
Verification of Arithmetic Circuits
by Comparing Two Similar Circuits

Masahiro Fujita

Fujitsu Laboratories of America, Inc.

3350 Scott Blvd., Bldg. #34 , Santa Clara, CA95054

fujit a@fla.fujitsu.com

Abs t rac t . Recently there have been a lot of progress in technologies

for comparing two structurally similar large circuits [2, 14, 13]. Cir-

cuits having more than 10,000 gates, whose BDD cannot be built, have

been verified in several minutes. However, arithmetic circuit verifica-

tion with respect to specification is still a hard problem. As shown

in [16] some arithmetic circuits, such as multipliers, square function.

cube functions, etc., must ~atisfy some recurrence equations, such as

f (x + 1, y) = f (x , y) -~- y w, here f (x , y) = xy, and those equations can

be used for verification. In this paper, we use such recurrence equations
in order to drive Boolean comparison problems of structurally similar

circuits. That is, left hand sides and right hand sides of equations are

realized as separated circuits and then compared. Using the recurrence

equation properly, these circuits have many internal equivalent signals
and many implications among signMs, by which Boolean comparison

programs, such as [2, 14, 13]~ can work very effectively. Using the pro-

posed method, 16-bit multipliers, such as C6288 of ISCAS85 benchmark

circuits, are verified within 12 minutes.

1 I n t r o d u c t i o n

Formal verification techniques have been paid much attention recently. There

have been lots of works on formal hardware verification [11, 10], and among

them, Binary Decision Diagram (BDD) [3] based verification techniques, such as

[5, 8, 17, 6, 15], have given successful results for practical designs.

However, BDD may not work well for arithmetic circuits, such as multipliers.

Therefore, Several extensions are made on BDD, such as, BMD [4], HDD [7],

OKFDD [9], etc. Although originally word-level verification is necessary in order

to use BMD. by using the technique shown in [12] which compute BMD from

outputs to inputs instead of inputs to outputs, we can now use BMD directly

to verify arithmetic circuits, such as multipliers. However, if there are errors

160

(bugs) in the circuits, BMD can easily blow up and the verification program

may not terminate, since those circuits represent different logic functions from

multiplier which can have exponential sizes of BMD. Of course this depends on

each error but we actually observed this BMD explosion by randomly inserting

logical errors to the multiplier circuits and generating BMDs.

In this paper, we show another approach to attack the verification of arith-

metic circuits. Instead of directly generating BDD (or its extensions) from given

circuits, we create circuits based on the recurrence equations that must be satis-

fied by the circuits. This idea was originally proposed by Ochi [16]. For example

a recurrence equation for multipliers is:

f (z + l ly) = f (x , y) + y where f (x , y) = z y and z, y are inputs

Any circuits which satisfy the above recurrence equation are multipliers 1. He

used recurrence equations to verify arithmetic circuits by first generating BDD

from the circuits and then check if that BDD satisfy the required recurrence

equations. Clearly this method has a drawback that we have to build BDD for

the circuits first, which is often impossible for large arithmetic circuits.

On the other hand, recurrence equations, such as shown above (for multipli-

ers), may indicate a comparison problem of two circuits (or Boolean functions).

That is, checking recurrence equation means comparing the left hand side and

right hand side of the equation. So, basically we can use Boolean comparison

techniques for such equivalence checking.

Recently there have been much progress in technologies for Boolean com-

parison of similar circuits. Here '~ means that we can find many logical

relationships, such as equivalences or implications, among the internal signals

in the two circuits to be compared. In a practical design environment, designers

want to check the equivalence of the two circuits which are very structurally

similar. For example, it is often the case to check the equivalence between unop-

timized circuits and manually optimized circuits. For such cases, there are lots

of relationships among the internal signals in the two circuits. By utilizing these

relationships, methods like [2, 14, 13] can verify much larger circuits than the

circuits which can be verified just by BDDs. 10,000 gates or larger circuits can

be verified within practical time.

Basically recurrence equations suggest two structurally similar circuits (left

hand side and right hand side). Here we propose a new verification method

1 Circuits must also satisfy boundary conditions, such as, f(O, y) = O, which can be
checked rather easily.

161

for arithmetic circuits based on recurrence equations. We first generate two cir-

cuits which correspond to left hand side and right hand side of the recurrence

equations. Then apply Boolean comparison program for similar circuits to those

circuits. Please note that we need only one circuit which should be verified. The

two circuits to be compared are generated from that circuit by adding appropri-

ate extra circuits, such as adders, incrementors, etc. Also note that we do not

need specification in Boolean functions. Specification is fully described in the

recurrence equations that we are using to generate two circuits.

By using case splitting appropriately, we can verify 16-bit multipliers, such

as C6288 of ISCAS benchmark circuits, in less than 12 minutes on Sparc20.

Moreover, different from the method in [12], the proposed method can finish

verification in Similar time, even if the circuits are not correct as shown in section

3.

In the next section, we introduce our verification method. Then section 3 gives

preliminary results. Section 4 is our concluding remarks. Although we discuss

only about multipliers for simplicity, the proposed method can be applied many

arithmetic functions which have proper recurrence equations, such as, square

functions, cube functions, etc.

2 Verification algorithm

In this section we introduce our verification method. For simplicity, we use mul-

tipliers as examples all the time, although we can verify many other arithmetic

circuits which have proper recurrence equations, such as, square functions, cube

functions, etc. As long as there are proper recurrence equations, we can verify

any circuits, including random circuits (assuming such recurrence equations are

given) ~.

The basic idea for multipliers is illustrated in Figure 1. Since multipliers

satisfy the following equation, two circuits which are derived from left hand side

and right hand side of the equation respectively must realize the same Boolean

function.

f (x + 1, y) = f (x , y) + y where f (x , y) = xy and x, y are inputs

In some sense, we can consider the proposed method is a kind of self-checking meth-
ods proposed in [1]. What we are doing in this paper can be described in the following
way: by appropriatly using recurrence equations (self checking properties), we are
reducing verification problems into Boolean comparison problem for similar circuits.
Of course, if the reduced Boolean comparison problems are too large, we can use
random simulation based checking just like in [1].

162

_• n-bit [,in
x incrementorJ L a f(x,y)

n

Y i n ,[iii! .it! !ii ii::iiiil '

(a) Circuit corresponding to f(x+l,y)

z l

f(x,y)

x --i i!i!ii !: :b!ti:iiii!iiiiiiiiii!i:iii:iii!i:i:i L_ b .
F4H:i:!:i:mdRiplier:!:![�9 L~ n-bit

Y n ! "''''''='":"""=""'"":'~ ~_a.dder
n

' - Z2 I

(b) Circuit correponding to f(x,y)+y

Fig. 1. Circuit realization of the recurzence equation for multipliers

Please note that the two multipliers in Figure 1 are the same circuit which

we want to verify. We are assuming here that incrementor and adder are given

and they are guaranteed to be correct.

Please also note that the above equation together with boundary condition

for z = 0 completely specify the function and that must be multiplier.

So, by comparing the two circuits shown in Figure 1, we can formally verify

multipliers 3. But this is not an easy Boolean comparison problem. Clearly we

cannot build BDD for each circuit, if that is a large bit width multipliers, such

as C6288 of ISCAS85 benchmark circuits. Although large portion of the two

circuits are the same sub-circuits (multiplier), they are not similar circuits in

the sense that we cannot find many equivalent signals between the two circuits.

So, we cannot directly apply the Boolean comparison methods like [2, 14, 13].

However, if we consider only the case where the least significant bit of x, z0 is

0, then the incrementor becomes just an inverter as shown in Figure 24. Thus the

two circuits become like the ones shown in Figures 3. There are many equivalent

3 In this paper, we assume that extra circuits, such as incrementor, adder, subtracter,

etc., are guaranteed to be correct. Or those should be verified first

4 If x0 ---- 0, then increment does not affect the values of x1, x2, ..., xn-z.

163

signals between the two circuits, since mos t inputs are c o m m o n and large por t ion

of the circuits are the same. In fact there are a lot of funct ional relat ionships

among internal signals of the two circuits.

xO

x l
x2

xn-1

x O ~

x l
x 2 ~

xn-1

n-bi t
i n c r e m e n t o r

I

if xO=q~

-- aO

-- a l
-- a2

--an-1

�9 a0
�9 a l
, a2

�9 an-1

Fig. 2. If the least significant bit is 0, incrementor becomes just an inverter

By this case spl i t t ing, we can verify multipliers when z0 = 0. T h e n how

about the cases when z0 = 1 ? We can proceed with the same idea: fur ther case

spli t t ing with x l , x2, For example, if z0 = 1 but z l = 0, then the incrementor

becomes jus t two inverters as shown in Figure 4. Again the two circuits genera ted

are similar as shown in Figure 5.

The next spl i t t ing case is x0 = 1, z l = 1, z2 = 0 which needs three inverters

for z0, x l , and x2. Th i s case spli t t ing process can be continued until we reach

the case where z0 = 1, z l = 1, x2 = 1, ..., x , _ 2 = 1, zn -1 = O.

W h a t we are doing here is jus t check the equation:

f (x --t- 1, y) = f (x , y) q- y w h e r e f (x , y) -- x y and x, y are ,inputs

by case spli t t ing the values of xi.

164

Y In I

r

n-bit
incrementor

I ~ d

f(x,y)

(--f(x,y)" " ~ These two are

x 4~!ii:i:in~bit:i:i:i:i:i:i:i:i:i:i~i~i:!:i:i:!:il] n very similar

Y n ~ i i i i i ~ i ~ n'bit ~ / ' ~ q adder

n
~-~zl

z2

F i g . 3 . By a s suming zo = 0, t he c i rcui t s b e c o m e very s imihtr

xO---*
xl
x2

0
0
0

xn-1

n-bit
incrementor

- - - * a O

- - - * a l
a2

0
0
0

---~an-1

if xO=l and xl=O

xO
xl
x2

0
0
0

xn-1

*aO
, a l
�9 a2

0
0
0

an-1

F i g . 4. T h e case where xo = 1 b u t xl = 0

165

X

n-bit 1 incrementor
=-'1

~ a f(x,y)

y in L
!1
L-~zl

I ,
(f(x,y) ~ These two are

n~iiiiiiifi~bit!!i!i!!iiiiii very similar

Y ::::i''":"""":"'::_'::: -i-" adder I ' - z2

Fig. 5. By assuming zo = 1, xl = 0, again the circuits become very similar

As we have more number of inverters, the two circuits become less similar.

However, as we have more number of inverters, we can fix the values of zi more.

T h a t is, in the case of Figure 4, since this is the case where z0 = 1 and z l = 0,

we can fix the values of x0 and z l . So there are trade-offs in terms of difficulty

and the most difficult case happens when there are two inverters as shown in

Figure 4 according to our experiments for C6288 in the next section.

By using the above case splitting, we can keep the similarity of the two

circuits. These circuits should be rather easy circuits for the Boolean comparison

methods like [2, 14, 13]. In fact, as shown in the next section, we have found many

equivalent signals which drastically reduce the verification time or complexity of

the problem.

3 P r e l i m i n a r y e x p e r i m e n t a l r e s u l t s

We did some preliminary experiments for multipliers. We plan to do more in-

tensive experiments using other types of circuits, such as, square functions.

Our program first generates net-lists for the two circuits in Figure 2, 4, and

others s from the given multipliers. Then apply our Boolean comparison pro-

grams to them.

s In the case of 16-bit multipliers, there are 16 cases in total. But some of them are
trivial, since most of xi are constants.

166

We verified C6288 of ISCAS85 benchmark circuits for its first 16 outputs,

since as shown in Figure 1, all values should be the same bit-width (16bit in this

case). The results are shown in Figure 6. We did two types of experiments. The

first one is to just verify C6288 circuit, which is a correct multiplier. It took only

less than 12 minutes in total to verify.

The program found 342 equivalent internal signals of the two circuits out of

360 internal signals for the case of Figure 2. So large portion of the two circuits

are equivalent and that is why verification can finish so quickly. The most time

Consuming case is the one shown in Figure 4 which took 8 minutes to finish.

This is the case where the two circuits are similar but not so much and their

circuit sizes are still large (only small number of xi have fixed value). All the

other cases are less than one minute.

Multiplication
Circuit

C6288
(first 16 outputs)

Case: x0=0

Case: xO=l, xl=O

All other cases

CPU time
sec. on Sparc20

Original
(correct)

14.0

496.0

Less than
60.0

Error
inserted

2.0-60.0
depending
o n e r r o r s

inserted

Fig. 6. Results for 16-bit mukipfiers

Second experiment we did is to try to verify incorrect multipliers (verification

fails) by intentionally inserting errors into C6288 (changing function of a gate,

167

etc.6). Depending on changes, it took less than one minute (sometime in a couple

of seconds) to prove the circuit is not a multiplier. Depending errors, the cases

where verification fails are different, but mostly verification fails in multiple

cases. Again this is extremely fast. Please note that the method in [12] may not

work well for incorrect circuits.

4 C o n c l u s i o n s

We have shown a verification method for arithmetic circuits. We also demon-

strated that C6288 can be verified in less than 12 minutes. Even if the circuits

are not correct (there is a bug in the circuits), verification time remain similar or

less. Also, different from BMD or HDD based methods, we do not need another

BDD package, such as, BMD package. We can use existing BDD packages or

Boolean comparison programs to verify arithmetic circuits. We believe that the

proposed method has a significance in its applications.

Although in this paper we only discussed about combinational circuits, the

proposed techniques can be applied to sequential circuits by deriving appropriate

recurrence equations. Surely this is one of our future research topics.

Also, the proposed method can be considered to be a kind of self-checking

methods proposed in [1]. What we are doing here can be described in the follow-

ing way: by appropriately using recurrence equations (self checking properties),

we are reducing verification problems into Boolean comparison problem for simi-

lar circuits. Of course, if the reduced Boolean comparison problems are too large,

we can use random simulation based checking just like in [1]. We are planning

to explore this area and study on extensions of the proposed method.

R e f e r e n c e s

1. M. Blum, M. Luby, and R. Rubinfeld. "self-testing/correctig with application to
numerical problems". In Proc. of 22rid A CM Theory o] Computing, pages 73-83,
1990.

2. D. Brand. "verification of large synthesized designs". In Proc. o] ICCAD, pages
534-537~ Nov. 1993.

3. R.E. Bryant. "graph-based algorithms for boolean function manipulation". IEEE
Trans. Computer, C-35(8):667-691, Aug. 1986.

s Even if we make many changes in the circuit, situations are the same. The two
circuits we generate according to Figure 1 are very similar.

168

4. R.E. Bryant and Y.-A. Chen. "verification of arithmetic functions with binary
moment diagrams". In Proc. of32nd DAC, Jun. 1995.

5. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. "symbolic

model checking: 1020 states and beyond". In Proc. of the Fifth Anual IEEE Sym-
posium on Logic in Computer Science, Jun. 1990.

6. H. Cho, G. Hachtel, S-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. "atpg

aspects of fsm verification". In Proc. IEEE Int. Conf. on Computer-Aided Design
(ICCAD-90), pages 134-137, Nov. 1990.

7. E.M. Clarke, M. Fujita, and Z. Zhao. "hybrid decision diagrams - overcoming the

limitations pf mtbdds and brads". In Proc. of ICCAD, pages 159-163, Nov. 1995.

8. O, Coudert and J.C. Madre. ~a unified framework for the formal verification of se-

quential circuits". In Proc. IEEE Int. Conf. on Computer-Aided Design (ICCAD-
90), pages i26-129, Nov. 1990.

9. R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. Perkowsld. "efficient rep-

resentation and manipulation of switching functions based on ordered kronecker

functional decision diagrams". In Proc. of 31st DAC, Jun. 1994.

10. M. Fujita. "rtl design verification by making use of datapath information". In

Proc. of ICCD.92, pages 592-597, Oct. 1992.

11. A. Gupta. "formal hardware verification methods: a survey". Formal Methods in
System Design, Vol. 1(2/3), Oct. 1992.

12. K. Hamaguchi, A. Morita, and S. Yajima. "efficient construction of binary moment

diagrams for verifying arithmetic circuits". In Proc. of ICCAD, pages 78-82, Nov.

1995.

13. J. Join, R. Mukherjee, and M. Fujita. "advanced verification techniques based on

learning". In Proc. of 32nd DAC, pages 420-426, Jun. 1995.

14. W. Kunz. "hannibal: An efficient tool for logic verification based on recursive

learning". In Proc. of ICCAD, pages 538-543, Nov. 1993.

15. K.L. McMillan. "symbolic model checking: An approach to the state explosion

problem". Technical Report CMU-CS-92-131, Carnegie Mellon University, May

1992.
16. H. Ochi and S. Yajima. "formal design verification of combinational circuits spec-

ified by recurrence equations". In Proc. of SASIMI'95, pages 101-105, Aug. 1995.

17. H. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-Vincentelli. "im-
plicit state enumeration of finite state machines using bdds". In Proc. IEEE Int.
Conf. on Computer-Aided Design (ICCAD-90), pages 130-133, Nov. 1990.

