
Verif icat ion of an A ud io P r o t o c o l
w i th B us Coll is ion Us ing UPPAAL*

Johan Bengtsson 2 W.O.David Grit~oen 3'4 Kgre J. Kristoffersen 1
Kim G. Larsen 1 Fredrik Larsson 2 Paul Pettersson 2 Wang Yi 2

1 BRICS ~, Aalborg University, Denmark. E-maih {jelling,kgl}@iesd.auc.dk
2 Department of Computer Systems, Uppsala University, Sweden.

E-marl: {johanb,fredrikl,paupet,yi}@docs.uu.se
3 CWI, Amsterdam, The Netherlands. E-mail: griffioe@cwi.nl

4 Computing Science Institute, University of Nijmegen, The Netherlands.

Abs t rac t . In this paper we apply the tool UPPAAL 1 to an automatic
analysis of a version of the Philips Audio Control Protocol with two
senders and bus collision handling. This case study is significantly larger
than the real-time/hybrid systems previously analysed by automatic
tools. During the case study the tool UPPAAL was extended with a new
feature, committed 1oca$ions, allowing efficient modelling of broadcast
communication.

1 I n t r o d u c t i o n

During the last few years a number of tools for automatic verification of hybrid
and real-time systems have emerged [DY95, HHWT95, BLL+95, HRP94]. These
tools have by now reached a state, where they are mature enough for application
on reMistic case-studies; a claim we hope to substantiate in this paper.

We present an application of our tool UPPAAL tO an automatic anMysis of a
version of the Philips Audio Control Protocol with two senders and the con-
sequently caused problem of bus collision. The case study is comprehensive
compared with previous verification efforts of re~l-time and hybrid systems,
e.g. the node-space is 10 3 times larger than the case with only one sender
[BPV94, HWT95, DY95, LPY95]. Also, the number of clocks, variables and
channels has increased considerably. The bus collision version studied in this
paper has previously been verified in [Gri94] without too] support.

UPPAAL is a tool for automatic verification of safety and bounded liveness
properties of networks of timed automata and certain hybrid automata. UPPAAL

This work has been supported by the European Communities (under CONCUR2
and REACT), NUTEK (Swedish Board for Technical Development) TFR (Swedish
Technical Research Council) and Netherlands Organization for Scientific Research
(NWO) under contract SION 612-316-125.
Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

i The current version of UPPAAL is available on the World Wide Web via the UPPAAL

home page http ://www. does. uu. se/docs/rtmv/uppaal.

245

contains a number of features including a graphical interface and au tomat ic
generation of diagnostic traces, and applies a combination of on-the-fly state-
space examinat ion together with efficient constraint solving techniques [YPD94,
BLL+95].

In modelling the Audio Protocol with bus collision it turned out to be conve-
nient in certain situations to apply broadcast communication. An extension of
UPPAAL with so-called committed locations allows broadcasts to be modelled as
atomic sequences of two-process synchronizations, and yields in addition perfor-
mance improvements.

The verification of Philips Audio Protocol with Bus Collision was carried out
using the extended version of UPPAAL installed on a SGI ONYX machine. As
results we have verified the correctness of the protocol for an error tolerance
of 5% on the timing, demonstrated that correctness fails if the er ror tolerance
is increased to 6%, and analysed an incorrect version of the protocol which is
actually implemented by Philips.

2 T h e C o m m i t t e d U P P A A L m o d e l

The basis of the UPPAAL model for real-time systems is networks of t imed au-
t o m a t a [AD90] with da ta variables [YPD94]. However, to meet requirements
arising from various case studies, the UPPAAL model has been extended with
various new features such as urgent transitions [BLL§ etc. The present case
s tudy indicates that we need to further extend the UPPAAL model with com-
mitted locations to model behaviours such as a tomic broadcast ing in real-t ime
systems. Our experiences with UPPAAL show that the notion of commit ted lo-
cations introduced in UPPAAL is not only useful in modelling but also yields
significant improvements in performance.

We assume tha t a real-time system consists of a fixed number of sequential
processes communicat ing with each other via channels. We further assume tha t
each communicat ion synchronizes two processes as in CCS. Broadcast ing com-
munication can be implemented in such systems by repeatedly sending the same
message to M1 the receivers. To ensure atomicity of such 'broadcas t ' sequences,
we mark the intermediate locations of the sender as so-called commit ted loca-
tions which are to be left immediately.

A n E x a m p l e . To introduce the notion of commit ted locations in t imed au-
tomata , consider the scenario shown in Figure 1: A sender S is to broadcast a
message m to two receivers R1 and R2. As this requires synchronization between
three processes this can not directly be expressed in UPPAAL where synchroniza-
tion, as in CCS, is between two processes based on complementar i ty of actions.
However, as an initial a t t empt we may model the broadcast as a sequence of
two two-process synchronizations, where first S synchronizes with R1 on ml and
then with R2 on m2. However, this is not an accurate modelling as the intended
atomici ty of the broadcast is not preserved (i.e. other processes may interfere
during the 'broadcas t ' sequence). To ensure atomicity, we mark the intermediate
location $2 of the sender S as a so-called committed location (indicated by the

!tl
Rll?

S

ml

c::82m2 .~
s3Q)

246

R2

1122 k.d

Fig. 1. Broadcasting Communication and Committed Locations.

c:-prefix). The atomicity of the action sequence ml !m2! is now achieved by insist-
ing tha t a commit ted location must be left immediately! This behaviour is quite
similar to what has been called "urgent transitions" [t t t tWT95, DY95, BLL+95]
which insists that the next transition taken must be an action (and not a delay).
The precise semantics of committed locations will be formalized in the transit ion
rules for networks of t imed au tomata with da ta variables in the following.

P r e l i m i n a r i e s . We assume a finite set of clock variables C ranged over by x, y, z
and a finite set of da ta variables V ranged over by i, j , k. We use G(C, V) to stand
for the set of formulas ranged over by g, generated by the following syntax:
g : : = a] g A g , where a is a constraint of t h e f o n n : x ~ - . n o r i , - ~ n f o r x C C,
i e V, ,-~E { ~ ' >, =} and n being a natural number. We shall call elements of
G(C, V) guards. To manipulate clock and data variables, we use reset-set of the
form: ~ := g which is a set of assignment-operations in the form w := e where w
is a clock or da ta variable and e is an expression. A reset-set is a proper reset-set
when the variables are assinged a value at most once, we use R to denote the set
of all proper reset-sets. A reset-operation on a clock variable should be in the
form x := n where n is a natural number and a reset-operation on an integer
variable should be in the form: i := c * i + c' where c, c' are integer constants. We
assume tha t processes synchronize with each other via channels. Let A be a set
of channel names with a subset U of urgent channels on which processes should
synchronize whenever possible. We use .4 = {a?]a e A} U {a! la e A} U {T} to
denote the set of actions that processes can perform to synchronize with each
other, where 7 is a distinct symbol representing internal actions. We use name(a)
to denote the channel name of a, defined by name(a?) = name(a!) = a.

T h e UPPAAL M o d e l w i t h C o m m i t t e d L o c a t i o n s . An au tomaton A over
actions A, clock variables C and data variables V is a tuple (N, 4 , E, Arc} where
N is a finite set of locations (control-locations) with a subset Nc C_ N being the
set of commit ted locations, l0 is the initial location, and E c_C_ N x G(C, V) x A x
R x N corresponds to the set of edges. To model urgency: we require that .the
guard of an edge with an urgent action should always be it, i.e. if name(a) E U
and (l, g, a, r, I '} E E then g =- It .

247

g a,r i i In the case, (l, g, a, r, l') E E we shall write, l ' ~ which represents a transi-
tion from the location 1 to the location I t with guard g (also called the enabling
condition of the edge), action a to be performed and a set of reset-operations r
to dpdate the variables. Also, we shall write C(1) whenever 1 E No.

To model networks o f processes, we introduce a CCS-like parallel composit ion
operator for au tomata . Assume that A1...A,~ are automata . We use A to denote
their parallel composition. The intuitive meaning of A is similar to the CCS
parallel composition of At. . .A~ with all actions being restricted, that is, A =
(A1 I.-.IA,~)\-A. Thus only synchronization between the components Ai is possible.
We shall call A a network of automata . We simply view A as a vector and use
Ai to denote its i th component.

Informally, a process modelled by an au tomaton starts at location 10 with all
its variables initialized to 0. The values of the clocks increase synchronously with
t ime at location 1. At any time, the process can change location by following an

edge 1 g'~'[l ~ provided the current values of the variables satisfy the enabling
condition g. With this transition, the variables are updated by r.

A variable assignment is a mapping which maps clock variables C to the non-
negative reals and da ta variables V to integers. For a variable assignment v and a
delay d, v @ d denotes the variable assignment such that (v @ d)(x) = v(x) + d for
any clock variable x and (v| = v(i) for any integer variable i. This definition
of @ reflects that all clocks operate with the same speed and tha t da ta variables
are time-insensitive. For a reset-operation r (a set of assignment-operations), we
use r(v) to denote the variable assignment v ' with v'(w) = val(e ,v) whenever
w := e E r and v'(w') = v(w') otherwise, where val(e, v) denotes the value of e
in v. Given a guard g E G(C, V) and a variable assignment v, g(v) is a boolean
value describing whether g is satisfied by v or not.

A control vector 1 of a network A is a vector of locations where li is a location
of Ai. We shall write l[l~/l~] to denote the vector where the i th element li of I is
replaced by l~.

A s ta te of a network A is a configuration (l, v) where I is a control vector of
and v is a variable assignment. The initial s tate of A is (10, v0) where l0 is the
initial control vector whose elements are the initial locations of Ai's and v0 is
the initial variable assignment that maps all variables to 0.

To model progress properties, we use the following notion of maximal delay:

0 if C(l)
MD(/,v) = max{d [l l' and g(v | d)} otherwise

So if I is a commit ted location, there will be no delay at I. We extend the notion
of maximal delay to networks of au tomata such that synchronization on urgent
channels happens immediately:

MD(1, v) = ~ 0 if 3c~ E U, i 5s j, li, lj E l : li ~?'~ & lj c~!,,.___~

t min{MD(l ,v)] l C i} otherwise

The semantics of a network of au tomata A is given in terms of a transit ion

248

system with the set of states being the set of configurations and the transition
relation defined as follows:

- (i , v) . , z (1 , v @ d) i f d

(l ,v}' .z(l[l~/lil ,ri(v)) if there exist li E 7,gi,ri such that Ii g '" ' r ' l~, gi(v),
and for all k if C(Ik) then k = i.
{l, v}..z(i[l~/li, 1}/lj], (rl U rj)(v)) if there exist Ii, l j e i, gi, gj, ~, ri and rj

gj,c*?,rj
such that i r j, li g " ~ ' l~, lj ~ lj, gi(v), gj(v), r~ Ur j E R and for all
k if C(/k) then k = i or k = j .

< MD(1, v)

Thus, if a state (i, v) contains a committed location no delays can take place.
Moreover, any component with committed location must participate in the next
(action-) transition.

3 T h e C o m m i t t e d U P P A A L I m p l e m e n t a t i o n

In the following, we present the notion of committed locations in terms of
the UPPAAL model and its implementation in UPPAAL. In the current version
[BLL+95], UPPAAL is able to check for invariance properties, Vrnfl, and reacha-
bility properties, 3()fl, with respect to constraints, fl, on the admissible locations
of the various components and the values of the clock and data variables.

The model-checking is performed using backwards reachability analysis to-
gether with an efficient constraint-solving technique. Also, UPPAAL adopts on-
the-fly generation of the state space in Order to avoid explicit construction of
the product automaton and the immediately caused memory problems.

The model-checking is based on a partitioning of the (otherwise infinite) state-
space into finitely many symbolic states of the form [i, U], where U is a simple
constraint system (i.e. a conjunction of atomic clock and data constraints 2). The
backwards reachability algorithm checks if a symbolic state [1,f, Uf] is reachable
from the initial state [10, U0], where U0 expresses that all clocks and data variables
are initialized to 0.

The algorithm essentially performs a backwards, breadth-first search of the
symbolic states. The search is guided and pruned by two buffers: Wait, holding
the symbolic states waiting to be explored and Passed holding the symbolic states
under exploration and already explored. Initially Passed is empty and Wait holds
the single symbolic state [72, Uf]. The algorithm then repeats the following:

1. Pick a state [~, U s] fl'om the Wait buffer.
2. Check if ~ = 10 and U0 C Uq If this is the case, return the answer yes.
3. If m = n and U' C V", for some [~, U'] in the Passed buffer, drop [~, U']

and go to step 1. Otherwise save [~, U ~] in the Passed buffer.
4. Find all symbolic states [5, Z] that lead to [~, U'] in one step and store them

in the Wait buffer.
5. If the Wait buffer is not empty go to step 1, otherwise return the answer no.

2 Simple constraint systems are ~so know under the term zone.

249

We will not treat the algorithm in more detail here, but refer the reader to
to [YPD94, BL96].

Despite its on-the-fly examination of the symbolic state space the above algo-
r i thm is bound to run into space problems for sufficiently large systems witnessed
by an explosion in the size of the Passed buffer, which is used to record the states
already visited in order to enable pruning of redundant examinations (in 3) and
eventually ensure termination. The key question is how to limit the growth of
this buffer? When using committed locations to ensure atomicity of finite transi-
tion sequences of one component (as in modelling broadcast) it obviously suffices
to save the symbolic state at the beginning of the sequence. Hence, our proposed
solution is simply not to save symbolic states in the Passed buffer which involves
committed locations. We therefore modify step 3 of the algorithm in the following
way:

3'. a. If committed(~) go directly to step 4.
b. If m = n and V' C_ U t', for some [~, U"] in the Passed buffer, drop [~, U']

and go to step 1.
c. If neither of the above steps are applicable, save [~, U'] in the Passed

buffer.

4 The Audio Control Protoco l wi th Bus Coll is ion

In this section an informal introduction to the audio protocol with bus collision
is given. The audio control protocol is a bus protocol, all messages are received
by all components on the bus. If a component receives a message not addressed
to it, the message is just ignored. Philips allows up to 10 components.

Messages are transmitted using Manchester encoding. Time is divided into
bit-slots of equal length, a bit "1" is transmitted by an up-going edge halfway
a bit-slot, a bit "0" by a down-going edge halfway a bit-slot. If the same bit is
t ransmit ted twice in a row the voltage changes at the end of the first bit-slot.
Note that only a single wire is used to connect the components, no extra clock
wire is needed. This is one of the properties that makes it a nice (read cheap)
protocol.

The protocol has to cope with some problems: (a) The sender and the receiver
must agree on the beginning of the first bit-slot, (b) the length of the message is
not known in advance by the receiver, (c) the down-going edges are not detected
by the receiver. To resolve these problems the following is required: Messages
must start with a bit "1" and messages must end with a down-going edge. This
ensures that the voltage on the wire is low between messages. Furthermore the
senders must respect a 'radio silence' between the end of a message and the
beginning of the next one. This radio silence marks the end of a message and
the receiver knows that the next up-going edge is the first edge of a new message.
It is (almost) possible to decode a Manchester encoded message by only looking
to the up-going messages (problem c) only the last zero bit of a message can not
be detected (consider messages "10" and "1"). To resolve this it is required that
all messages are of odd length.

250

I t is possible that two or more components s tar t t ransmit t ing at the same
time. The behavior of the electric circuit is such that the voltage on the wire
will be high as long as one of the senders pulls it high. In other words: The
wire implements the or-function. This makes it possible for a sender to notice
that someone else is als0 transmitt ing. If the wire is high while it is t ransmit t ing
a low, a sender can detect a bus collision. This collision detection happens at
certain points in time. Just before each up-going transition, and at one and
three quarters of a bit-slot after a down going edge (if it is still t ransmit t ing a
low). When a sender detects a collision it will stop t ransmit t ing and will t ry to
retransmit its message later.

If two messages are t ransmit ted at the same time and one is a prefix of the
other, the receiver will not notice the prefix message. To ensure collision detection
it is n o t allowed that a message is a prefix of an other message in transit . In the
Philips environment this restriction is met by embedding the source address in
each message (and assigning each component a unique source address).

In Figure 2 an example is depicted. Two senders s tar t t ransmit t ing at exactly
the same time. Because two lines on top of each other is hard to distinguish from
one line, they are shifted slightly. The thick sender starts t ransmit t ing "11..."
and the other "101... ~'. At the end of the first bit-slot the thick sender does a
down, to prepare for the next up-going edge. But one quarter after this clown
it detects a collision and stops transmitt ing. The thin sender did not notice the
other and continues transmitt ing. Note that the receiver will decode the message
of the thin sender correctly.

Fig, 2. an example

The protocol has to cope with one more thing: t iming uncertainty. Because
perfect clocks do not exist in the physical world and because the protocol is
implemented on a processor that also has to execute a number of other t ime
critical tasks, a quite large timing uncertainty is allowed. A bit-slot is 888 mi-
croseconds, so the ideal t ime between two edges is 888 or 444 microseconds. On
the generation of edges a t iming uncertainty of :t=5% is allowed. Tha t is: between
844 and 932 for one bit-slot and between 422 and 466 for half a bit-slot. The
collision detection just before an up-going edge and the actual generation of this
up-going edge must be at most 20 microseconds. The timing uncertainty on the
collision detection on one and three quarters after the generation of a down-going
edge is • microseconds. Also the receiver has a timing uncertainty of =I=5%.
And, to complete the timing information, the distance between the end of one

251

~ S g ~ g e

(od, Bod, lb,bs)

Fig. 3. Philips Audio-Control Protocol with Bus Collision.

message and the beginning of the next must be at least 8000 microseconds (8
milliseconds).

5 A F o r m a l M o d e l o f t h e P r o t o c o l

To analyze the behavior of the protocol we model the system as a network of
six timed automata. The network consists of two parts: a core part and a testing
environment. The core part models the components of the protocol to be imple-
mented: two senders, a wire and a receiver. The testing environment, consisting
of a message generator and an output checker, is used to model assumptions
about the environment of the protocol and for testing the behavior of the core
part. Figure 3 shows a flow-graph of the network where nodes represent timed
automata and edges represent synchronization channels or shared variables (en-
closed within parenthesis).

The general idea of the specification is as follows. The automaton Message
generates messages for both senders, and also informs the Check automaton on
the bits it generated for SenderA. The senders transmit the messages via the wire
to the receiver. The receiver communicates the bits it decoded to the checker.
Thus the Check automaton is able to compare the bits generated by Message
and the bits received by Receiver. If this matches the protocol is correct.

The senders A and B are, modulo renaming (all A's in identifiers to B's),
exactly the same. Because of this symmetry, it is enough to check that the
messages transmitted by sender A are received correctly. We will proceed with
a short description of each automaton. The definition of these uses a number of
constants that are declared in Figure 4.

The Senders. SenderA is depicted in Figure 5. It takes input actions Ahead0. 7,
Aheadl. 7 and Aempty?. The output actions UP! and DOWN! will be the Manch-
ester encoding of the message. The clock Ax is used to measure the time between

252

UP! and DOWN! actions. The idea behind the specification (taken from [DY95])
is that the sender changes location each half of a bit-slot. The locations HS
(wire is high in second half of bit-slot) and HF (high in first half of bit-slot)
refer to this idea. Ext ra locations are neededbecause of the collision detection.

The clock Ad is used to measure the time elapsed between the detection just be-
fore U P! action and the corresponding UP! action. Furthermore the time elapsed
since the last DOWN! action is measured. The system is in the locations ar_Qfirst
and ar_Qiast when the next thing to do is the collision test at one or three quar-
ters of a bit-slot. When Volt is greater than zero, at that moment, the sender
detects a collision, stops transmitting and returns to the idle location. The clock
w is used to ensure the 'radio silence' between messages. This variable is checked
on the transition from idle to at_first_up.

T h e W i r e . This small automaton keeps track of the voltage on the wire and
generates VUP! actions when appropriate, that is when a UP? action is received
when the voltage is low.

T h e R e c e i v e r . Receiver (Figure 6) decodes the bit sequence using the up-going
(modeled as VUP?) changes of the wire. Decoded bits are signaled to the environ-
ment using output actions AddO!, Add1! and 0UT! (OUT! is used for signaling
the end of a decoded message). The decoding algorithm of the receiver is a direct
translation of the algorithm in the Philips documentation of the protocol. In the
automaton each VUP? transition is followed by a transition modeling the decod-
ing. This decoding happens 'at once' therefore these intermediate locations are
modeled as committed locations. The automaton has two important locations,
L1 and L0. When the last received bit is a bit "1" the receiver is in location kl,
after receiving a bit "0" it will be in location L0. The error location is entered
when a VUP? is received much to early. In the complete specification the error
location is not reachable, see Section 6. The receiver keeps track of the parity of
the received message using the integer variable odd. When the last received bit
is a bit "1" and the message is even, a bit "O" is added to make the complete
message of odd length.

T h e M e s s a g e G e n e r a t o r . The message generator generates messages of odd
length for both sender A and B. Furthermore, the messages generated for sender A,
are communicated to the checker. When a collision is detected by sender A this
is communicated to the message generator via Acoll?. The message generator will
communicate this on his turn to the checker via CAcoll!. Generating messages
of odd length is quite simple. The only problem is that it is not allowed that
a message for one sender is a prefix of the message for the other sender. To be
more precise: If only one sender is transmitting there is no prefix restriction.
Only when the two senders start transmitting at the same time, it is not allowed
that one sender transmits a prefix of the message transmitted by the other. As
mentioned before the reason for this restriction is the.t the prefix message is not
received by the receiver and it is possible that the senders do not notice the
collision. In other words: The prefix message can be lost.

T h e C h e c k e r . This automaton keeps track of the bits 'in transit ' , that is the

253

bits that are generated by the message generator but not yet decoded by the
receiver. Whenever a bit is decoded or the end of the message is detected not
conform the generated message the checker enters an error location. Furthermore
when sender A detects a collision the checker returns to its initial location.

6 Veri f icat ion in UPPAAL

In this section we verify correctness of the protocol described in previous sections.
Recall, that the system is modelled as a network of the six t imed automata:
Message SenderA, SenderB, Wire, Receiver and Check, and that properties are
specified as logical formulas.

T h e C o r r e c t n e s s C r i t e r i a . The correct behaviour of the protocol is ensured
whenever the control of the automaton Check is in location a or start. If an
incorrect behaviour is detected the Check-automaton enters the error-location,
consequently property (1) requires that the Check-automaton is always in loca-
tion start or a:

VE] (Check.start V Ch.eck.a) (1)

For the property to be satisfied it is required that the bit sequence received by
the Receiver matches the bit sequence sent by SenderA. Furthermore, it is also
required that the entire bit sequence is received by Receiver (and communicated
to the Check-automaton). This is ensured since the error-location of the Check-
automaton is reachable if the end of a bit sequence is signalled by Receiver (i.e.
OUT!) when unmatched bits exists in the Check-automaton.

If the Receiver-automaton observes changes of the wire too early in location
kl or L0 control is changed to location error. It is imaginable that error recovery
can be implemented from this location. However, if the other components of the
protocol conform to the specification this location should not be reachable, thus
property (2) requires that the error-location in Receiver is never reachable.

VE3~ Receiver.error (2)

I n c o r r e c t n e s s . Unfortunately the protocol described in this paper is not the
protocol that Philips has implemented. The original sender checked less often
for bus collisions. The 'just before the up going edge' collision detection was
only performed before the first up. (In our modelling this corresponds to modi-
fying SenderA and SenderB in the following way: delete the outgoing transitions
of location ar_Qlast_ok and use the outgoing transitions of location ar_up_ok in-
stead.) This version is incorrect. In general the problem is that if both senders
are transmitt ing and one is slow and the other fast, the distance can cumulate
to a high value and this can confuse the receiver. UPPAAL generated a counter
example trace.

Although this problem was known by Philips is it interesting to see how pow-
erful the diagnostic traces can be. It enables us not only to find mistakes in the
model of a protocol, but also to find design mistakes in real life protocols.

254

The Verification Results . UPPAAL successfully verifies the correctness prop-
erties (1) and (2) for an error tolerance of 5% on the timing. Recall that SenderA
and Sender8 are, modulo renaming, exactly the same, implying that the verified
properties for SenderA also applies to the symmetric case for SenderB. Prop-
erty (1) was verified in 7.5 hrs using 527.4 MB of memory, property (2) in 1.32
hrs using 227.9 MB of memory.

The analysis of the incorrect version of the protocol with less collision detection
(discussed above) uses UPPAAL'S ability to generate diagnostic traces whenever
a certain property is not satisfied by the system. The trace, consisting of 46
transitions, was generated in 13.0 min using 290.4 MB of memory. Also, at tempts
to verify Proper ty (1) for the full protocol with an error tolerance of 6% on
the timing failed. The scenario is similar to the one found by Bosscher et al.
in [BPV94] for the one sender protocol.

The properties (above) were verified using the verification algorithm for han-
dling committed locations, described in Section 3, implemented in a new proto-
type version of UPPAAL, installed on a SGI ONYX.

7 C o n c l u s i o n

In this paper it is shown to be possible to verify properties of a realistic case
study using UPPAAL. The tool is able to verify the correctness properties of
the Philips Audio Protocol, that is: the receiver only receives messages that are
transmitted. Furthermore the ability of UPPAAL to generate diagnostic traces
proved very useful. When writing tbrmal specifications (some) humans tend to
make mistakes. These mistakes are much easier to locate using a tool that can
generate scenarios. This in contrast with using a tool that only provides Yes/No
answers to queries.

We proposed the use of committed locations in UPPAAL specifications. Using
these provides a significant effici@ncy improvement. Fnrthermore the memory
consumption decreases when using committed locations.

Even more important than the efficiency improvement is that committed loca-
tions sometimes allow a more natural specification. H a system does a broadcast
or multi-way synchronization, this can be modelled much nicer using committed
locations. Without committed locations it is not possible in UPPAAL to prohibit
other components to perform actions dnring the broadcast. With committed
locations these multi communications can be modelled as a single atomic action.

Another option to model broadcast synchronization is to use another synchro-
nization mechanism than handshake as used in UPPAAL. We prefer the use of
committed locations because it is easier to embed in the model and easier to im-
plement. We also think that committed locations and handshake synchronization
provide a flexible and expressive model for specifying protocols.

R e f e r e n c e s

lAD90] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Prec.
of ICALP'90, LNCS 443, 1990.

255

[BL96]

[BLL+95]

[BPV94]

[DY95]

[Gri94]

[HHWT95]

[HRP941

[HWT95]

[LPY95]

[YPD94]

Johan Bengtsson and Fredrik Larsson. UPPAAL a Tool for Automatic Ver-
ification of Real-time Systems. Master's thesis, Uppsala University, 1996.
Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL-- a Tool Suite for Automatic Verification of Real-
Time Systems. In Proc. of the ~{th DIMACS Workshop on Verification and
Control of Hybrid Systems, 1995. To appear in LNCS, 1996.
D.J.B. Bosscher, I. Polak, and F.W. Vaaadrager. Verification of an Audio-
Control Protocol. In Proc. of FTRTFT'94, LNCS 863, pages 170-192,
1994.
C. Daws and S. Yovine. Two examples of verification of multirate timed
automata with KRONOS. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 66-75, December 1995.
W.O.D. Griffioen. Analysis of an Audio Control Protocol with Bus Col-
lision. Master's thesis, University of Amsterdam, Programming Research
Group, 1994.
Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: The

Next Generation. In Proc. of the 16th IEEE Real-Time Systems Sympo-
sium, pages 56-65, December 1995.
N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid
systems by means of convex approximations. In Static Analysis Symposium,
LNCS 864, pages 223-237, 1994.
Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio
Control Protocol. In Proc. of CAV'95, LNCS 939, 1995.
Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking
for Real-Time Systems. In Proc. of the 4th DIMACS Workshop on Verifi-
cation and Control of Hybrid Systems, 1995. To appear in LNCS, 1996.
Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of
Real-Time Communicating Systems By Constraint-Solving. In Proc. of the
7th International Conference on Formal Description Techniques, 1994.

used in st ts
~ q u ' - ~ e~- o - ' f ' - a ~
J l 1222 ~ic~~ sec tADWI~n ~ - - - - liiiiO [' -Q2~x[2TqT!x+t)I4662
[d[200]Detection 'just before' the D d [~3*q*! l - t)~6327
I I [UP: 20 micro sec q-g l_~3max13:q:!l+t)16993 J
Ig 1220 I~Around ' 25~ and 75~o of I A1max q+g 12440 I IQSminl5*q~(l't)1105451
I i]the bitslot: 22 micro sec IA2min 3*q-g 16440 I
IwlS00001The radio silence: 8 mini IA2max 3*q+g 16880 I [Q5-m-~L5*'q'*!l+t)[l1655[

s e c IQ2 2*q 14440] l ~QTmjn [7"*q:!l-t)"]147631

It]0.05 ITe:e timing uncert~ty: IQ2mi~D 2*q*0-t>-d~018 I ~
~__..~5~o ~ 2*q*(1-t)

Fig. 4. Declaration of Constants.

256

senderA

c:mady
h<

Aempcy?
Ax>=Q2min
AX<=Q2max

UP! ~ A d < = D /~:=0

Ax>=Q2min

Aheadl ?
Anext : =i

AX:=0

Ad <= D

Ahead0?
AX>=Q2min

m NT:~ TM

Ax>=Q2min AX>=Q2min
Ax<=Q2max ~ 2 t ~ x

Ad<=D Anexi~ Anext==0

Ax>=Q2minD
AX<=Q2max
Volt>=l
Acoll]

re_up ok
AX>= 2minD $~X< =~2max
Volt==0
Ad : =0 AX>=Q2min

Ax<=Q2max
DOWN E
AX:=0 a.r QlasLok

Ad <= D
Volt>=l
Acoll I

Anext : =0
Ad : =Q2 ~ ~r_Qlast Ad : =Q2

W " J I () ' ~ O ~

~ o /~x~ =Q2mln Aheadl? Ax<=Q2meux Anext : =i
AX:=0 Ad:=

Ad>=Almln
Ad<=Almax
Volt==0

�9 Ad>=A2min, Ad< =A2max

Fig. 5. The SenderA Automaton.

r VUPV fad;=0 >f-kr

~w>=Q3min
Addl! ~ , ~ w<=Q5max
odd:=-odd+l VUp.

OUT I w>=Qgmin, w<=Q9max c'd II o d d = = 0 , ~ _ _ _ _ _ ~ A d d 0 ! Addl' "

Add0!

C:e

wm=Q5min
7max

Fig . 6. The Receiver Automaton.

