
Verification of Arithmetic Circuits 
by Comparing Two Similar Circuits 

Masahiro Fujita 

Fujitsu Laboratories of America, Inc. 

3350 Scott Blvd., Bldg. #34 ,  Santa Clara, CA95054 

fujit a@fla.fujitsu.com 

Abs t rac t .  Recently there have been a lot of progress in technologies 

for comparing two structurally similar large circuits [2, 14, 13]. Cir- 

cuits having more than 10,000 gates, whose BDD cannot be built, have 

been verified in several minutes. However, arithmetic circuit verifica- 

tion with respect to specification is still a hard problem. As shown 

in [16] some arithmetic circuits, such as multipliers, square function. 

cube functions, etc., must ~atisfy some recurrence equations, such as 

f ( x  + 1, y) = f ( x ,  y) -~- y w, here f ( x ,  y) = xy, and those equations can 

be used for verification. In this paper, we use such recurrence equations 
in order to drive Boolean comparison problems of structurally similar 

circuits. That is, left hand sides and right hand sides of equations are 

realized as separated circuits and then compared. Using the recurrence 

equation properly, these circuits have many internal equivalent signals 
and many implications among signMs, by which Boolean comparison 

programs, such as [2, 14, 13]~ can work very effectively. Using the pro- 

posed method, 16-bit multipliers, such as C6288 of ISCAS85 benchmark 

circuits, are verified within 12 minutes. 

1 I n t r o d u c t i o n  

Formal verification techniques have been paid much attention recently. There  

have been lots of works on formal hardware verification [11, 10], and among 

them, Binary Decision Diagram (BDD) [3] based verification techniques, such as 

[5, 8, 17, 6, 15], have given successful results for practical designs. 

However, BDD may not work well for arithmetic circuits, such as multipliers. 

Therefore, Several extensions are made on BDD, such as, BMD [4], HDD [7], 

OKFDD [9], etc. Although originally word-level verification is necessary in order 

to use BMD. by using the technique shown in [12] which compute BMD from 

outputs  to inputs instead of inputs to outputs,  we can now use BMD directly 

to verify arithmetic circuits, such as multipliers. However, if there are errors 
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(bugs) in the circuits, BMD can easily blow up and the verification program 

may not terminate, since those circuits represent different logic functions from 

multiplier which can have exponential sizes of BMD. Of course this depends on 

each error but we actually observed this BMD explosion by randomly inserting 

logical errors to the multiplier circuits and generating BMDs. 

In this paper, we show another approach to attack the verification of arith- 

metic circuits. Instead of directly generating BDD (or its extensions) from given 

circuits, we create circuits based on the recurrence equations that must be satis- 

fied by the circuits. This idea was originally proposed by Ochi [16]. For example 

a recurrence equation for multipliers is: 

f ( z  + l ly) = f ( x , y )  + y where f ( x , y )  = z y  and z, y are inputs  

Any circuits which satisfy the above recurrence equation are multipliers 1. He 

used recurrence equations to verify arithmetic circuits by first generating BDD 

from the circuits and then check if that BDD satisfy the required recurrence 

equations. Clearly this method has a drawback that we have to build BDD for 

the circuits first, which is often impossible for large arithmetic circuits. 

On the other hand, recurrence equations, such as shown above (for multipli- 

ers), may indicate a comparison problem of two circuits (or Boolean functions). 

That is, checking recurrence equation means comparing the left hand side and 

right hand side of the equation. So, basically we can use Boolean comparison 

techniques for such equivalence checking. 

Recently there have been much progress in technologies for Boolean com- 

parison of similar circuits. Here '~ means that we can find many logical 

relationships, such as equivalences or implications, among the internal signals 

in the two circuits to be compared. In a practical design environment, designers 

want to check the equivalence of the two circuits which are very structurally 

similar. For example, it is often the case to check the equivalence between unop- 

timized circuits and manually optimized circuits. For such cases, there are lots 

of relationships among the internal signals in the two circuits. By utilizing these 

relationships, methods like [2, 14, 13] can verify much larger circuits than the 

circuits which can be verified just by BDDs. 10,000 gates or larger circuits can 

be verified within practical time. 

Basically recurrence equations suggest two structurally similar circuits (left 

hand side and right hand side). Here we propose a new verification method 

1 Circuits must also satisfy boundary conditions, such as, f(O, y) = O, which can be 
checked rather easily. 
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for arithmetic circuits based on recurrence equations. We first generate two cir- 

cuits which correspond to left hand side and right hand side of the recurrence 

equations. Then apply Boolean comparison program for similar circuits to those 

circuits. Please note that  we need only one circuit which should be verified. The 

two circuits to be compared are generated from that  circuit by adding appropri- 

ate extra circuits, such as adders, incrementors, etc. Also note that  we do not 

need specification in Boolean functions. Specification is fully described in the 

recurrence equations that  we are using to generate two circuits. 

By using case splitting appropriately, we can verify 16-bit multipliers, such 

as C6288 of ISCAS benchmark circuits, in less than 12 minutes on Sparc20. 

Moreover, different from the method in [12], the proposed method can finish 

verification in Similar time, even if the circuits are not correct as shown in section 

3. 

In the next section, we introduce our verification method. Then section 3 gives 

preliminary results. Section 4 is our concluding remarks. Although we discuss 

only about multipliers for simplicity, the proposed method can be applied many 

arithmetic functions which have proper recurrence equations, such as, square 

functions, cube functions, etc. 

2 Verification algorithm 

In this section we introduce our verification method. For simplicity, we use mul- 

tipliers as examples all the time, although we can verify many other arithmetic 

circuits which have proper recurrence equations, such as, square functions, cube 

functions, etc. As long as there are proper recurrence equations, we can verify 

any circuits, including random circuits (assuming such recurrence equations are 

given) ~. 

The basic idea for multipliers is illustrated in Figure 1. Since multipliers 

satisfy the following equation, two circuits which are derived from left hand side 

and right hand side of the equation respectively must realize the same Boolean 

function. 

f ( x  + 1, y) = f ( x ,  y) + y where f ( x ,  y) = xy and x, y are inputs 

In some sense, we can consider the proposed method is a kind of self-checking meth- 
ods proposed in [1]. What we are doing in this paper can be described in the following 
way: by appropriatly using recurrence equations (self checking properties), we are 
reducing verification problems into Boolean comparison problem for similar circuits. 
Of course, if the reduced Boolean comparison problems are too large, we can use 
random simulation based checking just like in [1]. 
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(b) Circuit correponding to f(x,y)+y 

Fig. 1. Circuit realization of the recurzence equation for multipliers 

Please note that  the two multipliers in Figure 1 are the same circuit which 

we want to verify. We are assuming here that  incrementor and adder are given 

and they are guaranteed to be correct. 

Please also note that  the above equation together with boundary condition 

for z = 0 completely specify the function and that  must be multiplier. 

So, by comparing the two circuits shown in Figure 1, we can formally verify 

multipliers 3. But this is not an easy Boolean comparison problem. Clearly we 

cannot build BDD for each circuit, if that  is a large bit width multipliers, such 

as C6288 of ISCAS85 benchmark circuits. Although large portion of the two 

circuits are the same sub-circuits (multiplier), they are not similar circuits in 

the sense that  we cannot find many equivalent signals between the two circuits. 

So, we cannot directly apply the Boolean comparison methods like [2, 14, 13]. 

However, if we consider only the case where the least significant bit of x, z0 is 

0, then the incrementor becomes just an inverter as shown in Figure 24. Thus the 

two circuits become like the ones shown in Figures 3. There are many equivalent 

3 In this paper, we assume that extra circuits, such as incrementor, adder, subtracter, 

etc., are guaranteed to be correct. Or those should be verified first 

4 If x0 ---- 0, then increment does not affect the values of x1, x2, ..., xn-z. 



163 

signals between the  two circuits,  since mos t  inputs are c o m m o n  and large por t ion  

of  the circuits are the same.  In fact there are a lot of  funct ional  relat ionships 

among  internal  signals of  the two circuits. 
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Fig.  2. If the least significant bit is 0, incrementor becomes just an inverter 

By this case spl i t t ing,  we can verify multipliers when z0 = 0. T h e n  how 

about  the cases when z0 = 1 ? We can proceed with the same idea: fur ther  case 

spli t t ing with x l ,  x2, .... For example,  if z0 = 1 but  z l  = 0, then the incrementor  

becomes jus t  two inverters  as shown in Figure 4. Again the two circuits genera ted  

are similar as shown in Figure  5. 

The  next  spl i t t ing case is x0 = 1, z l  = 1, z2 = 0 which needs three inverters 

for z0, x l ,  and x2. Th i s  case spli t t ing process can be continued until  we reach 

the case where z0 = 1, z l  = 1, x2 = 1, ..., x , _ 2  = 1, zn -1  = O. 

W h a t  we are doing here is jus t  check the equation: 

f ( x  --t- 1, y) = f ( x ,  y)  q- y w h e r e  f ( x ,  y) -- x y  and x, y are ,inputs 

by case spli t t ing the values of  xi. 
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F i g .  4.  T h e  case where  xo = 1 b u t  xl = 0 



165 

X 

n-bit 1 incrementor 
=-'1 

~ a  f(x,y) 

y in L 
!1 
L-~zl 

I ,  
( f(x,y) ~ These two are 

n~iiiiiiifi~bit!!i!i!!iiiiii .......... very similar 

Y ::::i''":"""":"'::_'::: -i-" adder I ' - z2 

Fig. 5. By assuming zo = 1, xl = 0, again the circuits become very similar 

As we have more number  of inverters, the two circuits become less similar. 

However, as we have more number  of inverters, we can fix the values of  zi more. 

T h a t  is, in the case of Figure 4, since this is the case where z0 = 1 and z l  = 0, 

we can fix the values of x0 and z l .  So there are trade-offs in terms of difficulty 

and the most  difficult case happens when there are two inverters as shown in 

Figure 4 according to our experiments  for C6288 in the next section. 

By using the above case splitting, we can keep the similarity of  the two 

circuits. These circuits should be rather  easy circuits for the Boolean comparison 

methods like [2, 14, 13]. In fact, as shown in the next section, we have found many  

equivalent signals which drastically reduce the verification time or complexity of 

the problem. 

3 P r e l i m i n a r y  e x p e r i m e n t a l  r e s u l t s  

We did some preliminary experiments  for multipliers. We plan to do more in- 

tensive experiments using other types of circuits, such as, square functions. 

Our program first generates net-lists for the two circuits in Figure 2, 4, and 

others s from the given multipliers. Then apply our Boolean comparison pro- 

grams to them. 

s In the case of 16-bit multipliers, there are 16 cases in total. But some of them are 
trivial, since most of xi are constants. 
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We verified C6288 of ISCAS85 benchmark circuits for its first 16 outputs, 

since as shown in Figure 1, all values should be the same bit-width (16bit in this 

case). The results are shown in Figure 6. We did two types of experiments. The 

first one is to just  verify C6288 circuit, which is a correct multiplier. It took only 

less than 12 minutes in total to verify. 

The program found 342 equivalent internal signals of the two circuits out of 

360 internal signals for the case of Figure 2. So large portion of the two circuits 

are equivalent and that  is why verification can finish so quickly. The most time 

Consuming case is the one shown in Figure 4 which took 8 minutes to finish. 

This is the case where the two circuits are similar but not so much and their 

circuit sizes are still large (only small number of xi have fixed value). All the 

other cases are less than one minute. 

Multiplication 
Circuit 

C6288 
(first 16 outputs) 

Case: x0=0 

Case: xO=l, xl=O 

All other cases 

CPU time 
sec. on Sparc20 

Original 
(correct) 

14.0 

496.0 

Less than 
60.0 

Error  
inserted 

2.0-60.0 
depending 
o n  e r r o r s  

inserted 

Fig. 6. Results for 16-bit mukipfiers 

Second experiment we did is to try to verify incorrect multipliers (verification 

fails) by intentionally inserting errors into C6288 (changing function of a gate, 
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etc.6). Depending on changes, it took less than one minute (sometime in a couple 

of seconds) to prove the circuit is not a multiplier. Depending errors, the cases 

where verification fails are different, but mostly verification fails in multiple 

cases. Again this is extremely fast. Please note that  the method in [12] may not 

work well for incorrect circuits. 

4 C o n c l u s i o n s  

We have shown a verification method for arithmetic circuits. We also demon- 

strated that  C6288 can be verified in less than 12 minutes. Even if the circuits 

are not correct (there is a bug in the circuits), verification time remain similar or 

less. Also, different from BMD or HDD based methods, we do not need another 

BDD package, such as, BMD package. We can use existing BDD packages or 

Boolean comparison programs to verify arithmetic circuits. We believe that  the 

proposed method has a significance in its applications. 

Although in this paper we only discussed about combinational circuits, the 

proposed techniques can be applied to sequential circuits by deriving appropriate 

recurrence equations. Surely this is one of our future research topics. 

Also, the proposed method can be considered to be a kind of self-checking 

methods proposed in [1]. What  we are doing here can be described in the follow- 

ing way: by appropriately using recurrence equations (self checking properties), 

we are reducing verification problems into Boolean comparison problem for simi- 

lar circuits. Of course, if the reduced Boolean comparison problems are too large, 

we can use random simulation based checking just like in [1]. We are planning 

to explore this area and study on extensions of the proposed method. 
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