
Analysis of Timed Systems Based on 
Time-Abstracting Bisimulations 

S. Tripakis" and S. Yovine ~ 

VERIMAG, France 

Abst rac t .  We adapt a generic minimal model generation algorithm to 
compute the coarsest finite model of the underlying infinite transition 
system of a timed automaton. This model is minimal modulo a time- 
abstracting bisimulation. Our algorithm uses �9 refinement method that 
avoids set complementation, and is considerably more efficient than pre- 
vious ones. We use the constructed minimal model for verification pur- 
poses by defining abstraction criteria that allow to further reduce the 
model and to compare it to a specification. 

1 I n t r o d u c t i o n  

Behavioral equivalences based on bisimulation relations have proven useful for 
verifying the correctness of concurrent systems. They allow comparing an im- 
plementation to a usually more abstract specification both represented as la- 
beled transition systems. This approach also allows reducing the size of the 
system by identifying equivalent states which is crucial to avoid the explosion of 
the state-space. Since the introduction of strong bisimulation in [Mil80], many 
equivalences have been defined. Moreover, practice followed theory and several 
algorithms and tools have been developed. 

Despite this fact, behavioral equivalences have not been thoroughly studied 
in the framework of t imed systems. In particular, there is a lack of tools based on 
this approach. The transition system modeling the behavior of a timed system 
comprises two kinds of transitions, namely timeless actions representing the 
discrete evolutions of the system, and time lapses corresponding to the passage 
of time. Due to density of time, there are infinitely many time transitions. A 
finite model can be obtained by defining an appropriate equivalence relation 
inducing a finite number of equivalence classes. Examples of such relations are 
the region-graph equivalence lAD94] and the ta-bisimulation [LY93]. The main 
idea behind these relations is that they abstract away from the exact amount of 
time elapsed and they are therefore refer to as time-abstracting equivalences. 

An important  problem consists in constructing the quotient of a labeled 
transition system w.r.t, an equivalence relation. Many generic algorithms exist 
to solve this problem, e.g. [BFH+92, LY92]. For timed systems represented by 
timed automata  lAD94], these algorithms have been adapted for computing the 

* E-mail: {Stavros.Tripakis,Sergio.Yovine}@imag.fr. Tel: +33 76 90 96 30. Fax: +33 
76 41 36 20. Miniparc-Zirst, Rue Lavoisier, 38330 Montbonnot St. Martin. 



233 

minimal region graph in [ACD+92b, ACD+92a]. Based on the results reported 
in [ACD+92a] it comes out that straightforward implementations of those algo- 
rithms result in poor performances. In fact, one main obstacle towards efficiency 
is the cost of computing set complementation. 

In this paper, we adapt the generic minimal model generation algorithm 
of [BFH+92] in order to avoid set complementation, in the spirit of [YL93]. Ex- 
perimental results carried out on several benchmarks show that this algorithm 
is more efficient than the ones implemented in [ACD+92a]. Furthermore, we use 
the constructed minimal model for verification purposes by defining an appro- 
priate abstraction criterion that allows using the tool ALDEBAR.AN [FGM+92] 
for further reducing the transition system or comparing it to a specification. 

2 Background 

2.1 Bis imula t ions ,  models ,  and min imal  models  

A model (or LTS) is a triple (Q, Q0,...+). Q is a set of states, Q0 c Q is the 
set of initial states, and --*C Q • L • Q is a set of labeled transitions, for some 
label set L. We write q ~ q~ instead of (q, l, q') E---~. A relation r C_ Q • Q is a 
bisimulation iff : V(ql, q2) E r, V1 E L, 

(1) Vq~ E Q s . t .  ql ~ q ~ ,  3q~ s.t. q2 Z.~q~ and (q], q~) E r, and 

(2) Vq~EQs. t .  q2 ~q~ ,  3ql s.t. q l -Lq l  and(ql,q2) Er .  
From now on, ~ denotes the greatest bisimulation. Two models G1, G2, Gi = 
(Qi, QO,--+i), i = 1, 2, are bisimilar, denoted G1 ~ G2, ifVql E QO, q2 E QO, ql 
q2. 

Let G = (Q, QO, __+). A partition H of Q is a set of disjoint classes B C_ Q, 
the union of which yields Q. The quotient of G w.r.t. / /  is (11, ~r,--+), where 

~r = {B E 11 I B NQ ~ # 0}, and B ~ C iffpret(B,C) # 0, where prel(B,C) = 
{q E B [ 3q' E C. q ~ q'}. We write B --+ C if 31 E L. B ~ C. We define 

Succs~(B) = U~eL Succs~(B) where Succs~(B) = {C E 11 I B ~ C} is the set 
of successors of B by l, and Preds~ (B) = UleL PredJn (B) where Preds~ (B) = 
{C E 11 I C ~ B} is the set of predecessors of B by 1. 

B is stable w.r.t. C if Vl E L. prez(B, C) E {B, 0}. B is stable w.r.t. H if it 
is stable w.r.t, all classes C E 11. / / i s  stable if all its classes are stable w.r.t. 
H. Let 11z be the partition induced by ~. Clearly, H= is stable. The minimal 
model of G modulo bisimulation, is the quotient of G w.r.t. 11•, denoted G~,. 
Notice that Vt E L,B,C E II~, B ~ C iff pre1(B,C) = B. 

2.2 A genera l  min imal  mode l  genera t ion  a lgor i thm 

We recall here the generic algorithm developed in [BFH+92] (referred to as 
MMGA) for computing the reachable part of the minimal model G~,. 



234 

/ - / : = / / 0  ; a : = { B E H o t B n Q ~  a : = O ;  

Cs  := Split(B, II) ; 
~A ( c .  = { B } )  t h e n  { 

: =  ~ U { B }  ; ~ : =  ~ ,J S~ccsb(B) ; 
} e l s e  { 

(0) 
(1) 
(2) 
(3) 
(4) 

: = a \ { B } ;  H : = ( / / \ { B } ) U C B  ; ~ : = c r \  Preds~(B);(5) 
i.f_~ B M Q~ r O then  a : = a U { C E C B ,  ICAQOTs 

}} 
H denotes the current partition, a the set of accessible classes (i.e., containing 
at least one accessible state), and ~ C a the set of stable accessible classes. 
Split(B, H) refines the class B by choosing a class C w.r.t, which B is potentially 
unstable, then computing B~ = pre~(B, C), B2 = B M pret(B, C). If indeed 
Bi 7~ O, i = 1,2, B is effectively split (4), and its predecessors become unstable 
(5). Otherwise (2), B is both accessible (i.e., it contains a reachable state, say 
q) and stable, meaning that each one of its successors C has a state q' such that  
q ~ qq Thus, C contains at least one reachable state, and can be inserted to a 
(3). Termination depends on whether ~ induces a finite partition of the initial 
model. 

2.3 A v o i d i n g  e o m p l e m e n t a t i o n  

In the context of timed systems set complementation is very costly and should 
be avoided. This can be done following the idea presented in [YL93]. Let us 
first illustrate it with an example. Assume that B E a is found stable, so that  
one of its successors, C, becomes accessible, and is split into C1, C2,C3, thus 
B is no longer stable. Now, instead of splitting B w.r.t, only one of the Ci's, 
which would yield {prez(B, C~), B N prez(B, C;)}, B can be split directly into 

B"~ empty). Now, let B1, B2, B3, where Bi = prei(B, Ci) (possibly, some , o are 

nayS(B) d~ {8' I 3C e Suecs~(B). B' = p~e,(B, C) A Z' # 0}. 
Assuming that  whenever Refb(B) ~ {~, {B}}, the classes in Ref~(B) satisfy: 

(1) coverness: UReI~(B) = B, and 
(2) disjointness: VB', B" E Ref~(B), if B' r B" then B' M B" = 0, 

the function Split can be redefined as follows: 

f Refb(B ) i f  5t e L. Refb(B ) ~ {0, {B}} Split(B, H) 
{B} otherwise 

which does not require using set complementation. 

3 T i m e d  s y s t e m s  

3.1 T i m e d  a u t o m a t a  

Let Y2 - {xl, ..., x~} be a finite set of clocks. All clocks advance at the same 
raie. A valuation is an n-tuple v E ]R~_. v(xi) is the value of clock zi in v, and 



235 

v + t, t E IR+ stands for the valuation v', such that  Vx E/2.  v'(x) = v(x) + t, 
and v[X := 0], X _C /2 is the valuation v ' ,  such that  v ' (x)  = 0 i f z  E X, 
v ' ( z )  = v(x) otherwise. A clock constraini r is a conjunction of atoms of the 
form x # c ,  where x E/2, c E Z, @ E { < , < , = , > , > } .  

A limed automaton is a quadruple (S, so, E, I,/2). S is a finite set of control 
states, so E S being the initial one. E is a finite set of arcs, where an arc 
(s, a, #,  r X) from s to #,  is annotated with a label a E L, a clock constraint r 
and a set of clocks X C_/2 to reset. I is a function associating with each control 
state s an invariant. The semantics of a TA is a LTS G = (Q, Q0,.__~), where: 
Q = {(s,v) Is E S,v E Is} ;Q0 = {(s0,v) Iv E/so} ;and---~C_ Q•215 
is defined by the following rules : 

1. (time passage) v! (v -4-t) E Is , t E IR+ 
(s, vt :+ (s, v + 

2. (action) e = (s, a, s', r X) E E ,  v E r  v ' = v [ X : = 0 ]  
(s, , )  -u (s', r 

For q = (s, v), q[X := 0] denotes (s, v[2d := 0]), and q + t stands for (s, v + t). 

3.2 Tai-bisimulation 

Given G = (Q, Q0, ___+) we define Gtai = (Q, Q0, ==~tai) by abstracting away the 
exact amount of time elapsed in a time transition. This is done by replacing all 
labels t E lR + by the label c ~ (E U lR +) as follows: 

q _~ q/ q _4 ql 

q : ~ i  q' q :~ai q' 

The tai-bisimulation, 2 denoted ~t~i, is the greatest bisimulation defined o n  Gtai, 
that  is, G ~ i  G' iff G~ai ~ G~i .  

It can be easily shown that ~t~ is coarser than the region graph equiva- 
lence [AD94] which induces a finite partition. Thus, we can state the following. 

P r o p o s i t i o n  1. The partition induced by the tai-bisimulation is finite. 

4 Minimizat ion  with  respect  to the  tai -bis imulat ion 

The set of valuations Z satisfying a clock constraint is a simple convex polyhe- 
dron, called a convex zone. A (non-convex) zone is a union of convex zones. The 
class of zones is closed under complementation and set difference, whereas the 
class of convex zones is not. We write (s, Z), for the class {(s, v) i v E Z}, and 
say that  (s, Z / is convex if Z is a convex zone. A partition H is convex iff all 
its classes are convex. Finally, we say that  ]I  satisfies the enabledness condition 
i f f for  each class (s,Z) E / /  and each arc e = (s, a, #, r X) E E, it holds: 
Z r3 r E {Z, $}. From now on, we only consider initial partitions respecting 
convexity and enabledness. 

2 The name comes from time-abstracting, action-immediate. 



236 

4.1 R e f i n e m e n t  

There are two types of preconditions, corresponding to time and action transi- 
tions of the timed model. For e E E we define: 

P r o p o s i t i o n 2 .  1. qEpre~(B,C)  ifJqE BABq'  EC.q:~,~iq ~. 
2. If  B, C are convex, then pre~(B, C) is also convex. 

The time precondition is nonempty only for pairs of classes having the same 
control-state component, since the latter does not change with time transitions: 

def z) ,  <s, z ' ) )  : 
<s,{veZlStem+.(v+t)ez' AVO<,' 

P r o p o s i t i o n 3 .  1. If q E pre~(B, C), then q E B / \  (2q' E C, q ~tai q'). 
2. I f  B, C are convex, then pre~(B,C) is also convex. 

Note that  the inverse of case 1 above does not hold, contrary to proposition 2. For 
example, if B = (s ,{x < 1}), C = (s,{x > 2}}, then {s,x = 0} ~ , a i  (s ,x = 3}, 
but pree(B, C) = 0. Indeed, pree(B, C) is nonempty only if B can lead to C by 
letting t ime pass while the system continuously stays in BUC during the passage 
from B to C. Nevertheless, no information is lost regarding time stability in the 
sense of tai-bisimulation, as the following lemma shows. (See also section 4.2 for 
more.) 

L e m m a 4 .  Let B, C be two classes of a partition 17 such that q ~tai q' for some 
q E B, q~ E C. Then, there exist classes B = Do, D1, ...,D,~ = C in H such that 
q E pre~(Do,pre~(D1, ...prep(Din-i, Din)...)). 

In the previous example, we have Do = B, D2 = C, and D1 = (s, {1 < x < 2}). 
The definition of Suees~(B) for l E E is identical to the one given in sec- 

tion 2.1. Care must be taken in the case l = e, where we remove the (trivial) 
t ime successor of every class, that  is, the class itself. The definition of Rely(B),  
for l E E U {e}, is identical to the one given in section 2.3. 

It remains to prove that  coverness and disjointness are preserved during the 
refinement of B. This is true if the partit ion is complete, i.e., Vs E S, I, = true. 
In section 4.3 we discuss the alternatives in the case this condition does not hold. 

P r o p o s i t i o n 5 .  Let H be a complete partition, and B E H. Also let Rely(B)  
be the set { B1, ...,Bin}. Then, Vi # j. Bi N Bj = 0, and U Bi = B. 



237 

4.2 T h e  m i n i m a l  m o d e l  

In this section we make explicit the relation between G=~,,  the quotient graph 
w.r~t. ~ta~, and Grm~, the actual model computed by the MMGA adapted as 
above. Although not identical to Gmi~, G=,~, can be easily computed from the 
former by a simple saturation of its c-transitions. 

Formally, let G=,., = (H~,o,, ~ o , ,  ::~tai), and Grain = (//, zr, =~). Let =~* 
be the reflexive, transitive closure of ~ .  

P r o p o s i t i o n 6 .  H = 1I~,~,, ~ = ~,o~, and for all B, C E ]7, (1) B ~*ai C iff 
B ~ C, and (2) B ~t~i C iff B ~* C. 

In other words, the partitions of the two graphs are identical, as well as their 
action transitions, while :~tai is the reflexive, transitive closure of A~. 

4.3 C o r r e c t n e s s  in t h e  p r e sence  o f  strict control -s tate  i n v a r i a n t s  

If Is C lR+ then the timed model does not contain states (s, v / such that  v E 
IR+ \ Is .  In this case coverness is not ensured, as shows the example of figure l(a), 
where B U C1 is the invariant, ]7 = {B, Cl}, and Succs~(B) is {el}.  Then, 
Ref~i(B ) -- {B1}, which does not cover B. There are several ways to solve this 
problem: 

t 

Split(B, {B, Ca}) -- {B1} 
Ba = pre~(B, Ca) 
B~ = B \ Ba 

B Ca 
P~ 

! I 

P2 

Split(B, {B, C1, P1, P2}) = {Ba, B2} 
Ba = pre~ (B, Ca) 
B2 = pre~ (B, P1) 

(~) (b) 

Fig. 1. Incomplete refinement (a) ; Adding pseudo-classes to a partial partition (b) 

1. A class (s,Z) is called a border one, if 3v E Z , t  E IR+. (v + t) E 7~, and 
v,' _< t, (v + t') ~ ( z  w ~ ) .  In figure l(a), B is a border class, while B1 
is not. Assume that  a border class B is refined w.r.t. {C1, ..., Cm}, which 
yields {B1, ..., Bt} (l _< m, since some Bi may be empty). Let B' = B \ U Bi, 



238 

which is n o t  convex in general. If B' ~ O, we take an arbitrary (but mini- 
mal in number) partition of B' into convex classes {B[ .... , B~}, and define 
Split (B, H) = {B1, ..., Bh B[, ..., BE}. This solution makes complementation 
inevitable. What  is more, the number of times where complementation will 
be employed cannot be determined a priori. Indeed, it is always the case 
that  after splitting a border class, at least one of its subclasses is border. 
The latter may in turn become accessible, be split, and so on. 

2. A second solution is to start with a complete initial partition respecting 
the invariants: V(s,Z} E H0. Z N Is E {Z, 0}. A class {s,Z) is called a 
pseudo-class if Z N I, = 0, otherwise it is normal. Pseudo-classes are never 
split (it suffices to make sure that they are never inserted into the set a of 
accessible classes). Normal classes can be split w.r.t, pseudo-classes. If all 
successors of a normal class B are pseudo-classes, then B need not be split. 
Figure l(b) shows how the situation of figure l(a) changes after applying this 
solution. P1, P2 are pseudo-classes, and we now have Succs}i(B ) = {Ci, P1}, 
and Ref~z(B ) = {B1, B2}, which covers B. On the other hand, C does not 
have to be split, since Succs~(C) = {P1, P2}, that  is, all its successors are 
pseudo-classes. 

5 A p p l i c a t i o n s  

We have implemented the algorithm and applied it to generate the minimal 
models for a number of case studies. Further, we have used the tool ALDE- 
BARAN to compare the constructed minimal models against labeled transition 
systems modeling untimed requirements. The main idea consists in considering 
c-transitions to be r-transitions, that is, non-observable or silent ones. Other 
labels can also be hidden (i.e. replaced by r) according to the property to be 
verified. The resulting transition system is then reduced or compared to another 
model. In particular, we have used the r*a-bisimulation equivalence, denoted 
~ . a ,  as well as the r 'a-simulat ion preorder [FM91] a. 

Due to space limitations, here we illustrate this methodology in detail for 
only one application, namely the Philips audio control protocol [BPV94]. Ex- 
perimental results obtained for other well-known examples (e.g. CSMA-CD and 
FDDI [DOTY95] and Tick-Tock [DOY94] communication protocols) are shown 
in table 1. The TA column presents the size of the input TA. The M column 
displays the size of the minimal model, while Ctot is the total number of classes 
created (including classes which were finally found non-accessible). The "split- 
tings" column presents the total number of Split operations, the effective time 
ones (e subcolumn) and the effective action ones (e subcolumn). N is the number 
of processes, stations, ere, depending on the protocol. We have used a Spare 10 
with 128 Mbytes of main memory. 

s Recall that a simulation preorder is a relation satisfying only (1), in the definition 
of bisimulation given in section 2. 



239 

Example N 

CSMA-CD 2 
3 
4 

FDDI 3 
4 
5 

Tick-Tock 1 
2 

TA M Ctot  splittings time 
states arcs states I trans total e e (secs) 

9 21 26 52 62 112 18 15 0.4 
26 90 340 1,055 559 1,264 150 173 3.8 
72 312 3,828 16,066 4,855 13,592 1,070 1,797 90.9 
19 25 525 933 1,873 3,202 377 637 8.5 
25 33 1,606 2,859 7,76010,980 1,341 2,264 57.4 
31 41 4,621 8,801 26,900 32,385 3,878 6,755 315 
24 64 78 121 202 223 31 15 1 
72 240 585 976 1,663 1,658 243 163 8.7 

Table  1. Minimization results of various examples 

5.1 P h i l i p s  a u d i o - c o n t r o l  p r o t o c o l  

The protocol deals with the transmission of a bit s t ream through a wire, using a 
Manchester encoding. The receiver can only detect low-to-high voltage changes, 
which imposes that  a bit s t ream either has an odd length or ends with two 0-bits 
(all s t reams start  by "1"). Also, the protocol permits a small drift in the clock 
rates of the sender and the receiver. This is modeled in [DY95] using muliirate 
TA, a subclass of hybrid au toma ta  which can be transformed into TA [OSY94]. 
Here, we follow directly the TA model obtained after the transformation,  us- 
ing the au toma ta  Sender, Receiver, and Stream(the last one models correct bit 
s treams),  which are omit ted here (see [DY95] for a full description). 

model TA M Cto~ splittings time 
states arcs states trans, total e e (secs) 

TA1 146 351 50 61 815 289 114 36 0.91 
TA1 t 283 402 1,557 1,326 445 151 2.3 
TA2 77 207 51 62i 674 300126 39 1 
TA2 t 62 86 672 312 126 39 1.1[ 

Table  2. Philips protocol '. minimization results 

The main correctness property we want to prove is that  the s t ream received 
is identical to the one sent. In fact, this can be done only if we make sure that  
the sender does not start  t ransmit t ing (action IN) a new s t ream before the last 
one has been completely received (action OUT), that  is, no two consecutive 
IN actions take place without on intermediate OUT. In order to ensure this 
property, we have two options : 



240 

Head1 Add1 

Head1 Add d .... 

OUT ~ ~ " '  

Head1Addol 

Heado 

Addo 

0 UT Addo 

Fig. 2. Good 

1. Either to compose the system with the following automaton (called In- 
Out) which prevents the above bad behaviors: ~ .  Let TA1 
be Sender H Receiver HStream[llnOut. 

2. Or to modify Sender by adding a clock which controls the delay between the 
end of a transmission and the beginning of the next one. This delay should 
be greater than the time elapsed between the last bit sent by the sender and 
the action OUT of the receiver. Let TA2 be Sender'ilReceiverllStream. 

For each TA~, i = 1, 2, we obtain two minimal models, one for a correct case 
(where the maximum drift is 2A6) and one for an erroneous case (max. drift: 1~)" 
Table 2 shows performance results. (The erroneous cases are marked with ~.) 

Then, we model the correctness requirement by the LTS Good, shown in 
figure 2 4. Let Mi be the minimal model of TAi for i = 1, 2. As expected, in the 
correct case, we find that  Mi E r*a Good. This does not hold in the erroneous 
case, and as a diagnostic, we find sequences where the receiver terminates before 
the sender does. 

However, Good ~:r*a Mi, since Good also models bit streams that not satisfy 
the requirement imposed by Stream. In order to explain this further, consider 
the LTS depicted in figure 3 obtained by reducing the correct M1 w.r.t, the 
r*a-bisimulation 5. This is almost the automaton modeling correct bit streams, 
except that  it contains an additional state 5, grouping all states of the timed 
model where the sender has sent a "0", but still has bits to transmit. Therefore, 
the receiver does not have time to perform OUT, since it will first see the next 
bit transmission taking place. Although trivial, this example shows that often 
the actual behavior of the system is not exactly the one expected. 

4 Headi (Addi) means that bit i is sent (resp. received). 
The reduction of the correct M2 gives exactly the same LTS. 



241 

( • ,  
~ Heado @ Heado 

Heado 

Heado , ~  

Head1 
Heado 

Fig. 3. Minimization with respect to ~r~ 

6 Related  work 

6.1 T h e  t a - b l s i m u l a t i o n  

In [LY93] another time-abstracting bisimulation has been studied. Given G = 
(Q, Q0, ~ ) ,  we define Gta = (Q, QO, =~ta), as follows: 

q ~ qt, .2+ q, q .L, q' 

q =~t~ q' q :~t~ q' 

The ta-bisimulation, denoted ~t~, is the greatest bisimulation defined on Gta, 
that  is, G ~ta G' iff Gta ,.~ G~. 

Gt~ is more abstract than Gt~i, in the sense that ~t~i  C_ =~t~- Since greater 
abstractions yield weaker bisimulations [FM91], ~t~i is stronger than "~ta. In 
fact, we shall prove a stronger property. Let Gd = (II=,o~,rr~.,,.,~d}, where 

B ~ d  C iff 3D.B ~tai D ~tai C}, and let ~d denote the greatest bisimulation 
on Gd 6 

P r o p o s i t i o n 7 .  G ~t~ G' iff Gt~i ~d G~i. 

This result, combined with the one of proposition 6, shows how the ta-minimal 
model can be computed in two steps: first, one computes the model Gmln using 
our adapted algorithm, next, Gmi,~ is further minimized w.r.t..-~d. 

6.2 Other algorithms 

In [ACD+92a] the generic minimization algorithms of [BFH+92] and [LY92], re- 
ferred to as MAI and MAII respectively, have been adapted for timed systems. 
Table 3 shows the results obtained with our algorithm and compares its run- 
ning times (,)  to the ones reported in [ACD+92a] for two well known examples, 
namely the Train-Gate Controller (TGC) and the Fischer's Mutual Exclusion 
protocol (FMX). The authors of [ACD+92a] used a DEC-5100 with 40 Mbytes 

s This is essentially the delay-bisimulation[FM91]. 



242 

of main memory. It should be mentioned that our algorithm also required much 
less memory that  the others. _L denotes nontermination due to memory shortage, 
and " - - "  is used for cases that  do not appear in [ACD+92a]. 

Let us note that  the idea of avoiding set complementation has been suggested 
in [YL93]. However, the algorithm presented there is an adaptation of [LY92], 
whereas our algorithm is based on the [BFH+92] one. 

M 

24 69 25 50 125 
62 138 159 

FMX ~_~ 241 344722 8526 6334 

_~ 119 213 77 108 182 
402 1,117 708 

~_~ 548 1,164 252 420 872 
4,437 17,902 7,850 

spfittings time (secs) 
total e e] * MAIMAII] 

113 30 171 0.2 6 12 
201 36 27] 0.5 571 155 I 

34 2 0 0 1 2 
118 7 13 0! 3 6 
133 15 0 0 8 146] 

1,379 157 172 1.5[ 893 1 ! 
493 76 0 2.1 496] _l_ 

16,144 1,931 2,02240.4] .L .L 
1,785 325 0 16.3r --.  __L 

3 _ i  - -  --I 

Table 3. TGC and FMX: minimization results and comparison. 

7 Conclusions 

We have implemented the algorithm on top of the tool KaONOS [DY95] and have 
performed experiments with different options. As a result, we have found that 
among the strategies described in section 4.3 concerning the invariant conditions, 
the pseudo-classes solution gave in general the worst performances. One the 
other hand, it turned out that  giving priority to splitting w.r.t, timed instead of 
untimed transitions does not make an important difference. Our implementation 
includes these options, as well as other ones, that allow, for instance, to specify 
a set of initial states and/or an initial partition. Experimental results obtained 
on several case studies are presented in table 1. Based on these results, we claim 
that  using a refinement technique which avoids costly complementations leads 
to considerable gains in efficiency (both in running times and memory usage) 
that  make minimization possible for larger systems. 

We have used the tool ALDEBARAN to further reduce the model generated 
by our algorithm and compare it to a requirement modeled as an untimed tran- 
sition system. The requirement does not specify quantitative timing constraints, 
however its verification strongly depends on the timing conditions embedded in 
the  timed automaton which are indeed preserved by the tai-bisimulation. As we 



243 

have found out by the examples, the real behavior of a system is often more com- 
plex than exl~ected. Discovering unexpected behaviors helps to gain insight Of a 
system, often revealing intrinsic design problems, and at the same t ime offering 
diagnostic traces which are valuable for debugging. 

I t  is worth noting that  model checking of T C T L  formulas on the minimal  
model is possible, in the manner  of [ACD+92b]. We intend to exploit this possi- 
bility as part  of our future work. We are also currently studying in more depth 
the combinations of t ime-abstract ing bisimulations with untimed bisimulation 
and simulation equivalences and preorders. 

References  

[ACD + 92a] 

[ACD + 92b] 

[AD94] 

[BFH+92] 

[BPV94] 

[DOTY95] 

[DOY94] 

[DY95] 

[FGM+92] 

[FM91] 

[LY92] 

[LY93] 

[M~80] 
[OSY94] 

[YL93] 

R. Alur, C. Courcoubefis, D. Dill, N. Halbwachs, and H. Wong-Toi. An 
implementation of three algorithms for timing verification based on au- 
tomata emptiness. In Proc. IEEE RTSS'92, 1992. 
R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. Mini- 

mization of timed transition systems. In Proc. CONCUR 1992. LNCS 630, 
1992. 
R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer 
Science, 126:183-235, 1994. 
A. Bouajjani, J.C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel. 
Minimal state graph generation. Science of Computer Programming, 
18:247-269, 1992. 
D. Bosscher, I. Polak and F. Vaandrager. Verification of an audio control 
protocol. In Proc. FTRTFT'94, LNCS 863, 1994. 
C. Daws, A. Ohvero, S. Tripakis and S. u The tool KRONOS. Work- 
shop on Hybrid Systems and Autonomous Control, DIMACS, 1995. To 
appear in LNCS. 
C. Daws, A. Olivero and S. Yovine. Verifying ET-LOTOS programs with 
KRONOS. tn Proc. FORTE'94, 1994. 
C. Daws and S. Yovine. Two examples of verification of multirate timed 
automata with KRONOS. In Proc. IEEE RTSS'95, 1995. 
J.C1. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and 
J. Sifakis. A tool box for the verification of LOTOS programs. In 14th 
Int. Conf. on Software Engineering, 1992. 
J.C. Fernandez and L. Mounier. On the fly verification of behavioural 
equivalences and preorders. In Proc. CAV'91, LNCS 757, 1991. 
D. Lee and M. Yannakakis. On-line minimization of transition systems. In 
Proc. ACM Symposium on Theory of Computing, 1992. 
K. G. Larsen and W. Yi. Timed abstracted bisimulation: implicit specifi- 
cation and decidability. In Proc. MFPS'93, 1993. 
R. Milner. A Calculus of Communicating Systems, LNCS 92, 1980. 
A. Olivero, J. Sifakls, and S. Yovine. Using abstractions for the verification 
of linear hybrid systems. In CAV'94, LNCS 818, 1994. 
M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time 
transition systems. In CAV'93, LNCS 697, 1993. 


