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Abstract .  We develop a HORNSAT-based methodology for verification 
of finite state systems. This general methodology leads naturally to al- 
gorithms, that are local [25, 19], on the fly [28, 11, 13, 5] and incremental 
[24]. It also leads naturally to diagnostic behavioral relation checking 
[7] algorithms. Here we use it to develop model checking algorithms for 
various fragments of modal mu-calculus. We also use our methodology 
to develop a uniform game theoretic formulations of all the relations in 
the linear time/branching time hierarchy of [27]. As a corollary, we ob- 
tain natural sufficient conditions on a behavioral relation p, for p to be 
polynomial time decidable for finite state transition systems. 

1 Introduction 

We consider a number of problems related to the verification of finite state sys- 
tems which include model checking for variou s fragments of modal mu-calculus 
[15] and checking behavioral relations [10] with diagnostic information. We out- 
line a methodology for solving these problems, based upon efficient local reduc- 
tions to satisfiability problems for simple variants of HORN formulas. We use 
our methodology to develop local, on the fly and incremental algorithms and to 
generate diagnostic information for these problems. Our algorithms are asymp- 
totically as efficient as other specific algorithms in the literature for the problems 
considered. The desirability of local, on the fly, and incremental verification al- 
gorithms and algorithms for generating diagnostic information has been widely 
discussed [28, 5, 7, 13, 17, 18, 11, 10, 1, 24, 25, 8, 7]. However, previous algorithms 
proposed in the literature have only some of these advantages and only apply 
to some of the verification problems considered here. Our uniform methodology 
combines all these advantages in the same solution. Another advantage of our 
methodology is that  efficient data  structures and algorithms for the appropriate 
satisfiability problems for HORN formulas already exist in the literature [12, 3]. 

Our methodology is based upon efficient local reductions of the problems con- 
sidered to the minimal and maximal satisfiability problems, for weakly positive 
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and weakly negative [21] Horn formulas. We call these satisfiability problems 
minimal-HORNSAT and maximal-NHORNSAT respectively. In fact, restricted 
forms of these Horn formulas are enough for some of the problems. In Sections 
2-4, we outline our (N)HORNSAT-based algorithm for model checking, for the 
alternation-free modal mu-calculus. We show that this algorithm is a simpli- 
fication of the algorithms in [19, 1] involving solutions of systems of Boolean 
equations. (Recall that [19] involves consistent and factual solutions of Boolean 
equation systems and [1] involves maximal and minimal fixed points of Boolean 
equation systems.) 

In Section 5, we use our (N)HORNSAT-based methodology to define a class of 
games, that includes the characteristic games for each of the behavioral relations 
in the linear-time/branching-time hierarchy of [27]. As a corollary, we get natural 
sufficient conditions, for a behavioral relation on finite state processes to be 
polynomial time decidable. 

In [22], we show in details, how our (N)HORNSAT-based methodology can 
be used to develop efficient algorithms for diagnostic behavioral relation checking 
and model checking for the modal mu-calculus. 

The" main advantages of our methodology may be summarized as follows. 
First, it shows that the underlying combinatbrics for a number of verification 
problems and their proposed solutions is essentially very simple. Second, it turns 
out that an efficient verifier can be based on an implementation whose core con- 
sists of a solver for (N)HORNSAT which runs in linear time, which can run 
on the fly for space efficiency, and can run incremeutally (e.g., using simple 
modifications of the incremental BORNSAT algorithms given in [3]). Third, the 
fact that efficient solutions for HORNSAT and its variants already exist in the 
literature [12, 3] and tha t  many important verification problems are reducible 
to those variants of BORNSAT makes the implementation of verification tools 
easier. Moreover, it relieves the designer of the verifier from the obligation of 
reinventing complex data structures which already exist in the literature on 
BORNSAT. Many model checking algorithms in the literature involved invent- 
ing complex new data structures~ whereas existing efficient data structures for 
solving variants of HORNSAT are sufficient to obtain the same efficiency. More- 
over, this approach leads to modular design, because the efficient implementa- 
tion of HORNSAT solver can be delegated to a different designer. In [16] a data 
structure for a linear time algorithm for determining functional dependencies 
in relational databases [4] was reused to obtain a model checking algorithm for 
CTL. It is interesting to note that functional dependency is also reducible to 
BORNSAT, and in [3, 2] the same kinds of data structures are used to solve 
them in linear time. 2 In [!] the model checking problem for mu-calculus was 
reduced to finding fixed points of system of Boolean equations; and complex 
graph-based data structures were invented for efficiency. Our results show that 

2 However, (N)HORNSAT captures the essence of these problems more directly and 
intuitively. Moreover, efficient data structures for solving (N)HORNSAT are eas- 
ily implementable. Also, HORNSAT based methods are directly implementable in 
DATALOG. 
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the full power of Boolean equations are not needed to solve these problems. 
Fourth, we identified many easiness results in the area of model checking and 
verification as a consequence of the corresponding easy instances of NHORN- 
SAT. For example, after characterizing special cases of HORNSAT which have 
NC algorithms, we could strengthen the results in [29] by characterizing cases 
when the model checking problem is in NC. 

2 Satisfiability Problem for ( N ) H O R N S A T  

We consider special instances of CNF satisfiability problems, namely HORNSAT, 
where each clause contains at most one positive literal, and NHORNSAT, where 
each clause contains at most one negative literal. We are interested in finding 
maximal and minimal satisfying assignment (if one exists) respectively. 

An instance of the problem is presented as a pair (X,C) ,  where 
X = {xi, x2, ..., xn}, a finite set of propositional variables which take Boolean 
values, and C = {C1, Co., ..., C,~}, a set of clauses with one of the restrictions 
discussed above. Note that  if an instance has a satisfying assignment, such an 
assignment can be represented as an element "of an n-dimensional Boolean lat- 
tice {0, 1} '~. If we consider 0 < 1, then with a component-wise extension of the 
ordering, and a component-wise A and V as meet and join operation, we get a 
complete lattice. For an instance of a satisfiability problem h, we denote the set 
of all satisfying assignments as SAT(h)  C_ {0, 1}% An element x E SAT(h)  is 
minimal, if no other y E SAT(h)  is less than x in the ordering of {0, 1} n. Dually, 
an element x E SAT(h )  is maximal, if no other y E SAT(h)  is greater than x 
in the ordering of {0, 1} n. We call the problem of finding the maximal satisfying 
assignment for an NHORNSAT instance as the maximal-NHORNSAT problem, 
and the problem of finding the minimal satisfying assignment for a HORNS.AT 
instance as the minimal-HORNSAT problem. 

A linear t ime algorithm for minimal-HORNSAT appears in [12]. Dually the 
maximal-NHORNSAT is also solvable in linear time. 

In some of our applications we have a special type of HORNSAT or NHORN- 
SAT instances. Here we discuss that  special type of NHORNSAT, called rooted 
NHORNSAT.  The corresponding cases and algorithms for HORNSAT are very 
similar. 

D e f i n i t i o n  1. Given a clause C~ of the form xj ::~ ViEI Xi, where I is an index 
set possibly empty (note that  the disjunction Vie1 xi = true when I = r we 
call xj the h e a d  of clause C~, denoted as head(C~) = xj ,  and ~/ist xi the ta i l  
of Ck. Any variable xi appearing in tail(Ck), is called a disjunct in the tail. 

Note that  for a clause of the form Ck = x--f, head(Ck) = xj and taiI(Ck) = 
false.  Similarly, for a clause of the form Ck = xj,  head(C~) = true and 
tail(Ck) = xj .  

D e f i n i t i o n 2 .  An instance of a rooted N t t O R N S A T  problem is of the form 
(X, C, xl) where (X, C) is an NHORNSAT instance and the clauses in C are 
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ordered. Also. C1 = xl  (a single positive literal clause), where xl E X. Further- 
more, for each clause Ck, ifhead(Ck) = ~ej then there must be a clause Ct(l < k) 
preceding Ck, such that  xj is a disjunct in tail(Cl). Also for a single literal clause 
Ck -- xp (k  > 1), xp must also be a disjunct in tail(Q) for some l < k. and xp 
cannot be the head of any clause. 

The correctness of our (N)HORNSAT based methodology for model checking 
can be demonstrated easily by showing the following. There is a local reduction 
(see the proof  sketch of Theorem 3 below) between the (N)HORNSAT based 
methodology and the methodologies in [19, 1] based upon systems of simple 
Boolean equations. The (N)HORNSAT based approach has the advantage that  
efficient algorithms and data  structures for (N)HORNSAT are already available 
in the l i terature [12, 3]. The soundness and completeness of our methodology 
follow easily from the following theorem and its extensions to the results in [1]. 

T h e o r e m  3. The factuality problem and *he consistency problem of system of 
simple Boolean equations described in [19] and the class of minimal-HORNSAT 
and maximal-NHORNSAT problems we consider, are locally and efficiently in- 
terreducible. 

P r o o f  ske t ch :  a Given a system of simple Boolean equations, if we are interested 
in factuali ty [19], we replace 

an equation of the form z = true by a single literal clause x, 
an equation of the form x = false by a single negated literal clause g, 
an equation of the form x = xt Ax2 by a clause ~ *= xl Ax2, and 
an equation of the form x = xl V x2 by two clauses x r xl and x ~ x2. 

It is easy to prove that  the variables which are assigned a value 1 in the mini- 
mal satisfying assignment for this HORNSAT instance are the factual variables 
of the original Boolean equational system. Since, we are considering minimal- 
HORNSAT, the implications can replace the equalities. Given this, duality im- 
plies that  the consistency problem of [19] can be reduced eff• and locally 
to the maximal-NHORNSAT problem. 

Similarly, the problems of finding the least and greatest fixed points of the 
Boolean equations of [1] can be reduced to minimal-t tORNSAT and maximal- 
NHORNSAT respectively. Details are omitted due to lack of space. 

3 On the Fly, Local and Incremental Model Checking 

Local Model  C h e c k i n g  : A local model checking algorithm does not explore 
all the states of the finite state system, if not required. It tries to explore only a 

3 Given a set E of Boolean equations over a set of Boolean variables in V, the factuality 
problem is to find F C_ V such that z E F if and only if x is set to true in every 
model of E. The consistency problem is to find C C_ V, such that z E C if and only 
if there exists a model of E in which x is set to true. 
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minimal set of states and determines whether certain properties are true in those 
states in order to infer that a given property is true in a given state. The tableau 
based methods in [18, 25, 6] are examples of such local algorithms for model 
checking. Our (N)HORNSAT based method achieves this objectives naturally. 
Given a fix point formula ~, and a state s* of a finite transition system, suppose 
we want to determine if s* satisfies r We generate (N)HORN formulas roughly 
as follows: We use a Boolean variable Yf, and create clauses such that s satisfies 
r if and only if Y~r is true in the (maximal) minimal satisfying assignment of 
the (N)HORNSAT instance. 

On the  F ly  Mode l  Checking : In [28, 11, 5, 16, 13] on the fly model check- 
ing and behavioral relation checking have been emphasized. In an on the fly 
algorithm the state space is constructed on demand, hence the verification takes 
place together with the construction of the state space. In our (N)HORNSAT 
based approach, on the fly algorithm is obtained naturally because of the existing 
on the fly or online algorithms for (N)HORNSAT [3] and some minor improve- 
ments on them. Our reduction to (N)HORNSAT can be done in NLOGSPACE 
and on the fly algorithm for HORNSAT works in O(q) amortized time, where 
q is the size of each new clause generated. Sirice the size of the (N)HORNSAT 
instance created is linear in the product of the size of the transition system and 
the specification in the case of model checking, and product of the sizes of the 
two transition systems in case of relational checking, we might use in the worst 
case, linear space and linear time in those measures. For on the fly behavioral re- 
lation checking this is an improvement over [13] which requires quadratic time in 
these measures for behavioral relation checking. However, in most cases, counter 
examples are found after constructing substantially less number of clauses. 

I n c r e m e n t a l  Model  Checking : In [24], an incremental algorithm for model 
checking alternation free mu-calculus was developed. The basic idea was the 
following. When transitions are added or deleted from the transition system, an 
incremental algorithm exploits the information available from the previous runs 
of the model checking algorithm. It carries out minimal computation so that 
the model checking problem with respect to the changed transition system is 
solved in time O(A), where A is a measure of changes in the transition system. 
It has been pointed out [24] that in the worst case, this may not be possible. 
However, in the best case and more importantly, in many pragmatic situations 
the incremental computation could be linear in the size of the modification. Since 
the online algorithm for HORNSAT [3] is incremental and since the modification 
in the transition system will be reflected in tile changes in the corresponding 
(N)HORNSAT instance, we can now directly obtain incremental algorithms for 
all the problems considered in this paper. 

Note:  The equational syntax of modal mu-calculus used in the subsequent sec- 
tions is taken from [10]. Due to lack of space, the syntax and semantics could 
not be discussed and the readers are referred to [10, 22]. 
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4 Model  Checking Fragments of Modal Mu-Calculus 

Our. m e t h o d o l o g y  can be extended to apply to full Mu-Calculus  [15, 6], by using 
the model  checking a lgor i thm for the al ternation-free f ragment  as a subroutine,  
as in [9] wi th  the same efficiency as in [9]. Here we, i l lustrate our me thods  th rough  
its appl ica t ion to the unnested single fixed point f ragment  (which is similar to 
the Hennessy-Milner  Logic with recursion [17, 18]) and to the al ternation-free 
mu-calculus,  as discussed in [10]. 

M o d e l  C h e c k i n g  f o r  S i n g l e  F i x  p o i n t  M u - C a l c u l u s  t o  ( N ) H O R N S A T  
For each s ta te  s E S of  the given finite s tate  sys tem q" and each variable X i  of 
the equat iona l  specification, we associate a boolean variable y x , .  Recall, in the 
single f ixpoint  calculus,  there is a single block of  equat ions which is either a max 
block or a rnin block. 

We consider the case when the block is a max  block B = m a x { E }  where 
E = {X1 = r  ..., X• = ~,~}. A dual izat ion will hold for rain blocks. 

Here, the mode l  checking problem is to determine if s* e IIXilllisilo, for 
a given t rans i t ion  sys tem T = (S, Act ,--*i ,  for an initial envi ronment  e, and 
s* E S .  

The  reduct ion  proceeds as follows: 

1. Create a variable yx~ and put the variable y x~ in a queue. 

2. For each variable of the form y x j  on the queue, such that X~ appears in 
the left-hand side of an equation ~ in B 

(i) If 6 is Xj - A where A is atomic, then create a clause ~A if A is 
true at s else create a clause ~A. (This information is obtained from 
the valuation map associated with the model.) Put the variable y A 
in the queue if this variable was  never on the queue before. 
(ii) If ~ is Xj = Xp v Xq, then create the clause 1~ xi - -  y xp v 1r xq 

and put the variables yXp and yxq  into the queue, if these variables 
were never on the queue before. 
(iii) If ~ is G = x ,  f X~, then create two clauses ~x'j  - yXp and 
y x j  --, y x ,  and put the variables y X~ and IG xq into the queue, if 
they were never on the queue before. 
(iv) If ~ is X i = (a)Xp, then create a clause of the form yXi  
V d e a ( , ) Y S  ~ where a(s) = {s']  Bs':  s & s'}. When a(s) is empty, 

the disjunction is equivalent to false. Put the variables y xp on the 
queue if they were never on the queue before. 
(v) If a is Xj  = [a]X m then create clauses of the form Ys xi - -  y Xp 

for each s' E a(s) where a(s) = {s' I Bs ' :  s -5 ~ s'}. Put the variables 
],:x'p on the queue if they were never on the queue before. When a(s) 

is empty, create the single literal clause ],~x'j. 

3. If Ys xi is in the queue and if Xj  does not appear on the left hand side in 

B, then if s E e(Xj) ,  add a single literal clause Y~ xi else add the clause yX; .  
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This will produce an NHORNSAT instance, of the size linear in the product  
of the size of the transit ion system and equational block B. We now state  the 
theorem sta t ing the correctness of the reduction. The correctness of the model 
checking a lgor i thm obtained this way fol lowsfrom the discussions in section 2. 

Let s E $ is a s ta te  in the given finite state transit ion system T = (S, Act, --+). 
Let Xi be a variable in the equational block used in specifying a proper ty  using 
the syntax  of [10] and let the initial environment be e. Suppose the block speci- 
fying the formula  is a max  block, B = max{E} where E = { X i  = ~31, ..., Xn = 

T h e o r e m 4 .  I f  h is the instance of NHORNSAT produced by the algorithm de- 
scribed above from the given model checking problem (if s* E I[Xi[[IIBll,), then 
h is satisfiable and in the maximal satisfying assignment of h, y xi = 1, if and 

o ly e IIX lltiBll=. 

The dual of  the above theorem holds for min blocks. Which means tha t  in the 
minimal  solution of the HORNSAT iristance produced in tha t  case, Yfl~ = 1 if 
and only if s* E [[Xi[[IIBII~ This gives us a linear t ime algori thm for the problem. 

A l t e r n a t i o n  f r e e  m u  c a l c u l u s  : Now we generalize the algori thm in the pre- 
vious section, to obtain a (N)HORNSAT based algori thm for the model checking 
of al ternat ion free mu-calculus. A linear t ime algori thm for the same problem 
was presented in [10]. Their  algorithm needed to invent an efficient da ta  struc- 
ture to obta in  the linear t ime algorithm. Our method brings out the fact that  
the essential da ta  structure necessary to obtain the linear t ime algori thm for 
model checking is in fact the same as in [12] for the linear t ime algori thm for 
H O R N S A T / N H O R N S A T  

Given a Transi t ion system T, .a valuation map  v, an initial environment  e, a 
blockset B, the model checking problem is to decide if s* E lIxillllBll~, for a given 
s tate  s* in the transit ion system and a given variable Xi appearing on the left 
hand side of  some equation in some block Bl in B. 

Briefly, the steps in the (N)HORNSAT based version of the algori thm for 
model checking al ternation free mu-calculus are as follows: 

1. Create a variable Ys xl and put the variable y Xl in the queue associated 
with the block Bl where Xi appears on the left hand side. 
2. Expand the variables in the queue assodated with each block, in the reverse 
topological order, 4 with the following rules: 
If the block is a max block then use the methods described in the previous 
subsection and if the block is a min block use a dual approach. Keep the 
NHORN or HORN clauses for each block separated. If new variable Y x1 is 
generated and Xj belongs to a different block B , put that variable in the 
queue associated with block B. 

4 Given B, the block set, topologically sort the blocks in B with respect to the variable 
dependency relation depicted in block graph. Let B1, B2, ..., Bm be the set of blocks 
in the topologically sorted order. 
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If the a variable ~ xi in the queue for a block B is already expanded then 
remove it from the queue otherwise expand it. 
3. Start solving the minimal-HORNSAT/maximal-NHORNSAT instances cor- 
responding to each block in the topological order. Let hB be the HORNSAT/ 
NHORNSAT instance corresponding to block B. Suppose a variable Yff~ was 
assigned a value 1 in the solution of a hB (where Xj appears on the left hand 
side in B) then add a clause yXj in the (N)HORNSAT instances correspond- 
ing to the blocks which had to put this variable in the queue of the block B 
(This information can be read off the block graph also). If Yff~ was assigned 
a value 0 in the solution of a hB (where Xj appears on the left hand side in 

w ~  

B) then add a clause ],~xj in the (N)HORNSAT instances corresponding to 
the blocks which put this variable in the queue of the block B. Then continue 
solving the next block HORNSAT instance. 

Suppose the block B corresponding to Xi, is a max block. (A Dual strategy holds for 
the rain blocks). The maximal-NHORNSAT instance for the block B is satisfiable and 
y~x~ = 1, in the maxima] satisfying assignment, if and only if s* e I[X~llliBll,. 

Note that  this algorithm produces a sequence of HORNSAT and NHORN- 
SAT instances and it is local and it can be made into an On the fly algorithm by 
noting that  one can use the on the fly algorithm for each HORNSAT instance. We 
state the theorem about the correctness and efficiency of the algorithm sketched 
above with out proof. 

T h e o r e m  5. The algorithm for model checking alternation free ran-calculus ob- 
tained by reducing the problem to a sequence of minimal-HORNSAT and maximal- 
NHORNSAT problems runs in time linear in the product of the sizes of the tran- 
sition system and the block set specifying the property. Hence the HORNSAT 
based algorithm is as efficient as the algorithm in [10]. 

We also have developed HORNSAT based methods to capture the tableau 
based local model checking in [8] and [25 I. Details will appear in a future version 
of this paper. 

5 G a m e  f o r  r o o t e d  ( N ) H O R N S A T  a n d  S t i r l i n g  G a m e s  

In [23] we show that many relational problems are also directly, locally, and 
natural ly reducible to rooted NHORNSAT. Hence, given a two-player game for 
rooted NHORNSAT, we can easily associate games to all these relations as well. 
However, our objective is to obtain a sufficient characterization of various process 
algebraic behavioral relations, which helps us identifying whether a particular 
relation p, between finite transition systems is polynomial time decidable. In 
what follows, through a game theoretic formulation (similar to [26] where a 
characteristic game [or bisimulation was defined,) we fulfill this objective. Such 
a natural  sufficient characterization is really useful in identifying a polynomial 
t ime decidable relation when the definitions of the relations are complicated. '~ 

5 In [14], J. F. Groote who originally defined 2-nested simulation a.nd k-nested simu- 
lation conjectured that deciding these relations must be NP-hard. However, by our 
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G a m e  for  rooted N H O R N S A T :  Game for an instance of a rooted NHORN- 
SAT instance h = (X, C, xl) is a two player game Gh in which player I (the 
spoiler) wants to show that  the instance h is not satisfiable and Player II (the 
duplicator) wants to show otherwise. The game proceeds in rounds. The spoiler 
opens the game by choosing a clause C~ such that  head(Ci) = Xl. Duplicator 
reciprocates by choosing xij such that  xij is a disjunct in tail(Ci). In subsequent 
rounds, the spoiler chooses a clause Ck such that head(Ck) = xij where xij was 
the duplicator's choice in the previous round. The duplicator has to reciprocate 
by choosing a disjunct in the tail of Ck. The game continues until one of the 
player loses. The duplicator loses if it does not have such a disjunct to choose (i.e, 
when the spoiler has chosen a clause of the form ~7 in its last move), the spoiler 
loses when the game continues for ever (which is not possible in a finite size 
NHORNSAT instance) or when the spoiler chooses a clause chosen earlier. The 
following theorem states that  the game we defined above, is indeed characteristic 
for rooted-NHORNSAT. 

T h e o r e m 6 .  Given an instance h = (X, C, Xl) of the rooted NHORNSAT prob- 
lem, the duplicator has a winning strategy 6 in the corresponding game if and 
only if h is satisfiable. 

St i r l ing  Class  o f  G a m e s :  Now we describe a class of two player games called 
the Stirling Class. In this class, player I (the duplicator or prover) and player II 
(the spoiler or disprover) plays on two Finite transition systems. Each game in 
the class has the following components: 

Two Finite Transition systems T1 = 1 and T2 = 2; Two languages R1 C_ 
A* and R2 __A*; Two total relations rn2 _C R1 • A* and m2 C R2 • A*; 
A set of (winning positions) F C S1 • $2; A set of starting positions 

C F C_ St x $2; A set M C {1,2} which denotes the indices of 
the coordinate of a posi t ion4hat  spoiler can play on. In each round 
the duplicator plays on the other coordinate; and, A positive integer r 
denoting the number of rounds allowed in the game. This is crucial for 
some of the games. 

The game starts in a position (s,t  I E s A play of the game is a finite or 
infinite length sequence of the form (s~, s~), ..., (s~, s/2), .... The spoiler wants to 
show that there is a difference between the two transition systems (the kind of 
difference it wants to show depends on the relation the game corresponds to). 
The duplicator wants' to show that  such a distinction attempted by the spoiler 
is not possible. A partial play in a game is a prefix of a play of the game. Let 7rj 
be a partial play (s~, s2), ..., (s), s~). The next pair 1 2 (sj+l, sj+l) is determined by 
the following move rule: 

i : : : ~  i U. The Spoiler picks a triple (i,x,u} such that i E M and x E R/and s i 
(Note that ==~i denotes an extended step in the transition and u = sj+l. 

system T/). 

characterization it is easy to see tha.~; they are polynomial time decidable. Moreover, 
many other relations such as ~-nes ted  relations[20] were shown to be polynomial 
time decidable this way. 

6 For the definition of winning strategy, see next subsection 
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�9 Let the choice of the spoiler in the move be (i ,x,u) and let i j r i. Then 
i I 

the Duplicator picks a pair (y, u ') such that (x, y) E me and sj ==~,, u' and 
i I 

U I ~ S j . . k l .  

Extending a partial play ,xj to ~rj+l by the above move rule is called a round 
of the game. Hence a play can be thought of as a sequence of rounds. 

The duplicator wins the game if either in the last position of the play, there 
is no further allowable move by none (when M = {1, 2} ) or there is no further 
allowable move by the spoiler(when [M I = 1), depending on the cardinality of the 
set M. Duplicator also wins~ if in the play a position is repeated. In both cases, 
the spoiler has failed to expose a distinction between the transition systems. The 
spoiler wins, if in the last position of the play is not a winning position which 
means the spoiler has been able to force the duplicator to a non winning position 
of the game or if in the last position, the spoiler has an allowable move but the 
duplicator does not have a matching move. A strategy for a player is a set of 
rules which tells h im/her  how to make a move depending on the partial play 
and opponent 's  move so far. 

A strategy is a winning strategy for a player, if playing with that  strategy, 
that  player wins against all possible strategies of the opponent.  

D e f i n i t i o n T .  A game G in Stirling class is called a characteristic game for a 
relation R between two finite state processes, if the following condition holds. Let 
the game G be played on two transition systems T1 and T~ and the duplicator 
has a history free winning strategy if and only if T1 and T2 are related by the 
relation R. 

Here, we illustrate characteristic games for bisimula~ion, weak bisimulation, and 
Failure equivalence. We assume in the following that  all the games are being 
played on/"1 = 1 and T2 = 2.7 
C h a r a c t e r i s t i c  G a m e  fo r  B i s i m u l a t i o n  : B s i m -  game is a game in Stirling 
class with the following parameters: R1 = /~2 = A, ml ,  m2 = t, P = $1 • $2, 
S = {(sl ,s2)},  M = {1,2),  r =[ 5:1 [* IS2 ]+1 .  
C h a r a c t e r i s t i c  G a m e  Fo r  W e a k  B i s i m u l a t i o n :  W e a k B s i m -  game is a 
game in Stifling class with the following parameters: R1 = R2 = r*A~'*, ml(a) = 
v*ar*,m2(a) = r*ar*Va E A, r = $I • So., Z = {(sl,s2}}, M = {1,2}, r =1 

l* Is2 l+1. 
C h a r a c t e r i s t i c  G a m e  For  Fa i l u r e  E q u i v a l e n c e :  Fai lu re -  game is a game 
in Stifling class with the following parameters: /~1 = R2 = A*, ml ,m2  = ~, 
r = {(s,t)  I s E S~,t e S2 AFailur~s(s) = Fad:lures(t)}, Z = {r 
M = { 1 , 2 } , r  = 1. 

For each relation R, in the l inear-t ime/branching t ime hierarchy, and its 
characteristic game GR, the following theorem can be proved easily. 

T h e o r e m  8. Let T1, T2 be two transition systems and let GR be the instance of 
the characteristic game for a relation R, such that the game is played on TI and 

z Note that ~ denotes the identity relation. 
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T~.. The duplicator has a winning strategy for this instance of the game GR if 
and only if R holds between the given two transitions systems. 

For a certain subclass of Stirhng class, the problem whether the duplicator has 
a winning strategy is directly reducible to rooted NHORNSAT problem. Hence, for 
any behavioral relation, whose characteristic game is in this subclass, the problem 
of checking that relation between two finite state transition systems is reducible to 
the rooted NHORNSAT problem. This leads to a polynomial time algorithm for the 
problem of checking that relation, provided one can create the instance of the game 
from the instance of the relational problem in polynomial time. For all the games in 
Stirhng Class, given that the transition systems are represented as finite state systems, 
the transformation to game instance is polynomial time, provided that the winning 
positions can be decided in polynomial time. Hence, we get a sufficiency condition as to 
under what condition a behavioral relation between finite state processes is polynomial 
time decidable. 
A Subc las s  o f  S t i r l i ng  Class  We now briefly give a sufficient characterization as 
to when a game in Stirhng Class is reducible to an instance of rooted NHORNSA.T in 
polynomial time. 
I. R1 and R2 are finite and exphcitly enumerated. For example, in bisimulation game 
R1 = R2 = A, where A is the set of action symbols. 
2. The representation of the set of winning positions is either by an explicit listing or 
is a polynomial time decidable set. 

A c k n o w l e d g e m e n t s :  We wish to thank Rajeev Alur, S. S. Ravi, and Moshe Vardi 
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