
HORNSAT, Model Checking, Verification and Games*
(Extended Abstract)

Sandeep K. Shukla 1 Harry B. Hunt III 1
Daniel J. Rosenkrantz 1

Department of Computer Science
University at Albany - State University of New York

Albany, NY 12222
Emaih { sandeep, hunt, djr} ~cs. albany, edu

Abstract . We develop a HORNSAT-based methodology for verification
of finite state systems. This general methodology leads naturally to al-
gorithms, that are local [25, 19], on the fly [28, 11, 13, 5] and incremental
[24]. It also leads naturally to diagnostic behavioral relation checking
[7] algorithms. Here we use it to develop model checking algorithms for
various fragments of modal mu-calculus. We also use our methodology
to develop a uniform game theoretic formulations of all the relations in
the linear time/branching time hierarchy of [27]. As a corollary, we ob-
tain natural sufficient conditions on a behavioral relation p, for p to be
polynomial time decidable for finite state transition systems.

1 Introduction

We consider a number of problems related to the verification of finite state sys-
tems which include model checking for variou s fragments of modal mu-calculus
[15] and checking behavioral relations [10] with diagnostic information. We out-
line a methodology for solving these problems, based upon efficient local reduc-
tions to satisfiability problems for simple variants of HORN formulas. We use
our methodology to develop local, on the fly and incremental algorithms and to
generate diagnostic information for these problems. Our algorithms are asymp-
totically as efficient as other specific algorithms in the literature for the problems
considered. The desirability of local, on the fly, and incremental verification al-
gorithms and algorithms for generating diagnostic information has been widely
discussed [28, 5, 7, 13, 17, 18, 11, 10, 1, 24, 25, 8, 7]. However, previous algorithms
proposed in the literature have only some of these advantages and only apply
to some of the verification problems considered here. Our uniform methodology
combines all these advantages in the same solution. Another advantage of our
methodology is that efficient data structures and algorithms for the appropriate
satisfiability problems for HORN formulas already exist in the literature [12, 3].

Our methodology is based upon efficient local reductions of the problems con-
sidered to the minimal and maximal satisfiability problems, for weakly positive

* This research was supported by NSF Grants CCR-90-06396 and CCR-94-06611.

100

and weakly negative [21] Horn formulas. We call these satisfiability problems
minimal-HORNSAT and maximal-NHORNSAT respectively. In fact, restricted
forms of these Horn formulas are enough for some of the problems. In Sections
2-4, we outline our (N)HORNSAT-based algorithm for model checking, for the
alternation-free modal mu-calculus. We show that this algorithm is a simpli-
fication of the algorithms in [19, 1] involving solutions of systems of Boolean
equations. (Recall that [19] involves consistent and factual solutions of Boolean
equation systems and [1] involves maximal and minimal fixed points of Boolean
equation systems.)

In Section 5, we use our (N)HORNSAT-based methodology to define a class of
games, that includes the characteristic games for each of the behavioral relations
in the linear-time/branching-time hierarchy of [27]. As a corollary, we get natural
sufficient conditions, for a behavioral relation on finite state processes to be
polynomial time decidable.

In [22], we show in details, how our (N)HORNSAT-based methodology can
be used to develop efficient algorithms for diagnostic behavioral relation checking
and model checking for the modal mu-calculus.

The" main advantages of our methodology may be summarized as follows.
First, it shows that the underlying combinatbrics for a number of verification
problems and their proposed solutions is essentially very simple. Second, it turns
out that an efficient verifier can be based on an implementation whose core con-
sists of a solver for (N)HORNSAT which runs in linear time, which can run
on the fly for space efficiency, and can run incremeutally (e.g., using simple
modifications of the incremental BORNSAT algorithms given in [3]). Third, the
fact that efficient solutions for HORNSAT and its variants already exist in the
literature [12, 3] and tha t many important verification problems are reducible
to those variants of BORNSAT makes the implementation of verification tools
easier. Moreover, it relieves the designer of the verifier from the obligation of
reinventing complex data structures which already exist in the literature on
BORNSAT. Many model checking algorithms in the literature involved invent-
ing complex new data structures~ whereas existing efficient data structures for
solving variants of HORNSAT are sufficient to obtain the same efficiency. More-
over, this approach leads to modular design, because the efficient implementa-
tion of HORNSAT solver can be delegated to a different designer. In [16] a data
structure for a linear time algorithm for determining functional dependencies
in relational databases [4] was reused to obtain a model checking algorithm for
CTL. It is interesting to note that functional dependency is also reducible to
BORNSAT, and in [3, 2] the same kinds of data structures are used to solve
them in linear time. 2 In [!] the model checking problem for mu-calculus was
reduced to finding fixed points of system of Boolean equations; and complex
graph-based data structures were invented for efficiency. Our results show that

2 However, (N)HORNSAT captures the essence of these problems more directly and
intuitively. Moreover, efficient data structures for solving (N)HORNSAT are eas-
ily implementable. Also, HORNSAT based methods are directly implementable in
DATALOG.

101

the full power of Boolean equations are not needed to solve these problems.
Fourth, we identified many easiness results in the area of model checking and
verification as a consequence of the corresponding easy instances of NHORN-
SAT. For example, after characterizing special cases of HORNSAT which have
NC algorithms, we could strengthen the results in [29] by characterizing cases
when the model checking problem is in NC.

2 Satisfiability Problem for (N) H O R N S A T

We consider special instances of CNF satisfiability problems, namely HORNSAT,
where each clause contains at most one positive literal, and NHORNSAT, where
each clause contains at most one negative literal. We are interested in finding
maximal and minimal satisfying assignment (if one exists) respectively.

An instance of the problem is presented as a pair (X,C) , where
X = {xi, x2, ..., xn}, a finite set of propositional variables which take Boolean
values, and C = {C1, Co., ..., C,~}, a set of clauses with one of the restrictions
discussed above. Note that if an instance has a satisfying assignment, such an
assignment can be represented as an element "of an n-dimensional Boolean lat-
tice {0, 1} '~. If we consider 0 < 1, then with a component-wise extension of the
ordering, and a component-wise A and V as meet and join operation, we get a
complete lattice. For an instance of a satisfiability problem h, we denote the set
of all satisfying assignments as SAT(h) C_ {0, 1}% An element x E SAT(h) is
minimal, if no other y E SAT(h) is less than x in the ordering of {0, 1} n. Dually,
an element x E SAT(h) is maximal, if no other y E SAT(h) is greater than x
in the ordering of {0, 1} n. We call the problem of finding the maximal satisfying
assignment for an NHORNSAT instance as the maximal-NHORNSAT problem,
and the problem of finding the minimal satisfying assignment for a HORNS.AT
instance as the minimal-HORNSAT problem.

A linear t ime algorithm for minimal-HORNSAT appears in [12]. Dually the
maximal-NHORNSAT is also solvable in linear time.

In some of our applications we have a special type of HORNSAT or NHORN-
SAT instances. Here we discuss that special type of NHORNSAT, called rooted
NHORNSAT. The corresponding cases and algorithms for HORNSAT are very
similar.

D e f i n i t i o n 1. Given a clause C~ of the form xj ::~ ViEI Xi, where I is an index
set possibly empty (note that the disjunction Vie1 xi = true when I = r we
call xj the h e a d of clause C~, denoted as head(C~) = xj , and ~/ist xi the ta i l
of Ck. Any variable xi appearing in tail(Ck), is called a disjunct in the tail.

Note that for a clause of the form Ck = x--f, head(Ck) = xj and taiI(Ck) =
false. Similarly, for a clause of the form Ck = xj, head(C~) = true and
tail(Ck) = xj .

D e f i n i t i o n 2 . An instance of a rooted N t t O R N S A T problem is of the form
(X, C, xl) where (X, C) is an NHORNSAT instance and the clauses in C are

102

ordered. Also. C1 = xl (a single positive literal clause), where xl E X. Further-
more, for each clause Ck, ifhead(Ck) = ~ej then there must be a clause Ct(l < k)
preceding Ck, such that xj is a disjunct in tail(Cl). Also for a single literal clause
Ck -- xp (k > 1), xp must also be a disjunct in tail(Q) for some l < k. and xp
cannot be the head of any clause.

The correctness of our (N)HORNSAT based methodology for model checking
can be demonstrated easily by showing the following. There is a local reduction
(see the proof sketch of Theorem 3 below) between the (N)HORNSAT based
methodology and the methodologies in [19, 1] based upon systems of simple
Boolean equations. The (N)HORNSAT based approach has the advantage that
efficient algorithms and data structures for (N)HORNSAT are already available
in the l i terature [12, 3]. The soundness and completeness of our methodology
follow easily from the following theorem and its extensions to the results in [1].

T h e o r e m 3. The factuality problem and *he consistency problem of system of
simple Boolean equations described in [19] and the class of minimal-HORNSAT
and maximal-NHORNSAT problems we consider, are locally and efficiently in-
terreducible.

P r o o f ske t ch : a Given a system of simple Boolean equations, if we are interested
in factuali ty [19], we replace

an equation of the form z = true by a single literal clause x,
an equation of the form x = false by a single negated literal clause g,
an equation of the form x = xt Ax2 by a clause ~ *= xl Ax2, and
an equation of the form x = xl V x2 by two clauses x r xl and x ~ x2.

It is easy to prove that the variables which are assigned a value 1 in the mini-
mal satisfying assignment for this HORNSAT instance are the factual variables
of the original Boolean equational system. Since, we are considering minimal-
HORNSAT, the implications can replace the equalities. Given this, duality im-
plies that the consistency problem of [19] can be reduced eff• and locally
to the maximal-NHORNSAT problem.

Similarly, the problems of finding the least and greatest fixed points of the
Boolean equations of [1] can be reduced to minimal-t tORNSAT and maximal-
NHORNSAT respectively. Details are omitted due to lack of space.

3 On the Fly, Local and Incremental Model Checking

Local Model C h e c k i n g : A local model checking algorithm does not explore
all the states of the finite state system, if not required. It tries to explore only a

3 Given a set E of Boolean equations over a set of Boolean variables in V, the factuality
problem is to find F C_ V such that z E F if and only if x is set to true in every
model of E. The consistency problem is to find C C_ V, such that z E C if and only
if there exists a model of E in which x is set to true.

103

minimal set of states and determines whether certain properties are true in those
states in order to infer that a given property is true in a given state. The tableau
based methods in [18, 25, 6] are examples of such local algorithms for model
checking. Our (N)HORNSAT based method achieves this objectives naturally.
Given a fix point formula ~, and a state s* of a finite transition system, suppose
we want to determine if s* satisfies r We generate (N)HORN formulas roughly
as follows: We use a Boolean variable Yf, and create clauses such that s satisfies
r if and only if Y~r is true in the (maximal) minimal satisfying assignment of
the (N)HORNSAT instance.

On the F ly Mode l Checking : In [28, 11, 5, 16, 13] on the fly model check-
ing and behavioral relation checking have been emphasized. In an on the fly
algorithm the state space is constructed on demand, hence the verification takes
place together with the construction of the state space. In our (N)HORNSAT
based approach, on the fly algorithm is obtained naturally because of the existing
on the fly or online algorithms for (N)HORNSAT [3] and some minor improve-
ments on them. Our reduction to (N)HORNSAT can be done in NLOGSPACE
and on the fly algorithm for HORNSAT works in O(q) amortized time, where
q is the size of each new clause generated. Sirice the size of the (N)HORNSAT
instance created is linear in the product of the size of the transition system and
the specification in the case of model checking, and product of the sizes of the
two transition systems in case of relational checking, we might use in the worst
case, linear space and linear time in those measures. For on the fly behavioral re-
lation checking this is an improvement over [13] which requires quadratic time in
these measures for behavioral relation checking. However, in most cases, counter
examples are found after constructing substantially less number of clauses.

I n c r e m e n t a l Model Checking : In [24], an incremental algorithm for model
checking alternation free mu-calculus was developed. The basic idea was the
following. When transitions are added or deleted from the transition system, an
incremental algorithm exploits the information available from the previous runs
of the model checking algorithm. It carries out minimal computation so that
the model checking problem with respect to the changed transition system is
solved in time O(A), where A is a measure of changes in the transition system.
It has been pointed out [24] that in the worst case, this may not be possible.
However, in the best case and more importantly, in many pragmatic situations
the incremental computation could be linear in the size of the modification. Since
the online algorithm for HORNSAT [3] is incremental and since the modification
in the transition system will be reflected in tile changes in the corresponding
(N)HORNSAT instance, we can now directly obtain incremental algorithms for
all the problems considered in this paper.

Note: The equational syntax of modal mu-calculus used in the subsequent sec-
tions is taken from [10]. Due to lack of space, the syntax and semantics could
not be discussed and the readers are referred to [10, 22].

104

4 Model Checking Fragments of Modal Mu-Calculus

Our. m e t h o d o l o g y can be extended to apply to full Mu-Calculus [15, 6], by using
the model checking a lgor i thm for the al ternation-free f ragment as a subroutine,
as in [9] wi th the same efficiency as in [9]. Here we, i l lustrate our me thods th rough
its appl ica t ion to the unnested single fixed point f ragment (which is similar to
the Hennessy-Milner Logic with recursion [17, 18]) and to the al ternation-free
mu-calculus, as discussed in [10].

M o d e l C h e c k i n g f o r S i n g l e F i x p o i n t M u - C a l c u l u s t o (N) H O R N S A T
For each s ta te s E S of the given finite s tate sys tem q" and each variable X i of
the equat iona l specification, we associate a boolean variable y x , . Recall, in the
single f ixpoint calculus, there is a single block of equat ions which is either a max
block or a rnin block.

We consider the case when the block is a max block B = m a x { E } where
E = {X1 = r ..., X• = ~,~}. A dual izat ion will hold for rain blocks.

Here, the mode l checking problem is to determine if s* e IIXilllisilo, for
a given t rans i t ion sys tem T = (S, Act ,--*i , for an initial envi ronment e, and
s* E S .

The reduct ion proceeds as follows:

1. Create a variable yx~ and put the variable y x~ in a queue.

2. For each variable of the form y x j on the queue, such that X~ appears in
the left-hand side of an equation ~ in B

(i) If 6 is Xj - A where A is atomic, then create a clause ~A if A is
true at s else create a clause ~A. (This information is obtained from
the valuation map associated with the model.) Put the variable y A
in the queue if this variable was never on the queue before.
(ii) If ~ is Xj = Xp v Xq, then create the clause 1~ xi - - y xp v 1r xq

and put the variables yXp and yxq into the queue, if these variables
were never on the queue before.
(iii) If ~ is G = x , f X~, then create two clauses ~x'j - yXp and
y x j --, y x , and put the variables y X~ and IG xq into the queue, if
they were never on the queue before.
(iv) If ~ is X i = (a)Xp, then create a clause of the form yXi
V d e a (,) Y S ~ where a(s) = {s'] Bs': s & s'}. When a(s) is empty,

the disjunction is equivalent to false. Put the variables y xp on the
queue if they were never on the queue before.
(v) If a is Xj = [a]X m then create clauses of the form Ys xi - - y Xp

for each s' E a(s) where a(s) = {s' I Bs ' : s -5 ~ s'}. Put the variables
],:x'p on the queue if they were never on the queue before. When a(s)

is empty, create the single literal clause],~x'j.

3. If Ys xi is in the queue and if Xj does not appear on the left hand side in

B, then if s E e(Xj) , add a single literal clause Y~ xi else add the clause yX; .

105

This will produce an NHORNSAT instance, of the size linear in the product
of the size of the transit ion system and equational block B. We now state the
theorem sta t ing the correctness of the reduction. The correctness of the model
checking a lgor i thm obtained this way fol lowsfrom the discussions in section 2.

Let s E $ is a s ta te in the given finite state transit ion system T = (S, Act, --+).
Let Xi be a variable in the equational block used in specifying a proper ty using
the syntax of [10] and let the initial environment be e. Suppose the block speci-
fying the formula is a max block, B = max{E} where E = { X i = ~31, ..., Xn =

T h e o r e m 4 . I f h is the instance of NHORNSAT produced by the algorithm de-
scribed above from the given model checking problem (if s* E I[Xi[[IIBll,), then
h is satisfiable and in the maximal satisfying assignment of h, y xi = 1, if and

o ly e IIX lltiBll=.

The dual of the above theorem holds for min blocks. Which means tha t in the
minimal solution of the HORNSAT iristance produced in tha t case, Yfl~ = 1 if
and only if s* E [[Xi[[IIBII~ This gives us a linear t ime algori thm for the problem.

A l t e r n a t i o n f r e e m u c a l c u l u s : Now we generalize the algori thm in the pre-
vious section, to obtain a (N)HORNSAT based algori thm for the model checking
of al ternat ion free mu-calculus. A linear t ime algori thm for the same problem
was presented in [10]. Their algorithm needed to invent an efficient da ta struc-
ture to obta in the linear t ime algorithm. Our method brings out the fact that
the essential da ta structure necessary to obtain the linear t ime algori thm for
model checking is in fact the same as in [12] for the linear t ime algori thm for
H O R N S A T / N H O R N S A T

Given a Transi t ion system T, .a valuation map v, an initial environment e, a
blockset B, the model checking problem is to decide if s* E lIxillllBll~, for a given
s tate s* in the transit ion system and a given variable Xi appearing on the left
hand side of some equation in some block Bl in B.

Briefly, the steps in the (N)HORNSAT based version of the algori thm for
model checking al ternation free mu-calculus are as follows:

1. Create a variable Ys xl and put the variable y Xl in the queue associated
with the block Bl where Xi appears on the left hand side.
2. Expand the variables in the queue assodated with each block, in the reverse
topological order, 4 with the following rules:
If the block is a max block then use the methods described in the previous
subsection and if the block is a min block use a dual approach. Keep the
NHORN or HORN clauses for each block separated. If new variable Y x1 is
generated and Xj belongs to a different block B , put that variable in the
queue associated with block B.

4 Given B, the block set, topologically sort the blocks in B with respect to the variable
dependency relation depicted in block graph. Let B1, B2, ..., Bm be the set of blocks
in the topologically sorted order.

106

If the a variable ~ xi in the queue for a block B is already expanded then
remove it from the queue otherwise expand it.
3. Start solving the minimal-HORNSAT/maximal-NHORNSAT instances cor-
responding to each block in the topological order. Let hB be the HORNSAT/
NHORNSAT instance corresponding to block B. Suppose a variable Yff~ was
assigned a value 1 in the solution of a hB (where Xj appears on the left hand
side in B) then add a clause yXj in the (N)HORNSAT instances correspond-
ing to the blocks which had to put this variable in the queue of the block B
(This information can be read off the block graph also). If Yff~ was assigned
a value 0 in the solution of a hB (where Xj appears on the left hand side in

w ~

B) then add a clause],~xj in the (N)HORNSAT instances corresponding to
the blocks which put this variable in the queue of the block B. Then continue
solving the next block HORNSAT instance.

Suppose the block B corresponding to Xi, is a max block. (A Dual strategy holds for
the rain blocks). The maximal-NHORNSAT instance for the block B is satisfiable and
y~x~ = 1, in the maxima] satisfying assignment, if and only if s* e I[X~llliBll,.

Note that this algorithm produces a sequence of HORNSAT and NHORN-
SAT instances and it is local and it can be made into an On the fly algorithm by
noting that one can use the on the fly algorithm for each HORNSAT instance. We
state the theorem about the correctness and efficiency of the algorithm sketched
above with out proof.

T h e o r e m 5. The algorithm for model checking alternation free ran-calculus ob-
tained by reducing the problem to a sequence of minimal-HORNSAT and maximal-
NHORNSAT problems runs in time linear in the product of the sizes of the tran-
sition system and the block set specifying the property. Hence the HORNSAT
based algorithm is as efficient as the algorithm in [10].

We also have developed HORNSAT based methods to capture the tableau
based local model checking in [8] and [25 I. Details will appear in a future version
of this paper.

5 G a m e f o r r o o t e d (N) H O R N S A T a n d S t i r l i n g G a m e s

In [23] we show that many relational problems are also directly, locally, and
natural ly reducible to rooted NHORNSAT. Hence, given a two-player game for
rooted NHORNSAT, we can easily associate games to all these relations as well.
However, our objective is to obtain a sufficient characterization of various process
algebraic behavioral relations, which helps us identifying whether a particular
relation p, between finite transition systems is polynomial time decidable. In
what follows, through a game theoretic formulation (similar to [26] where a
characteristic game [or bisimulation was defined,) we fulfill this objective. Such
a natural sufficient characterization is really useful in identifying a polynomial
t ime decidable relation when the definitions of the relations are complicated. '~

5 In [14], J. F. Groote who originally defined 2-nested simulation a.nd k-nested simu-
lation conjectured that deciding these relations must be NP-hard. However, by our

107

G a m e for rooted N H O R N S A T : Game for an instance of a rooted NHORN-
SAT instance h = (X, C, xl) is a two player game Gh in which player I (the
spoiler) wants to show that the instance h is not satisfiable and Player II (the
duplicator) wants to show otherwise. The game proceeds in rounds. The spoiler
opens the game by choosing a clause C~ such that head(Ci) = Xl. Duplicator
reciprocates by choosing xij such that xij is a disjunct in tail(Ci). In subsequent
rounds, the spoiler chooses a clause Ck such that head(Ck) = xij where xij was
the duplicator's choice in the previous round. The duplicator has to reciprocate
by choosing a disjunct in the tail of Ck. The game continues until one of the
player loses. The duplicator loses if it does not have such a disjunct to choose (i.e,
when the spoiler has chosen a clause of the form ~7 in its last move), the spoiler
loses when the game continues for ever (which is not possible in a finite size
NHORNSAT instance) or when the spoiler chooses a clause chosen earlier. The
following theorem states that the game we defined above, is indeed characteristic
for rooted-NHORNSAT.

T h e o r e m 6 . Given an instance h = (X, C, Xl) of the rooted NHORNSAT prob-
lem, the duplicator has a winning strategy 6 in the corresponding game if and
only if h is satisfiable.

St i r l ing Class o f G a m e s : Now we describe a class of two player games called
the Stirling Class. In this class, player I (the duplicator or prover) and player II
(the spoiler or disprover) plays on two Finite transition systems. Each game in
the class has the following components:

Two Finite Transition systems T1 = 1 and T2 = 2; Two languages R1 C_
A* and R2 __A*; Two total relations rn2 _C R1 • A* and m2 C R2 • A*;
A set of (winning positions) F C S1 • $2; A set of starting positions

C F C_ St x $2; A set M C {1,2} which denotes the indices of
the coordinate of a posi t ion4hat spoiler can play on. In each round
the duplicator plays on the other coordinate; and, A positive integer r
denoting the number of rounds allowed in the game. This is crucial for
some of the games.

The game starts in a position (s,t I E s A play of the game is a finite or
infinite length sequence of the form (s~, s~), ..., (s~, s/2), The spoiler wants to
show that there is a difference between the two transition systems (the kind of
difference it wants to show depends on the relation the game corresponds to).
The duplicator wants' to show that such a distinction attempted by the spoiler
is not possible. A partial play in a game is a prefix of a play of the game. Let 7rj
be a partial play (s~, s2), ..., (s), s~). The next pair 1 2 (sj+l, sj+l) is determined by
the following move rule:

i : : : ~ i U. The Spoiler picks a triple (i,x,u} such that i E M and x E R/and s i
(Note that ==~i denotes an extended step in the transition and u = sj+l.

system T/).

characterization it is easy to see tha.~; they are polynomial time decidable. Moreover,
many other relations such as ~-nes ted relations[20] were shown to be polynomial
time decidable this way.

6 For the definition of winning strategy, see next subsection

108

�9 Let the choice of the spoiler in the move be (i ,x,u) and let i j r i. Then
i I

the Duplicator picks a pair (y, u ') such that (x, y) E me and sj ==~,, u' and
i I

U I ~ S j . . k l .

Extending a partial play ,xj to ~rj+l by the above move rule is called a round
of the game. Hence a play can be thought of as a sequence of rounds.

The duplicator wins the game if either in the last position of the play, there
is no further allowable move by none (when M = {1, 2}) or there is no further
allowable move by the spoiler(when [M I = 1), depending on the cardinality of the
set M. Duplicator also wins~ if in the play a position is repeated. In both cases,
the spoiler has failed to expose a distinction between the transition systems. The
spoiler wins, if in the last position of the play is not a winning position which
means the spoiler has been able to force the duplicator to a non winning position
of the game or if in the last position, the spoiler has an allowable move but the
duplicator does not have a matching move. A strategy for a player is a set of
rules which tells h im/her how to make a move depending on the partial play
and opponent 's move so far.

A strategy is a winning strategy for a player, if playing with that strategy,
that player wins against all possible strategies of the opponent.

D e f i n i t i o n T . A game G in Stirling class is called a characteristic game for a
relation R between two finite state processes, if the following condition holds. Let
the game G be played on two transition systems T1 and T~ and the duplicator
has a history free winning strategy if and only if T1 and T2 are related by the
relation R.

Here, we illustrate characteristic games for bisimula~ion, weak bisimulation, and
Failure equivalence. We assume in the following that all the games are being
played on/"1 = 1 and T2 = 2.7
C h a r a c t e r i s t i c G a m e fo r B i s i m u l a t i o n : B s i m - game is a game in Stirling
class with the following parameters: R1 = /~2 = A, ml , m2 = t, P = $1 • $2,
S = {(sl ,s2)}, M = {1,2), r =[5:1 [* IS2]+1 .
C h a r a c t e r i s t i c G a m e Fo r W e a k B i s i m u l a t i o n : W e a k B s i m - game is a
game in Stifling class with the following parameters: R1 = R2 = r*A~'*, ml(a) =
v*ar*,m2(a) = r*ar*Va E A, r = $I • So., Z = {(sl,s2}}, M = {1,2}, r =1

l* Is2 l+1.
C h a r a c t e r i s t i c G a m e For Fa i l u r e E q u i v a l e n c e : Fai lu re - game is a game
in Stifling class with the following parameters: /~1 = R2 = A*, ml ,m2 = ~,
r = {(s,t) I s E S~,t e S2 AFailur~s(s) = Fad:lures(t)}, Z = {r
M = { 1 , 2 } , r = 1.

For each relation R, in the l inear-t ime/branching t ime hierarchy, and its
characteristic game GR, the following theorem can be proved easily.

T h e o r e m 8. Let T1, T2 be two transition systems and let GR be the instance of
the characteristic game for a relation R, such that the game is played on TI and

z Note that ~ denotes the identity relation.

109

T~.. The duplicator has a winning strategy for this instance of the game GR if
and only if R holds between the given two transitions systems.

For a certain subclass of Stirhng class, the problem whether the duplicator has
a winning strategy is directly reducible to rooted NHORNSAT problem. Hence, for
any behavioral relation, whose characteristic game is in this subclass, the problem
of checking that relation between two finite state transition systems is reducible to
the rooted NHORNSAT problem. This leads to a polynomial time algorithm for the
problem of checking that relation, provided one can create the instance of the game
from the instance of the relational problem in polynomial time. For all the games in
Stirhng Class, given that the transition systems are represented as finite state systems,
the transformation to game instance is polynomial time, provided that the winning
positions can be decided in polynomial time. Hence, we get a sufficiency condition as to
under what condition a behavioral relation between finite state processes is polynomial
time decidable.
A Subc las s o f S t i r l i ng Class We now briefly give a sufficient characterization as
to when a game in Stirhng Class is reducible to an instance of rooted NHORNSA.T in
polynomial time.
I. R1 and R2 are finite and exphcitly enumerated. For example, in bisimulation game
R1 = R2 = A, where A is the set of action symbols.
2. The representation of the set of winning positions is either by an explicit listing or
is a polynomial time decidable set.

A c k n o w l e d g e m e n t s : We wish to thank Rajeev Alur, S. S. Ravi, and Moshe Vardi
for helpful discussions.

References

1. H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Sci-
ence, 126(1):3-30, 1994.

2. G. Ausiello, A. D'Atri, and D. Sacca. Graph algorithms for functional dependency
manipulation. Journal of Association for Computing Machinery, 30(4):752-766,
Oct 1983.

3. G. Ausiello and G. F. Italiano. On-line algorithms for polynomially solvable satis-
fiability problems. Journal of Logic Programming, 10:69-90, 1991.

4. C. Beeri. On the membership problem for functional and multivalued dependencies
in relational databases. A CM Transactions on Database Systems, 5:241-259, 1980.

5. G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for
ctl. In Proceedings of IEEE Symposium on Logic In Computer Science' 95, 1995.

6. J. C. Bradfield. Verifying Temporal Properties of Systems. Birkhauser, 1992.
7. U. Celikkan and R. Cleaveland. Generating diagnostic information for behavioral

preorders. In Proceedings of Computer Aided Verification: 1992, Lecture Notes in
Computer Science 663, pages 370-383, 1992.

8. R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Acta Informatica, 27:725-747, 1990.

9. R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for modal mu-
calculus. In Proceedings of Computer Aided Verification: 1992, Lecture Notes in
Computer Science 663, pages 410-422, 1992.

110

10. R. Cleaveland and B. Steffen. Computing behavioural relations, logically, tn
ICALP, pages 127-138, 1991.

11. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275-288, 1992.

12. W.F. Dowling and J.H. Gallier. Linear time algorithm for testing the satisfiability
of propositional horn formulae. Journal of Logic Programming, 3:267-284, 1984.

13. J. C. Fernandez and L. Mounier. On the fly verification of behavioral equivalences
and preorders. In The 3rd International Workshop on Computer Aided Verification
1991, Lecture Notes in Computer Science 575, pages 181-191~ 1991.

14. J. F. Groote. Private communications. 1996.
15. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-

ence, 27, 1983.
16. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to

branching time model checking. Draft, 1995.
17. K. G. Larsen. Proof systems for hennessy milner logic with recursion. In CAAP'88

Lecture Notes in Computer Science 299, 1988.
18. K. G. Larsen. Proof systems for satisfiability in hennessy-milner logic with recur-

sion. Theoretical Computer Science, 72:265-288, 1990.
19. K. G. Larsen. Efficient local correctness checking. In CAV 92, Lecture Notes in

Computer Science 663, pages 30-43, 1992.
20. X. Liu. Specification and decomposition in concurrency. Technical report, De-

partment of Mathematics and Computer Science, Aalborg University, Denmark,
1992.

21. Thomas J. Schaefer. The complexity of satisfiability problems. In Tenth Annual
Symposium on Theory of Computing, 1978.

22. S. K. Shulda, H. B. Hunt III, and D. J. Rosenkrantz. Hornsat, model checking, ver-
ification, and games. Research Report TR-95-8, Department of Computer Science,
SUNY Albany, 1995.

23. S. K. Shukla, D. J. Rosenkrantz, H. B. Hunt III, and R. E. Stearns. A hornsat
based approach to the polynomial time decidability of simulation relations for
finite state processes. DIMA CS workshop on Satisfiability Problem: Theory and
Practice, 1996.

24. O. Sokolsky and S. A. Smolka. Incremental model checking in the modal mu-
calculus. In Proceedings of CA V'9~, 1994.

25. C. Stifling and D. Walker. Local model checking in the modal mu-calculus. The-
oretical Computer Science, 89:161-177, 1991.

26. Colin Stifling. Modal and temporal logics for processes. In Notes for Summer
School in Logic Methods in Concurrency, pages Department of Computer Science,
Aarhus University, 1993.

27. R.J. van Glabbeek. The linear time - branching time spectrum. Technical Re-
port CS-R9029, Computer Science Depaxtment, CWI, Centre for Mathematics and
Computer Science, Netherlands, 1990.

28. M. Vardi and P. Wolper. An automata theoretic approach to automatic program
verification. In Proceedings of LICS 1986, pages :332-344, 1986.

29. S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model
checldng in the modal mu-calculus. In Proceedings of LtCS 1994/, 1994.

