
Module Checking 

Oma Kupferman 1 and Moshe Y. Vardi 2 

1 Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A. 
Email: ok~research, art. corn 

2 Rice University, Department of Computer Science, P.O. Box 1892, Houston, TX 77251-1892, U.S.A. 
Ema~l: vardiOcs, rice. edu~ URL: http : //www. cs. rice. edu/~vardi 

Abstract. In computer system design, we distinguish between closed and open systems. A closed 
system is a system whose behavior is completely determined by the state of the system. An open 
system is a system that interacts with its environment and whose behavior depends on this inter- 
action. The ability of temporal logics to describe an ongoing interaction of a reactive program 
with its environment makes them particularly appropriate for the specification of open systems. 
Nevertheless, model-checking algorithms used for the verification of closed systems are not ap- 
propriate for the verification of open systems. Correct model checking of open systems should 
check the system with respect to arbitrary environments and should take into account uncertainty 
regarding the environment. This is not the case with current model-checking algorithms and tools. 
In this paper we introduce and examine the problem of model checking of open systems (module 
checking, for short). We show that while module checking and model checking coincide for the 
linear-time paradigm, module checking is much harder than model checking for the branching- 
time paradigm. We prove that the problem of module checking is EXPTIME-complete for spec- 
ifications in CTL and is 2EXPTIME-complete for specifications in CTL*. This bad news is also 
carried over when we consider the program-complexity of module checking. As good news, we 
show that for the commonly.used fragment of CTL (universal, possibly, and always possibly prop- 
erties), current model-checking tools do work correctly, or can be easily adjusted to work correctly, 
with respect to both dosed and open systems. 

1 Introduction 

In computer system design, we distinguish between closed and open systems [HP85]. A closed sys- 
tem is a system whose behavior is completely determined by the state of the system. An open system 
is a system that interacts with its environment and whose behavior depends on this interaction. As an 
example to closed and open systems, we can think of two drink-dispensing machines. One machine, 
which is a closed system, repeatedly boils water, makes an internal nondeterministic choice, and serves 
either coffee or tea. The second machine, which is an open system, repeatedly boils water, asks the 
environment to choose between coffee and tea, and deterministically serves a drink according to the 
external choice [Hoa85]. Both machines induce the same infinite tree of possible executions. Never- 
theless, while the behavior of the first machine is determined by internal choices solely, the behavior 
of the second machine is determined also by external choices, made by its environment. Formally, in 
a closed system, the environment can not modify any of the system variables. In contrast, in an open 
system, the environment can modify some of the system variables. 

Designing correct open systems is not an easy task. The design has to be correct with respect to 
any environment, and often there is much uncertainty regarding the environment [FZ88]. Therefore, 
in the context of open systems, formal specification and verification of the design has great importance. 
Traditional formalisms for specification of systems relate the initial state and the final state of a system 
[Flo67, Hoa69]. In 1977, Pnneli suggested temporal logics as a suitable formalism for reasoning about 
the correctness of nonterrainating systems [Pnu77]. The breakthrough that temporal logics brought to 
the area of specification and verification arises from their ability to describe an ongoing interaction of 
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a reactive module with its environment [HP85]. This ability makes temporal logics particularly appro- 
priate for the specification of open systems. 

Two possible views regarding the nature of time induce two types of temporal logics [Lam80]. In 
linear temporal logics, time is treated as if each moment in time has a unique possible future. Thus, 
linear temporal logic formulas are interpreted over linear sequences and we regard them as describing 
the interaction of the system with its environment along a single computation. In branching temporal 
logics, each moment in time may split into various possible futures. Accordingly, the structures over 
which branching temporal logic formulas are interpreted are infinite trees, and they describe the pos- 
sible interactions of a system with its environment. In both paradigms, we can describe the design in 
some formal model, specify its required behaviour with a temporal logic formula, and check formally 
that the model satisfies the formula. Hence the name model checking for the verification methods de- 
rived from this viewpoint. 

We model finite-state closed systems by programs. We model finite-state open systems by reactive 
programs (modules, for short). A module is simply a program with a partition of the states into two 
sets. One set contains system states and corresponds to locations where the system makes a transition. 
The second set contains environment states and corresponds to locations where the environment makes 
a transition s. Consider the module M presented on the right. It has 

three system states (boi/, tea, and coffee), and it has one environ- 
ment state (choose). It models the second drink-dispensing machine 
described above. When M is in the system state boil, we know ex- 
actly what its possible next states are. It can either stay in the state 
boil or move to the state choose. In contrast, when M is in the envi- 
ronment state choose, there is no certainty with respect to the envi- 
ronment and we can not be sure that both tea and coffee are possible 
next states. For example, it might be that for some users of the ma- 
chine, coffee is not a desirable option. If we ignore the partition of 
M's  states to system and environment states and regard it as a pro- 
gram P,  then it models the first drink-dispensing machine described 
above. 

To see the difference between the semantics of programs and modules, let us consider two ques- 
tions. Is it always possible for the first machine to eventually serve tea? This is equivalent to ask- 
ing whether P satisfies the CTL formula AGEFtea,  and the answer is yes. Is it always possible for 
the second machine to eventually serve tea? Here, the answer is no. Indeed, if the environment al- 
ways choose coffee, the second machine will never serve tea. Suppose now that we check with current 
model-checking tools whether it is always possible for the second machine to eventually serve tea, 
what will be the answer? Unfortunately, model-checking tools do not distinguish between closed and 
open systems. They regard M as a program and answer yes. 

As discussed in IMP92], when the specification is given in linear temporal logic, there is indeed 
no need to worry about uncertainty with respect to the environment; since all the possible interactions 
of the system with its environment have to satisfy a linear temporal logic specification in order for M 
to satisfy the specification, the program P and the module M satisfy exactly the same linear temporal 
logic formulas. From the example above we learn that when the specification is given in branching 
temporal logic, we do need to take into account the uncertainty about the environment. There is a need 
to define a different model-checking problem for open systems, and there is a need to adjust current 
model-checking tools to handle open systems correctly. 

3 A similar way for modelling open systems is suggested in [LT88, Lar89]. There, Larsen and Thomsen use Modal 
Transition Systems, where some of the transitions are admissible and some are necessary, in order to specify 
processes loosely, allowing a refinement ordering between processes. 
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We now specify formally the problem of model checking of open systems (module checking, for 
short). As with usual model checking, the problem has two inputs. A module M and a temporal logic 
formula r For a module M, let VM denote the unwinding of M into an infinite tree. We say that M 
satisfies ~b iff r holds in all the trees obtained by pruning from VM subtrees whose root is a successor 
of an environment state. The intuition is that each such tree corresponds to a different (and possible) 
environment. We want r hold in every such tree since, of course, we want the open system to satisfy 
its specification no matter how the environment behaves. For example, an environment for the second 
drink-dispensing machine is an infinite line of thirsty people waiting for their drinks. Since each per- 
son in the line can either like both coffee and tea, or like only coffee, or like only tea, there are many 
different possible environments to consider. Each environment induces a different tree. For example, 
an environment in which all the people in line do not like tea, induces a tree that has the left subtree of 
all its choose nodes pruned. Similarly, environments in which the first person in line like both coffee 
and tea induce trees in which the first choose node has two successors 4. 

We examine the complexity of the module-checking problem for linear and branching temporal log- 
ics. Recall that for the linear paradigm, the problem of module checking coincides with the problem 
of model checking. Hence, the known complexity results for LTL model checking remain valid. As 
we have seen, for the branching paradigm flaese problems do not coincide. We show that the problem 
of module checking is much harder. In fact, it is as hard as satisfiability. Thus, CTL module check- 
ing is EXPTIME-complete and CTL* module checking is 2EXPTIME-complete, both worse than the 
PSPACE complexity we have for LTL. Keeping in mind that CTL model checking can be done in lin- 
ear time ICES86] and CTL* model checking can be done in polynomial space I-EL85], this is really 
bad news. We also show that for CTL and CTL*, the program complexity of module checking (i.e., 
the complexity of this problem in terms of the size of the module, assuming the formula is fixed), is 
PTIME-complete, worse than the NLOGSPACE complexity we have for LTL. As the program com- 
plexity of model checking for both CTL and CTL* is NLOGSPACE [BVW94], this is bad news too. 

As a consolation for the branching-time paradigm, we show that from a practical point of view, 
our news is not that bad. We show that in the absence of existential quantification, module checking 
and model checking do coincide. Thus, VCT~ module checking can be done in linear time, and its 
program complexity is NLOGSPACE. More consolation can be found in "possibly" and "always pos- 
sibly" properties. These classes of properties are considered an advantage of the branching paradigm. 
While being easily specified using the CTL formulas EF~ and AGEF~, these properties can not be 
specified in LTL [EH86]. We show that module checking of the formulas EF~ and AGEF~ can be 
done in linear time (though the problems a~'e PTIME-complete). 

2 Preliminaries 

The logic CTL* combines both branching-time and linear-time operators. Formulas of CTL* are de- 
fined with respect to a set AP of atomic propositions. Apath quantifier, either E ("for some path") or 
A ("for all paths"), can prefix a path formula composed of an arbitrary combination of the linear-time 
operators F ("eventually"), G ("always"), X ("next time"), and U ("until"). 

The semantics of CTL* is defined with respect to aprogram P = (AP, IV, R, wo, L), where A P  
is the set of atomic propositions, W is a set of states, R C W x W is a transition relation that must 
be total (i.e., for every w E W there exists w ~ E W such that R(w, wl)), wo is an initial state, and 
L : W ~ 2 AP maps each state to a set of atomic propositions true in this state. A path of P is an 
infinite sequence wo, w l , . . ,  of states such that for every i > 0, we have R(wi, w~+l). The notation 

4 Readers familiar with game theory can view module checking as solving an infinite game between the system 
and the environment. A correct system is then one that has a winning strategy in this game. 
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P ~ ~p indicates that the formula ~o holds at state Wo of the program P.  A formal definition of the 
relation ~ can be found in [Eme90]. 

The logic CTL is a restricted subset of CTL* in which the temporal operators must be immediately 
preceded by a path quantifier. Thus, for example, the CTL* formula ~p = AGF(pA EXq)  is not a CTL 
formula. Adding a path quantifier, say A~ before the F temporal operator in ~o results in the formula 
AGAF(p A EXq),  which is a CTL formula. The logics VCTL and VCTL*, known as the universal 
fragments of CTL and CTL*, respectively, allow only universal quantification of path formulas. Thus, 
all the occurrences of the path quantifier E should be under an odd number of negations. The formula 

above is therefore not a VCTL* formula. Changing the path quantifier E in ~o to the path quantifier A 
results in the formula AGF(p A AXq), which is a VCTL* formula. The logic LTL is a linear temporal 
logic. Its syntax does not allow any path quantification. Formulas of UFL are interpreted over paths in a 
program. The notation P ~ ~b indicates that the LTL formula ~ holds in all the paths of the program P.  

A closed system is a system whose behavior is completely determined by the state of the system. 
We model a closed system by a program. An open system is a system that interacts with its environ- 
ment and whose behavior depends on that interaction. We model an open system by a module M = 
(AP, W~, We, R, wo, L), where AP, R, wo, and L are as in programs, W~ is a set of system states, We 
is a set of environment states, and we often use W to denote W, tJ We. 

For each state w E W, let succ(w) be the set of w's R-successors; i.e., succ(w) = { w' : R(w, w') }. 
Consider a system state w8 and an environment state we. Whenever a module is in the state ws, all the 
states in succ(ws) are possible next states. In contrast, when the module is in state we, there is no cer- 
tainty with respect to the environment t~'ansitions and not all the states in succ(w,) are possible next 
states. The only thing guaranteed is that not all the environment transitions are impossible, since the 
environment can never be blocked. For a state w E W, let step(w) denote the set of the possible sets 
of w's next successors during an execution. By the above, step(ws) = {suec(w~) } and step(w~) cor~- 
tains all the nonempty subsets of succ(w~)o 

An infinite tree is a set T C lq* such that if x �9 c E T where or E Iq* and c E hi, then also 
z E T, and for all 0 < c ~ < c, we have that a~ �9 c' E T. In addition, if x E T, then z �9 0 E T. 
The elements of T are called nodes, and the empty word ~ is the root of T. Given an alphabet 27, a 
S-labeled tree is a pair {T, V) where T is a tree and V : T ~ S maps each node of T to a letter in 
27. A module M can be unwound into an infinite tree (TM~ VM) in a straightforward way. When we 
examine a specification with respect to M,  it should hold not only in (TM, VM) (which corresponds 
to a very specific environment that does never restrict the set of its next states), but in all the trees 
obtained by pruning from (TM, VM} subtrees whose root is a successor of a node corresponding to an 
environment state. Let exec(M) denote the set of "all these trees. Formally, (T~ V) E exec(M) iff the 
following holds: 

- ~ C T and V(E) = too. 
- For all z E T with V(x) = w, there exists {wo . . . . .  w,~} E step(w) such that T n hiIml+t = 

{x .  O, x .  1 , . . . ,  x .  n} and for all 0 < c < n we have V(x .  c) = we. 

Intuitively, each tree in exec(M) corresponds to a different behaviour of the environment. Note that 
a single environment state with more than one successor suffices to make ezec(M) infinite. We will 
sometimes view the trees in ezec(M) as 2AP-labeled trees, taking the label of a node z to be L(V (z)). 
Which interpretation is intended will be clear from the context. 

Given a module M and a CTL* formula ~b, we say that M satisfies ~b, denoted M ~ ,  ~b, if all the 
trees in e~ec(M) satisfy ~b. The problem of deciding whether M satisfies ~b is called module checking 5. 
We use M ~ ~b to indicate that when we regard M as a program (thus refer to all its states as system 

5 A different problem where a specification is checked to be correct with respect to any environment is discussed 
~n [ASSSV94]. There, all the states of the module are system states, and the formula should hold in all compo- 
sitions that contain the module as a component. 
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states), then M satisfies r The problem of deciding whether M ~ r is the usual model-checking 
problem [CE81, QS81]. Let A ~ B denote that A implies B but B does not necessarily imply A. It 
is easy to see that 

M ~ , r 1 6 2  

Indeed, M ~r  r requires all the trees in exec(M) to satisfy r On the other hand, M ~ r means that 
the tree (TM, VM) satisfies r Finally, M ~:r -~r only tells us that there exists some tree in exec(M) 
that satisfies r 

We can define module checking also with respect to linear-time specifications. We say that a module 
M satisfies an LTL formula r iff M ~ Ar 

3 M o d u l e  C h e c k i n g  for  B r a n c h i n g  Tempora l  Logics 

We have already seen that for branching temporal logics, the model checking problem and the module 
checking problem do not coincide. In this section we study the complexity of CTL and CTL* mod- 
ule checking. We show that not only the problems do not coincide but also their complexities do not 
coincide, and in a very significant manner. 

Theorem 1. 

(1) The module-checking problem for CTL is EXPTlME-complete. 
(2) The module-checking problem for CTL* is 2EXPTIME-complete. 

Proof (sketch): We start with the upper bounds. Consider a CTL formula r and a set 79 C lq with a 
maximal element k. Let .Aw,.r be a Bfichi tree automaton that accepts exactly all the tree models of 
-~r with branching degrees in 73. By [VW86b], such Av, ,r  of size 0(2 k'lr exists. 

Given a module M = (AP, W,, W,, R, wo, L), we define a Biiehi tree automaton .AM that ac- 
cepts the set of all trees in exec(M). Intuitively, .AM guesses which subtrees of (TM, VM) are pruned. 
Formally, .AM = (2 AP, 7), W, ~, wo, W) where D and 6 are as follows. 

- v = U ~ w .  {Is~ ,~(w) l}  u U ~ w . { l  . . . .  , I,~,~:(w)l}. 
- For every w E W,a E 2A~',and d E D, wehave(wl,...,wa) E 6(w,a,d) iffL(w) = aand 

{wl , . . . ,  wd} E step(w). 

Since the acceptance condition only requires AM not to get stuck (note that 6 is partial), it is easy 
to see that E(AM) = exec(M). Since for every environment state w, the set step(w) considers all 
possible subsets ofsucc(w), the size of.Am is exponential in max~ew ̀ {Isucc(w)l), thus exponential 
in the size of M. 

By the definition of satisfaction, we have that M ~r  r iff all the trees in exec(M) satisfy r In 
other words, if no tree in exec(M) satisfies ~r This can be checked by testing E (.AM) NE (Av,~)  for 
emptiness. Equivalently, we have to test Z:(AM x AV,~r for emptiness. By [VW86b], the nonempti- 
ness problem of Biiehi tree automata can be solved in quadratic time, which gives us an algorithm of 
time complexity 2 ~162 We can, however, do better. By [VW86a], the number of states in the 
automaton A~9,,r is 2 ~162 and is independent of k. Also, the automaton .AM has the same number 
of states as M. The fact that the sizes of these automata are exponential in k and M originates from 
a special structure where all subsets of a certain tuple in the transition relation are possible tuples too. 
Therefore, the algorithm in [VW86b] can be implemented to test s • Av,~r for emptiness in 
time polynomial in IM[ * 21,~1. 

The proof is similar for CTL*. Here, following [ES84, EJ88], we have that Av, . r  is a Rabin tree 

automaton with 2 k'2f'bl states and 21~1 pairs. By [EJ88, PR89], and again, using the restricted structures 



80 

of the automata..47),.r and AM, checking the emptiness of s x .A~9,.r can then be done in time 
JMl~ 22 ~ " 

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we reduce CTL 
satisfiability, proved to be EXPTIME-complete in [FL79], to CTL module checking. Given a CTL 
formula ~b, we construct a module M and a CTL formula ~p such that the size of M is quadratic in 
the length of r the length of ~o is linear in the length of ~b, and r is satisfiable iff M ~ -~p. 

Consider a CTL formula r For simplicity, let us first assume that ~ has a single atomic proposition 
q. Let n be the number of existential quantifiers in r plus 1. By the sufficient branching-degree prop- 
erty of CTL, r is satisfiable iffthere exists a {0, {q} }-labeled tree of branching degree n that satisfies r 
[Eme90]. Let P,~ be a clique with n states. By the above, r is satisfiable iff there exists a possibility to 
label an unwinding of P,~ such that the resulted {0, {q} }-labeled tree satisfies ~b. This simple idea, due 
to [Kup95], is the key to our reduction. We define a module M,~ such that each tree in exee(M,~) corre- 
sponds to a {0, {q} }-labeling of (Tp,~, Vp, ). We then define ~o such that there exists a tree satisfying ~p 
in exec(M,,) iffthere exists a {0, {q} }.-labeling of (Tp,, Vp. ) that satisfies r It follows that r is satis- 
fiable i f fM ~ .  "~r Let In] = {1 , . . . ,  n}, In]' = {1', . . . .  n '},  and let M ,  - (AP, W,, We, R, w, L), 
where, 

- A P  = {ghost ,  q } .  

- W ,  = [,~]. 

- We = [n]' U {heaven, heU }. 
- R = {( i , j )  : i , j  ~ [n]} U { ( i , i ' ) :  i E [n]}t2 

(In}' • {heaven, hell}) U { {heaven, heaven) } U 
{(hell, hell)}. 

- w = l .  
- For all i E In}, we have L(i) = 0 and L(i') = 

{ghost}. Also, L(heaven) = {q} and L(hell ) = 
0. 

The reactive module M 

That is, the system states of Mn induce the clique Pn. In addition, each system state has a ghost: 
an environment state with two successors, one labeled with q and one not labeled with q. Intuitively, 
the ability of the ghost r to take an environment transition to heaven in .?v/n, corresponds to the ability 
of a node associated with the state i in (Tp., Vp.) to be labeled with q. Thus, each tree in exec(M~) 
indeed corresponds to a {0, {q}}-labeling of (Tp., Vp. ~. We now have to define (p such that when- 
ever the formula r refers to q, the formula ~ will refer to EXEXq .  Indeed, since heaven is the only 
state labeled with q, then a system state satisfies E X E X q  iffthe transition of its ghost to heaven is en- 
able& In addition, path quantification in tp should be restricted to computations of Pn. That is, to paths 
that never meet a ghost. To do this, we define a function f : CTL* formulas ---+ CTL* formulas such 
that f(~) restricts path quantification to paths that never visit a state labeled with 9host. We define f 
inductively as follows. 

- f ( q )  = q .  

- f ( - ~ ) = - d ( ~ ) .  

- f ( ~ l  v ~ )  = : ( ~ x )  v f ( ~ 2 ) .  

- f (E~)  = E((G-~ghost) A/(~)) .  

- f (A~)  = A((Fghost) V f(~)). 

- f ( X ~ )  --- X f ( ~ ) .  

- f(~IU~2) = f(~l)Uf(~2).  
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For example, f ( EqU ( AFp) ) = E( ( G-~ghost) A ( qU ( A( ( F ghost) v Fq) ) ) ). We can now define 
as f ( r  with E X E X q  replacing q. Note that we first apply f and only then do the replacement. When 
~p is a CTL formula, the formula f ( r  is not necessarily a CTL formula. Still, it has a restricted syntax: 
its path formulas have either a single linear-time operator or two linear-time operators connected by a 
Boolean operator. By [BG94], formulas of this syntax have a linear translation to CTL. 

When r has more than one atomic proposition, the reduction is very similar. Then, for r over 
{ q l , . . . ,  q,,~ }, we have rn heavens, one for each atomic proposition, and we associate with each sys- 
tem state m ghosts, again, one for each atomic propositions. We can now replace a proposition qi in 
with E X E X q i  in ~. The obtained module has n + nm + rn + 1 states and it has n 2 + 3nm + m + 1 
transitions. 

The proof is the same for CTL*. Here, we do a reduction from satisfiability of CTL*, proved to be 
2EXPTIME-hard in [VS85]. O 

We note that the problem of CTL module checking is EXPTIME-complete (and the one for CTL* is 
2EXPTIME-complete) even when we res~Sct ourselves to modules in which all states are environment 
states. To see this, note we could have defined M,~ as the clique Pn, adding a transition from each 
state to heaven. We could then force each node of a tree in exec(M,~) to have as children at least its n 
successors in P,~ (this can be enforced by the formula, having In] as atomic propositions, and having 
formulas like AG(1 ~ E X 2  A EX3)  conjuncted with the original formula), and replace q in ~b with 
E X q  in ~. The price of using only environment states is that now the length of ~o is quadratic in the 
length of ap. 

Moreover, module checking for CTL is EXPTIME-complete even for modules of a fixed size. To 
see this, note that the size of M,~ depends on the number of atomic propositions in ~b and on the mini- 
mum branching degree of models of ~b. Proving that the satisfiability problem for CTL is EXPTIME- 
hard, Fisher and Lander reduce acceptance of a word x by a linear-space alternating Turing machine 
to satisfiability of a CTL formula ~b~ [FL79]. A somewhat different reduction, which considers a fixed 
Turing machine that accepts an EXPTIME-complete problem, results in ~p~ of length polynomial in 
Ix], but with a fixed number of atomic propositions, which, if satisfiable, has models with branching 
degree 2. Such ~bx induces, for all x, modules of a fixed size. 

4 T h e  P r o g r a m  C o m p l e x i t y  o f  M o d u l e  C h e c k i n g  

When analyzing the complexity of model checking, a distinction should be made between complexity 
in the size of the input structure and complexity in the size of the input formula; it is the complexity in 
size of the structure that is typically the computational bottleneck [LP85]. In this section we consider 
the program complexity [VW86a] of module checking; i.e., the complexity of this problem in terms of 
the size of the input module, assuming the formula is fixed. It is known that the program complexity 
of LTL, CTL, and CTL* model checking is NLOGSPACE [VW86a, BVW94]. This is very signifi- 
cant since it implies that if the system to be checked is obtained as the product of the components of a 
concurrent program (as is usually the case), the space required is polynomial in the size of these com- 
ponents rather than of the order of the exponentially larger composition. 

We have seen that for CTL and CTL*, module checking is much harder than model checking. We 
now claim that when we consider program complexity, module checking is still harder. 

Theorem 2. The program complexity of CTL and CTL* module checking is PTIME-complete. 

Proof (sketch): Since the algorithms given in the proof of Theorem 1 are polynomial in the size of 
the module, membership in PTIME is immediate. 

We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV), proved 
to be PTIME-hard in [Go177], to module checking of the CTL formula EFp. In the MCV problem, 
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we are given a monotonic Boolean circuit ~ (i.e., a circuit constructed solely of AND gates and OR 
gates), and a vector (zl . . . .  , z,~) of Boolean input values. The problem is to determine whether the 
output of a on ( z l , . . .  ,x,~) is 1. 

Let us denote a monotonic circuit by a tuple ~ = IGv, G3, Gin, go~t, T), where Gv is the set of 
AND gates, G3 is the set of OR gates, Gin is the set of input gates (identified as g l , . . . ,  g,~), go~t E 
Gv u G3 u Gin is the output gate, and T C G x G denotes the acyclic dependencies in t~, that is 
(g, g') E T i f f  the output of gate g' is an input of gate g. 

Given a monotonic circuit a = (Gv, G~, Gi,, go~t, T) and an input vector x = ( z l , . . . ,  z,~), we 
construct a module M~,x = / { 0 ,  l}, Gv, G3 u Gi,,, R, go~, L), where 

- R = T u  {<g,g): g ~ G~}. 
- For g ~ Gv U G3, we have L(g) = 1. For g~ E Gi,~, we have L(g~) = xi. 

Clearly, the size of M,,x is linear in the size of a. Intuitively, each tree in exec(M,,,x) corresponds 
to a decision of a as to how to satisfy its OR gates (we satisfy an OR gate by satisfying any nonempty 
subset of its inputs). It is therefore easy to see that M~,x ~ EFO iff there exists no V E exec(Ma,x) 
such that V ~ AG1, which holds iff the output of a on x is 0. 0 

Recall that for a CTL formula ~b, checking that a module M satisfies ~b reduces to testing emptiness 
of the automaton AM x A~,,r Checking nonemptiness of a Btichi tree automaton can be reduced to 
calculating a/~-calculus expression of alternation depth 2 [Rab69, VW86b]. As such, it can be imple- 
mented, using symbolic methods, in tools that handle fixed-point calculations (e.g., SMV [BCqV[+90, 
McM93]). 

5 P r a g m a t i c s  

How bad is our news? In this section we show that from a pragmatic point of view, it is not that bad. We 
show that in the absence of existential quantification, module checking and model checking coincide, 
and that in the case where there is only a limited use of'existential quantification, module checking can 
still be done in linear time. 

5.1 Module Checking for Universal Temporal Logi~ 

Lemma 3. For universal branching temporal logics, the module checking problem and the model check- 
ing problem coincide. 

Proof: Given a module M and a VCTL* formula ~p, we prove that M ~ ap iff M ~ 0. Assume 
first that M ~ 0. Then, all trees in ezec(M) satisfy 0. Thus, in particular, (TM, VM) satisfies ~b and 
M ~ ~b, Assume now that M ~ ~b. The relation {(w, w> : w r W} is a simulation relation between 
any tree in exec(M) and M. Therefore, by [GL94], all trees in ezec(M) satisfy ~b, and M ~ 0. ~3 

Theorem 4 now follows from the known complexity results tbr VCTL and VCTL* model checking 
[CES86, SC85, BVW94]. 

Theorem 4. 

(1) 7~e module-checking problem for V CTL is in tinear time. 
(2) The module-checking problem for VCTL* is PSPA CE-complete. 
(3) The program complexity of module checking for VCTL and VCTL* is NLOGSPACE-complete. 

It follows from the above theorem that the module-checking problem for LTL is PSPACE-complete 
and its program complexity is NLOGSPACE.,eomp]ete. 
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5.2 Module Checking of "Possibly" and "Always Possibly" Properties 

We have seen that, for each fixed CTL formula ~b, checking that a module M satisfies r can be checked 
in time polynomial in the size of M. Sometimes, we can do even better. Some CTL formulas have a 
special structure that enables us to module-check them in time linear in the size of M. In this section 
we show that "possibly" and "always possibly" properties, by far the most popular properties specified 
in CTL and not specifiable in VCTL, induce such formulas. 

Consider the CTL formula EFsend. The formula states that it is possible for the system to eventu- 
ally send a request. We call properties of this form possibly properties. Consider now the CTL formula 
AGEFsend. The formula states that in all computations, it is always possible for the system to even- 
tually send a request. We call properties of this form always possibly properties. It is easy to see that 
possibly and always possibly properties can not be specified in linear temporal logics, nor in universal 
branching logics [EH86]. 

Theorem 5. Module checking of possibly and always possibly properties can be done in linear run- 
ning time. 

Proof(sketch):  We describe an efficient algorithm that module-checks these properties. For simplic- 
ity, we assume that system and environment states are labeled with atomic propositions s and e, respec- 
tively. Consider a module M = (AP, Ws, W~, R, w0, L) and a propositional assertion ~. By definition, 
M ~ EF~ iff there exists no tree iT, V) E ezec(M) all of whose nodes satisfy -~.  We say that a 
state w E W is safe iff such a tree (T, V) can not have w .as its root. We check that M ~ EF(  by 
checking that w0 is safe. In order to be safe, a state w should satisfy one of the following: 

2. w is a system state that has a safe successor, or 
3. w is an environment state all of whose successors are safe. 

Consider the monotone function f : 2 W ~ 2 W where f(y) = ~ V (s A EXy) V (e A AXy). It 
can be shown that w is safe iff w is in the least fixed-point of f .  Therefore, we have that w is safe iff 
w ~ py.~ V (s A EXy)  V (e A AXy). Hence, 

M ~ EF~ r M ~ py.~ v (s A EXy)  V (e A AXy). 

Now, M ~ AGEF~ iff there exists no tree (T, V) E exec(M) such that (T, V) has a subtree 
(T', V') all of whose nodes satisfy ~ .  We can therefore check that M ~ AGEF~ by checking that 
all the reachable states in M are safe. Hence, 

M ~ AGEF~ r M ~ ~,z.~y.~ V (s A EXy)  v (e A AXy)] A AXz.  

So, we reduced module checking of possibly and always possibly properties to model checking of 
an alternation-free #-calculus formula. As the latter can be done in linear running time [Cle93], we are 
done. 

[] 

Again, as our algorithms involve at most two simple fixed-point computations, they can be easily im- 
plemented symbolically. 

What about the space complexity of checking these properties? Is there a nondeterministic algo- 
rithm that can check always possibly properties in logarithmic space? As the formula we used proving 
Theorem 2 is EFt ,  the answer for possibly properties is no. Unsurprisingly, this is also the answer for 
the more complicated always possibly properties, as we claim in the theorem below. 

Theorem 6. Module checking of possibly and always possibly properties is PTIME-complete. 
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Proof (sketch): Membership in PTIME follows from Theorem 5. To prove hardness in PTIME, we 
do the same reduction we did for CTU For E F t ,  we need no change. For AGEF~ we do the following 
change. Instead a self loop, each state associated with an input gate now has a transition to the initial 
state go,,t. Let us call the resulted module M~,x. It is easy tO see that M~,x ~ AGEFO iff there exists 
no V E exec(M~,x) such that V ~ EFAG1, which holds iff the output of ct on x is 0. [] 

6 Discussion 

The discussion of the relative merits of linear versus branching temporal logics is almost as early as 
these paradigms [Lam80]. We mainly refer here to the linear temporal logic LTL and the branching 
temporal logic CTL. One of the beliefs dominating this discussion has been "while specifying is eas- 
ier in LTL, model checking is easier for CTL". Indeed, the restricted syntax of CTL limits its expres- 
sive power and many important behaviors (e.g., strong fairness) can not be specified in CTL. On the 
other hand, while model checking for CTL can be done in time O(IPI * ]~Pl) ICES86], it takes time 
O([PI*2 tr for LTL [LP85]. Since LTL model checking is PSPACE-complete [SC85], the latter bound 
probably cannot be improved. The attractive complexity of CTL model checking have compensated 
for its lack of expressive power and branching-time model-checking tools that can handle systems with 
more than 1012~ states [Bro86, McM93, CGL93] are incorporated into industrial development of new 
designs [BBG+94]. 

If we examine the history of this discussion more closely, we found that things are not that simple. 
On the one hand, the inability of LTL to quantify computations existentially is considered by many a 
serious drawback. In addition, the introduction of fair-CTL ICES86] and of many other extensions to 
CTL [Lon93, BBG+94, BG94], have made CTL a basis for specification languages that maintain the 
efficiency of CTL model checking and yet overcome many of its expressiveness limitations. On Uhe 
other hand, the computational superiority of CTL is also not that clear. For example, comparing the 
complexities of CTL and LTL model checking for concurrent programs, both are in PSPACE [VW86a, 
BVW94]. As shown in [Var95, KV95], the advantage that CTL enjoys over LTL disappears also when 
the complexity of modular verification is considered. 

In this work we questioned the computational superiority of the branching-time paradigm further. 
We showed that when reasoning about open systems, the complexity of CTL model checking is actually 
higher than that of LTL. Our results are summarized in the table below. All the complexities in the table 
denote tight bounds. 

program 
I ]complexity 

model module Iof model 
, ]lchecking Ichecking, ,, Ichecking 

LTL' PSPACE PSPACE 
[sc85] 

CTL linear-time EXPTIME 
[CES86] [BVW94] 

~ *  PSPACE '"" 2EXPTIME ! 
[EL85] 

VCTL linear-time inear-time 
[CES86] 

EF~ linear-time linear-time NLOGSPACE 
AGEF~ [CES86] [BVW94] 

program 
complexity 
of module 
checking satisfiability 

NLOGSPACE NL(X3SPACE PSPACE 
[VW86b] SC85] 
NLOGSPACE PTIME .... EXPTIME 

FL79] 
NLOGSPACE PRIME ' 2EXPTIME ' 
[BVW941 [EJ88, VS85] 
NIA3GSPACE NLOGSPACE PSPACE 
[BVW94] KV95] . 

PTIME NPTIME 
[G J79] 



85 

Acknowledgments.  We are grateful to Martin Abadi and Pierre Wolper for fruitful discussions on the 
verification of reactive systems. 

References 

[ASSSV94] 

[BBG+94] 

[BCM+90] 

[BG94] 

[Bro86] 

[BVW94] 

ICE81] 

[CES86] 

[CGL93] 

[Cle93] 

[EH86] 

IF_J88] 

[EL85] 

[Eroe90] 

[ES84] 

[FL79] 

[F1o67] 

[FZ88] 

A. Aziz, T.R. Shiple, V. Singhal, and A.L. Sangiovarmi-Vincentelli. Formula-dependent equiv- 
alence for compositional CTL model checking. In Proc. 6th Conf. on Computer Aided Verifica- 
tion, volume 818 of Lecture Notes in Computer Science, pages 324-337, Stanford, CA, June 1994. 
Springer-Veflag. 
I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for practi- 
cal formal verification of reactive hardware. In Proc. 6th Workshop on Computer Aided Verification, 
volume 818 of Lecture Notes in Computer Science, pages 182-193, Stanford, June 1994. 
J.R. Butch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking: 
1020 states and beyond. In Proceedings of the 5th Symposium on Logic in Compute r Science, pages 
428--439, Philadelphia, June 1990. 
O. Bernholtz and O. Grumberg. Buy one, get one free !!! In Proceedings of the First International 
Conference on Temporal Logic, volume 827 of Lecture Notes in Artificial lntelligence, pages 210- 
224, Bonn, July 1994. Springer-Verlag. 
M.C. Browne. An improved algorithm for the automatic verification of finite state systems using 
temporal logic. In Proceedings of the First Symposium on Logic in Computer Science, pages 260-- 
266, Cambridge, June 1986. 
O. Bemholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model 
checking. In D. L. Dill, editor, Computer Aided Verification, Proc. 6th Int. Conference, volume 818 
of Lecture Notes in Computer Science, pages 142-155, Stanford, June 1994. Springer-Verlag, Berlin. 
E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using branch- 
ing time temporal logic. In Proc. ~,brkshop on Logic of Programs, volume 131 of Lecture Notes in 
Computer Science, pages 52-71. Springer-Verlag, 1981. 
E.M. Clarke, E.A. Emerson, and A.P. Sisfla. Automatic verification of finite-state concurrent systems 
using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 
8(2):244-263, January 1986. 
E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent systems. In 
J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Decade of Concurrency - Reflections 
and Perspectives (Proceedings of REX School), Lecture Notes in Computer Science, pages 124-175. 
Springer-Verlag, 1993. 
R. Cleaveland. A linear-time mod~l-checking algorithm for the alternation-free modal ~-calculus. 
Formal Methods in System Design~ 2:121-147, 1993. 
E.A. Emerson and J.Y. Halpem. Sometimes and not never revisited: On branching versus linear time. 
Journal of the ACM, 33(1): 151-178, 1986. 
E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proceedings 
of the 29th IEEE Symposium on Foundations of Computer Science, White Plains, October 1988. 
E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness constraints. In 
Proc. 18th Hawaii International Conference on System Sciences, Hawaii, 1985. 
E.A. Emerson. Temporal and modal logic. Handbook of theoretical computer science, pages 997- 
1072, 1990. 
E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proceedings of the 16th ACM 
Symposium on Theory of Computing, Washington, April 1984. 
M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. J. of Computer and 
Systems Sciences, 18:194-211, 1979. 
R.W. Floyd. Assigning meaning to programs. In Proceedings Symposium on Applied Mathematics, 
volume 19, 1967. 
M.J. Fischer and L.D. Zuck. Reasoning about uncertainty in fault-tolerant distributed systems. In 
M. Joseph, editor, Proc. Syrup. on Fo~wml Techniques in Real-Time and Fault-Tolerant Systems, pages 
142-158. Springer-Verlag, 1988. 



86 

[G J79] 

[GL94] 

[Go177] 

[Hoa69] 

[Hoa85] 
[HP85] 

[Kup95] 

[KV95] 

[Lain80] 

[Lar89] 

[Lon93] 

[LP85] 

[LT88] 

[McM93] 
[MP92] 
[Pnu77] 

[PR89] 

[QS81~] 

[Rab69] 

[sc85] 

[Var95] 

[v885] 

[VW86a] 

[VW86b] 

M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP- 
completeness. W. Freeman and Co., San Francisco, 1979. 
O, Gmmberg and D.E. Long. Model checking and modular verification. ACM Trans. on Program- 
ming Languages and Systems, 16(3):843-871, 1994. 
L.M. Goldschlager. The monotone and planar circuit value problems are log space complete for p. 
SIGACTNews, 9(2):25--29, 1977. 
C.A.R. Hoare. An axiomatic basis of computer programming. Communications of the ACM, 
12(10):576-583, 1969. 
C.A.R. Hoare. Communicating Sequepdial Processes. Prentice-Hall, 1985, 
D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt, editor, Logics and 
Models of Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pages 477--498. 
Springer-Verlag, 1985. 
O. Kupferman. Augmenting branching temporal logics with existential quantification over atomic 
propositions. In Computer Aided Verifzcation, Proc. 7th Int. Workshop, pages 325-338, Liege, July 
1995. 
O. Kupferman and M.Y. Vardi. On the complexity of branching modular model checking. In Proc. 
6th Conferance on Concurrency Theory, pages 408--422, Philadelphia, August 1995. 
L. Lamport. Sometimes is sometimes "not never" - on the temporal logic of programs. In Proceed- 
ings of the 7th A CM Symposium on Principles of Programming Languages, pages 174-I 85, January 
1980. 
K.G. Larsen. Modal specifications. In Automatic Verification Methods for Finite State Systems, Proc. 
Int. Workshop, Grenoble, volume 407, pages 232-246, Grenoble, June 1989. Lecture Notes in Com- 
puter Science, Springer-Verlag. 
D.E. Long. Model checking, abstraction and compositional verification. PhD thesis, Carnegie- 
Mellon University, Pittsburgh, 1993. 
O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear 
specification. In Proceedings of the Twelfth ACM Symposium on Principles of Programming Lan- 
guages, pages 97-107, New Orleans, J~auary 1985. 
K.G. Larsen and G.B. Thomsen. A modal process logic. In Proceedings of the 3th Symposium on 
Logic in Computer Science, Edinburgh, 1988o 
K.L. McMillan. Symbolic model checking. Kluwer Academic Publishers, 1993. 
Z. Manna and A. Pnueli. Temporal specification and verification of reactive modules. 199Z 
A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundation of Com- 
puter Science, pages 46-57, 1977. 
A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the Sixteenth 
ACM Symposium on Principles of Programming Languages, Austin, Januery 1989. 
J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc. 5th 
lnt'l Syrup. on Programming, volume 137, pages 337-351. Spfinger-Verlag, Lecture Notes in Com- 
puter Science, 1981. 
M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of the 
AMS, 141:1-35, 1969. 
A.P. Sisfla and E.M. Clarke. The complexity of propositional linear temporal logic. Z ACM, 32:733- 
749, 1985. 
M.Y. Vardi. On the complexity of modular model checking. In Proceedings of the lOth 1EEE Sym- 
posium on Logic in Computer Science, June 1995. 
M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs. In 
Proc 17th ACM Symp. on Theory of Computing, pages 240-251, 1985. 
M.Y. Vardi and P. Wolper. An automata4heoretic approach to automatic program verification. In 
Proceedings of the First Symposium on Logic in Computer Science, pages 322-331, Cambridge, June 
1986. 
M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal of 
Computer and System Science, 32(2): 182-221, April 1986. 


