (Xl + 1)x2(x3 + 1) = 0), and Xl = x~. A 
polynomial that is zero at exactly these points is 

f7 = (x8 + I) ((xi + l)x2(x3 + I) + I) (xi + x~ + I) + i. 

The variable s 1 is not assigned while prO is running. The semantics of SMV then 
imply that n e x t  ( s i ) = s 1 if p r o  is running. We can express this condition with the 
polynomial 

/8 = (x6 + i)(z4 + z~ + 1)(x5 + 4 + 1) + 1. 

? The points (Xl , . . . ,  x5, x l , . . . ,  x~, x6) 6 T corresponding to pairs of states in 
which p r o  is running in the current state are those where one of f l  . . .  fSb is zero, 
one of f6 or f7 is zero, and fs is zero. Since a product of polynomials is zero if and 
only if at least one of the factors is zero, these are the points where the three polynomi- 
als flf2f3f4fs,,fSb, f~fT, and fs are all zero. In other words, the points in the transition 
relation with x6 = 0 form the variety of the ideal/pro = (flf2f3f4fSaf5b, frf7, fS). 

In a similar fashion, we construct an ideal Iprl whose variety is the set of points in 
T with x6 = 1. If we set I = / p r o  "Iprl and J = (I, Z>, where Z = {Xl 2 + x l , . . . ,  x g + 
xs, (x~) 2 + X~l,..., (x~) 2 + x~,x 2 + xr}, then T = V(J ) .  

The property we want to check is EF(sO = critical A sl = critical). 
Let r = (sO = critical A sl = critical). So we want to find the least fixed 
point of 7" = Ay.r V EXy.  Given a description of y as a variety, we need to express the 
points corresponding to r V E X y  as the variety of some ideal. To do this, we need to 
describe thepoints satisfying r as a variety, and we need to compute the ideal defining 
the variety EXy .  

The points (x l , .  �9 �9 xs, x ~ , . . . ,  x~, xr) for which r holds are those corresponding 
to system states in which both sO and s l  are c r i t i c a l ,  i.e., those in which x2 = 
x4 = 1 and xa = x5 = 0. These are the points in the variety of the ideal Ir = 
<x2(x3 + 1) + 1,x4(x5 + 1) + 1>. 
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To find the ideal corresponding to E X  v, we first need to specify that the poly- 
nomials defining y are zero in the next state. In our setting, this is accomplished by 
applying a homomorphism of rings that replaces the xi by the corresponding x~..Let 
FI -- F[Xl, ,xs,x' l , . . .  ,xls,xt] and let v: R --+ R be the (k-linear) ring homo, 
morphism mapping each xi to x~, for i = 1 , . . . , 5 ,  each x~ to 0, and x6 to x, .  If 
f 6 R1 = F[xl , . . . ,  x~] is a polynomial in the xi, v(f) is the corresponding polyno- 
mial in the variables x~ , . . . ,  x~, x~. 

Then if y corresponds to the variety V ( h l , . . . ,  hs), the variety corresponding to 
E X y  is the projection onto the ~'st n coordinates of the variety of the ideal I v, = 
(T, u(hl) , . . . ,  u(hs), Z). We find the ideal defining this variety using the methods dis- 
cussed in Section 3.3: We construct a GrSbner basis Gy, for I~, with respect to a suit- 
able order, and take the elements of G v, that lie in the subring R1. If G1 = R1 N Gv,, 
then the variety defined by (G1) �9 Ir corresponds to the points satisfying the formula 
r V EXy.  In this fashion, we can find the least fixed point of )~y.r V EXy.  

I used the program Macaulay [2] to carry out these calculations. Macaulay provides 
facilities for defining rings, ideals, and homomorphisms, and for carrying out a variety" 
of Grtbner basis calculations. Many of these calculations could have been done using 
other computer algebra systems; Macaulay seemed to be the most convenient for these 
experiments. 

The GrSbner basis found by Macaulay for the ideal Iv whose variety is the least 
fixed point of Ay.r V EXy  consists of the six polynomials x~ + Xl, x2 + 1, xs, xa + 1, 
xs, and x62 + xt.  (Note that the first and last of these are zero at all points of F n.) The 
variety V(I~) consists of the points (xl , .  �9 xs, x~ , . . . ,  x~, xt)  where x2 = 1, x3 = 0, 
x4 = 1, and x5 = 0. These are the points where sO and s l  are both c r i t i c a l ;  this 
tells us that it is not possible to reach a state where both s 0 and s 1 are c r •  t •  (i.e., 
where r holds) from a state where at least one is not c r i t i c a l .  In particular, no state 
where both s 0 and s 1 are c r i  t • c a  3_ is reachable from the initial state, since the initial 
conditions specify that s 0 and s 1 are n o n c r i t i c a l .  We can verify this by express- 
ing the initial conditions as the zeros of an ideal, say I in i t  = <x2, x3, xa, xs, xt),  and 
computing the ideal of the intersection of the varieties V (I~) and V (Iir~i t). Macaulay 
reports that the constant polynomial 1, which has no zeros, is a GrSbner basis for this 
ideal, and we see that the intersection is empty. We conclude that EFr is false in the 
initial state. 

Alternatively, we could have found the set of reachable states by starting from I ini t ,  
and taken the intersection with this variety at each stage. (This corresponds to running 
SMV with the - f flag.) 

Macaulay runs as an interpreter that can be used interactively or can execute scripts. 
A script to check the property EF(s0 = critical A sl = critical) took 

about 10 seconds to execute on a PC with a i00 MHz Pentium and 16 MB of memory, 

running Linux. Macaulay allocated 755 KB of memory in the course of this calcula- 
tion. For comparison, on the same machine SMV took approximately 0.1 seconds to 
check the same property, and allocated just over 917 KB. SMV, of course, was building 
OBDDs from the code shown in Figure 1, while for Macaulay, I had manually trans- 
lated this code into the polynomials described above. 
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5 Discussion 

In this paper, I have shown how techniques from computational algebraic geometry can 
be used for symbolic model checking. This approach may provide a useful supplement 
to existing methods based on OBDDs, and may also provide important theoretical in- 
sights by allowing the application of deep results in algebraic geometry to the model 
checking problem. Additional research will be needed to determine whether these po- 
tential advantages are borne out. 

Macaulay, the program I used for the calculations described in the previous section, 
was intended for use in a much more general setting. It supports, for instance, calcu- 
lations over fields of characteristic up to about 32,000, rather than just characteristic 
2. Its data structures and algorithms are therefore not optimized for the cases used in 
symbolic model checking. Furthermore, it runs as an interpreter. For that reason, the 
difference in execution time between Macaulay and SMV does not seem to carry much 
significance for assessing the practicality of these methods. Although some further in- 
vestigation of the practicality of symbolic model checking using the techniques from 
algebraic geometry can probably be done using tools like Macaulay, more serious study 
will likely require building a prototype tool designed specifically for that purpose. Ex- 
amples like the one in the previous section suggest that it should be fairly easy to build 
a tool that would work directly from specifications given in the SMV input language. 

There are several directions in which the framework proposed here might be gener- 
alized. For instance, in the example of Section 4, I worked with polynomials over the 
field of two elements. This has some clear advantages and seems to be the most natu- 
ral analog of the OBDD approach. Working over the field of order 2 k, however, might 
allow much more efficient encoding of conditions involving k-bit blocks of state vari- 
ables. Similarly, working over fields of characteristic greater than 2 would correspond 
to some of the non-binary generalizations of OBDDs. 

It is difficult to predict exactly what theorems of algebraic geometry might be ap- 
plicable to symbolic model checking, but some general directions can be sketched. For 
instance, there is a rich collection of invariants of varieties and ideals, including such 
things as notions of dimension and degree. Many of these invariants are likely to be re- 
lated to the difficulty of carrying out symbolic model checking. Algebraic geometry also 
provides good machinery for handling such things as the action of groups on varieties, 
maps between varieties, and the properties of intersections of varieties. It might there- 
fore provide new ways to understand and take advantage of symmetries of the system 
being checked, abstraction to simpler systems, or the effects of constraints represent- 
ing the interface between a subsystem and its environment. Results in these directions 
might give information about, for instance, the kinds of Boolean sets arising in fixed 
point calculations and thus even have implications for model checking using OBDDs. 

Acknowledgments 

This research was partially supported by the National Science Foundation under Grant 
No. CCR-9407182. I am grateful to David Cox for helpful discussions about Grtbner 
bases, to Jay Corbett for clarifying many of the details of SMV, for making a lightly 



37 

loaded SparcStation available for some of my experimentation and for helpful com- 
ments on earlier drafts of this paper, and to Nicholas Schmitt for providing me with 
several versions of  his Gr6bner basis package, Ideal, which I used in my initial explo- 
ration of these ideas. 

References 

1. W. W. Adams and E Loustaunau. An Introduction to Grrbner Bases, volume 3 of Graduate 
Studies in Mathematics. American Mathematical Society, Providence, RI, 1994. 

2. D. Bayer and M. Stillman. Macaulay: A System for Computation in Algebraic Geometry 
and Commutative Algebra. Source and object code available for Unix and Macintosh com- 
puters. Contact the authors, or dowrdoad from math. harvard, edu via anonymous ftp., 
1982-1994. 

3. D. Bayer and M. Stillman. A criterion for detecting m-regularity. Invent. Math., 87:1-11, 
1987. 

4. T. Becker and V. Weispfenning. Grrbner Bases, volume 141 of Graduate Texts in Mathe- 
matics. Springer-Verlag, New York, 1993. 

5. R.E. Bryant. On the complexity of VLSI implementations and graph representations 
of Boolean functions with application to integer multiplication. IEEE Trans. Comput., 
40(2):205-213, Feb. 1991. 

6. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes 
naeh einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965. 

7. B. Buchberger. GrObner bases: An algorithmic method in polynomial ideal theory. In N. K. 
Bose, editor, Multidimensional Systems Theory, pages 184-232. D. Reidel, 1985. 

8. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 102o 
states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Com- 
puter Science, pages 428--439, 1990. 

9. D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in 
Mathematics. Springer-Verlag, New York, 1992. 

10. E Gritzmarm and B. Sturmfels. Mirtkowski addition of polytopes: Computational complex- 
ity and applications to Grrbner bases. SIAM Journal on Discrete Mathematics, 6(2):246- 
269, 1993. 

11. R. Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. 
Springer-Verlag, New York, 1977. 

12. E. Mayr and A. Meyer. The complexity of the word problem for commutative semigroups 
and polynomial ideals. Adv. in Math., 1982. 

13. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 1993. 


