
Using On-The-Fly Verification Techniques
for the Generation of Test Suites *

Jean-Claude Fernandez 1 Claude Jard ~ Thierry J@ron 2 and C@sar Viho 2

1 V@rimag, Miniparc Zirst, rue Lavoisier, F-38330 Montbonnot Saint-Martin, France.
Jean-Claude. Fernandez@imag.fr

2 IRISA/Pampa, Campus de Beaulieu, F-35042 Rennes, France.
(Claude.Jard, Thierry.Jeron, CSsar.Viho)@irisa.fr

Abs t r ac t . In this paper we attempt to demonstrate that on-the-fly tech-
niques, developed in the context of verification, can help in deriving test
suites. Test purposes are used in practice to select test cases accord-
ing to some properties of the specification. We define a consistency pre-
order linking test purposes and specifications. We give a set of rules to
check this consistency and to derive a complete test case with preamble,
postamble, verdicts and timers. The algorithm, which implements the
construction rules, is based on a depth first traversM of a synchronous
product between the test purpose and the specification. We shortly relate
our experience on an industrial protocol with TGV, a first prototype of
the algorithm implemented as a component of the CADP toolbox.

1 Introduct ion

It is widely recognized that testing is an essential component of the full life-
cycle of communicat ing systems. However, the process of generating test suites
is complicated, error-prone and expensive. The intrinsic difficulty comes from
the black-box nature of the implementation: its behaviour is only observable
and controlable at the interfaces. In that context, a formal framework is a pre-
requisite for giving precise and consistent meanings of test verdicts. The usual
theoretical approach [Bri88] is to consider a formal specification of the intended
behaviour of the Implementa t ion Under Test (IUT). It permits to define the no-
tion of conformance relation linking an implementat ion to the specification and
the notion of verdict associated to the application of a test case (set of interaction
sequences) to an implementat ion, w.r.t, the conformance relation. The problem
is to automatical ly generate correct test cases from a formal specification of
the IUT. A correct test case, applied to an IUT, will declare "fail" only imple-
mentat ions which do not conform to the specification (soundness property). We
also require that an implementat ion which does not conform to the specification
might be detected by repeating the application of a test case, under a fairness
assumption on the implementat ion (property of exhaustivity).

* This work has been partially supported by an industrial contract with Verilog in a
study for the french DGA (Direction G@n@rale pour l'Armement)

349

During the last decade, testing theory and algorithms for the generation of
tests have been developed from Labelled Transition System specifications (LTS).
Test generation involves sub-problems of traversal, comparison or reduction of
LTS, already addressed by verification. Consequently, we think, among others
[CGPT95], that time is ripe for linking test and verification. The experience of
practitioners tells them that it is not reasonable to try to validate all possible
behaviours of their protocol. It is why they use informal test purposes. Basi-
cally, we traverse in a depth-first manner, the synchronous product of the IUT
specification and of the test purpose. During the traversal, we check their mu-
tual consistency. If so, an acyclic test graph is generated and decorated with
verdicts and timers. The algorithm is an original extension of the on-the-fly ver-
ification kernel we developed a few years ago [JJ89, JJ91, FM91, FMJJ92]. It
provides a complete treatment of the problem of test cases, including pream-
bles and postambles, verdicts and timers management. It is now well known
that depth-first traversals are the heart of some good verification algorithms,
for behavioural comparison and reduction [FM91], as well as for model-checking
[JJ89, CVWY90, JJ91]. We show that it is also true for test generation, which
constitutes a good example of transfer from verification to testing.

The test generator, based on verification technology, has been prototyped in
the context of an industrial consortium, linking V6rilog, Cap-Sesa, Cnet, Inria
and the French Army. An experiment was performed on a real ISDN protocol
specification. The results were very encouraging, confirming the interest of us-
ing this kind of algorithmic, which is now mature enough to be transfered in
the industrial world, to deal with real formal specifications. Our approach is
compatible with symbolic (or structural) ones like TVEDA [Pha94b] which may
compute test purposes using teachability analysis.

The presentation is organized as follows. We start by defining the different
models used for describing test purposes, test cases, the specification and the
IUT. We define a consistency preorder between test purposes and specifications,
and a test conformance relation linking implementations to specifications. We
give the formal rules allowing the construction of a test case from a test purpose
and a specification. We give some results concerning soundness and exhaustivity
of our generated test cases. Finally, we give the main results gained during an
experiment on an ISDN protocol.

2 M o d e l s

In this section we first describe the models used for the description of the different
objects involved in the generation of test cases. They are used to define the
notion of consistency relating a test purpose with a specification and the notion
of conformance relating an implementation with a specification. These models
are then used to define formal rules for the construction of test cases.

350

2.1 Input-Outputs l abe l l ed t r a n s i t i o n systems

The models used are all based on Input-Output Labelled Transition Systems
(IOLTS) in which input and output actions are differentiated because of the
asymmetrical nature of the testing activity.

We consider a finite alphabet of actions A, partitioned into two sets: input
actions AI and output actions Ao. We shall let a,/3 range over A, i, i r range

M M over AI and o, o / range over Ao. We consider finite IOLTS M=(Q M, A, T , q in i t)
where Q• is the set of states, q M is the initial state, T M C QM • A • QM is the m l t

transition relation.
We adopt the following notations and conventions: Let a E A*, p, q E QM.

We write p ---~M q iff (p,a,q) E T M and write p :=:~M q iff 3 a l , a 2 . . "an E A,
c~i+l

P0,'" ",Pn E QM. O" = a l .a2 . . . a n and Po = P, Pi -+ M Pi+I with i < n, Pn = q.
A(q) = {a I 3q r and q -%M q'} is the set of immediate actions after q, Z(q) =
A(q) MAx is the set of inputs after q, and O(q) = A(q) M Ao is the set of
outputs after q. Suec~(q) = {q' [q ~M q~} is the set of states reachable from
q by means of a transition labelled by a. We write ~(p --%M) if there is no
transition starting from p and labelled by a, -~(p -%M) = (Succ~(p) = 0). We
note p a f t e r c~ = {q E QM] p ~ M q} the set of states reachable from p by the
sequence of transitions cr and traces(p) = {cr E A*[p a f t e r a r 0} the set of
sequences starting from p and reaching a state in QM In the sequel, we will not
distinguish between a transition system and its initial state.

An IOLTS satisfies the controlability condition if and only if for each state,
if an output is enabled, then there is exactly one outgoing transition. More
formally, if IX[denotes the cardinality of the set X, Pp.]O(p)t = 0 V (tO(p)l =
1 A O(p) = X (p)) .

An IOLTS is deterministic if and only if Vp, V~r. IP a f t e r cr] _< 1.
We consider four kinds of !OLTS: the specification, the implementation, the

test purpose behaviour and the test cases which meanings are described below.

2.2 Spec i f i ca t ion a n d i m p l e m e n t a t i o n

An IUT is placed in a test environment in which the tester can only interact with
inputs and outputs. Thus the tester has an external view of the implementation.
In contrast, a specification generally models the interna~ view of the system, i.e.
the behaviour of the system with its internal actions, without considering the
way it interacts with the environment. But this interaction should be taken into
account in the test generation. As an example, if the implementation commu-
nicates asynchronously with its environment through several points of control
and observation (PCOs), two subsequent and causally ordered outputs may be
observed by the environment as two concurrent inputs if they occur on two dif-
ferent PC0s. In the following, we will consider the environmental point of view:
outputs are controlable actions initiated by the environment (which may be the
tester) and sent to the IUT whereas inputs are observable actions~ initiated by
the IUT and received by the environment.

351

While testing an IUT, we check for the conformance of the IUT in its envi-
ronment with the specification in the same environment. Thus we first have to
transform the specification into its external view. Internal actions which are not
observable by the environment have to be hidden and replaced by a v transition.
Inputs are replaced by outputs and vice versa, taking care of concurrency which
may be produced by asynchronous interaction. This is called the mirror image
operation. After that, we have to apply a v-reduction which suppresses v transi-
tions. The transition system of the resulting specification is then an IOLTS. This
has been implemented on-the-fly in our prototype but, due to space limitations,
we will not give more details of how this can be done effectively. Deadlocks are
often supposed to be observable by a tester. In practice the tester uses timers to
achieve this (see 3.2) and we have to suppose that a t imeout occurs if and only if
the implementation is deadlocked. This is why timeouts are considered as inputs
of the tester. If the specification is allowed to deadlock in a particular state, this
is modelled by a special transition ~ considered as an input of the environment
initiated by the system. This treatment of deadlocks is quite similar with what
is done in [Tre95, Pha94a]. Finally, the last operation is determinization.

S The resulting specification is a deterministic IOLTS S = (QS, A, T s, qinit)
with A = AI U Ao and ~ C AI a distinguished'input. Without loss of generality,
we will suppose that S starts with outputs of the environment i.e. A(qSnit) c Ao .
In the following, specification will always correspond to the external view S
of the specification. Though the implementation is not necessarily a transition
system (it may be a physical system), as in all testing theories, we have to
reason formally about it and model its behaviour. As it is only considered by
its interactions with the environment, it is also modelled as an IOLTS I =
(QI A I, T' , q~,it), with A ~ = A~ U A~), Ax C A~.

2.3 Tes t P u r p o s e

A test purpose defines a property on some particular interactions between the
IUT and the tester. It consists in two parts : a behavioural part and a constraint
part. The constraint part gives some property on the state of the implementation.
It can be seen as computable by the environment and will be modelled by an
input for the tester. Thus it is integrated in the behavioural part:

D e f i n i t i o n 2.1 (Test Purpose behaviour) A test purpose behaviour is a deter-
ministic acyclic IOLTS T P = (QTe, A, TTP, qiTni~) satisfying the controlability
condition and with a set of distinguished states AcceptC QTP with no successor.

2.4 Test Cases

A test case is a set of sequences of actions describing all the interactions occuring
between an IUT and a tester which wants to verify that an implementation
conforms with the specification according to a test purpose. In an industrial
context, test cases are often described using the Tree and Tabular Combined
Notation (TTCN [ISO92]). Some transitions are decorated with verdicts with

3 5 2

the following informal meaning :
(PASS): means that the test purpose is satisfied by the current sequence. But
a sequence leading to the initial state (Postamble) must be applied in order to
carry on another test case. It is a temporary verdict as the application of the
postamble may produce Fail verdicts.
PASS: this is a definitive verdict meaning that the initial state has been reached
after a (PASS) verdict. The sequence between (PASS) and PASS is a Postamble.
FAIL: means non-conformance of the IUT.
INCONCLUSIVE: this verdict is used in practice when a reception is allowed in
the specification but cannot lead to a (PASS) or leads to a behaviour that is not
considered in the test case because testing cannot be exhaustive in practice.

De f in i t i on 2.2 (Test Case) A test case is a deterministic acyclic IOLTS T C =
(QTC, A, TIc, qiTiCt) satisfying the controlability condit{on. A test suite is a set of
test cases.

2.5 C o n s i s t e n c y a n d t e s t c o n f o r m a n c e r e l a t i o n

In this section, we define what we mean by consistency of a test purpose w.r.t
a specification and which conformance relation linking the implementation with
its specification is considered.

A test purpose T P is said to be consistent w.r.t a specification S, denoted
by TP s qinit "~ qinit, if the two following conditions are satisfied: the set of behaviours
described by the test purpose is included (see the definition below) in the set
of behaviours of the specification, and from each state of S corresponding to an
Accept state of TP, there is a path in S to s qinit'
D e f i n i t i o n 2.3 (Consistency preorder). A relation [" C_ QTr, • QS is a consis-
tency relation i f and only if R C .T(R) where,

:r(R) = P)I
(Va, VqTr, . pTr" ~TP qTP =

pVP E Accep~

TP S if and only if there qinit "~ qinit

3q s, q~, 3cr E (A \ {a})* �9 ps : :~s q~ a--%s qS A
(qTp, qS) E n A (pTP, q~) E R) A

30"EA* - pS ~ s qiSnit}

is a relation R C_ . r (R) , containing (qi ni , qi i)

If the test purpose and the specification are consistent, we can derive sound
test cases. A test case is sound if it gives a negative verdict only if thc imple-
mentation is not correct w.r.t, the specification.

We consider a conformance relation quite similar to those in [Tre95, Pha94a].
Informally, the conformance relation states that outputs of the environment
which are not accepted by the specification may be accepted by the implemen-
tation but inputs produced by the implementation must be also produced by the
specification.

D e f i n i t i o n 2.4 (Test conformance relation) Let S and I be two IOLTS describ-
ing the external view of a specification and an implementation,

I i o c o n f S / f and only if V~ E t races (S) ,Z (I a f t e r 0-) C 77(S a f t e r 0-)

353

3 C o n s t r u c t i o n rules

The essence of the on-the-fly method is to traverse a kind of synchronous product
between two graphs, one for the specification and the other for the property to
be checked. We first define this synchronous product. Then we give the rules for
the test case construction, including decoration with verdicts and timers. Finally
we give some properties of the generated test cases.

3.1 S y n c h r o n o u s p r o d u c t

A transition is firable in the product if either it is firable in the two components
or it is firable only in the specification.

D e f i n i t i o n 3.1 (synchronous product) We define the product
s Qp QTP QS OP T ~ P = (QP, A, T P, (qiWiPt, qinit)), with C_ • where and are the

smallest sets obtained by application of the following rules:
- [Sync 1] TP S (qinit, qinit) E QP,
- [Sync2] (pTP, pS) E QP pTP ~TP qTr' pS ~S qS

(qTP, qS) EQP (pTP pS)~r,(qTP,qS)

-- [Sync3] (pTP, pS) E QP ..~(pTP ~TP) pS ~S qS (pTP, pS) ~ Accept x {qiSnit }
(p~P,q~) ~ Q~ (p~,p~) ~ (p~P, qS)

3.2 T h e t e s t case c o n s t r u c t i o n

The algorithm is based on a depth first traversal of the synchronous product, def-
inition 3.1. Two mains actions are performed : the consistency relation between
the test purpose and the specification is checked while a direct acyclic graph
DAG is synthesized, definition 3.2. More precisely, a stack stores the states of
the current execution sequence. The algorithm proceeds as follows, starting from
the initial state, (qi~iPt, qiSnit). Let (pTP, pS) be the current state, i.e. the top of the
stack, and (pTp,pS) ..%p (qTP, qS) a transition not yet analyzed. If qTP is an ac-
cepting state, then a postamble is computed by searching a shortest path from
qS to s . qinit, else if (qTr,, qS) belongs to the DAG then the transition is added to
the DAG; otherwise, if (qrP, qS) does not belong to the stack nor to the visited
states, then the state (prP pS) is pushed on the stack. When all the transitions
starting from the state (prP pS) are analyzed, then (pry, pS) is popped in the set
of visited states. The operator Comb is used in order to ensure the controlability
condition. The algorithm terminates when the stack is empty and succeeds if
(qiTniet, qiSnit) belongs to the preamble and if Accept x {qSinit } is a subset of the vis-
ited states. The algorithm requires a time complexity linear with respect to the
size of the transition relation of the synchronous product and a space complexity
linear with respect to its state space.

D e f i n i t i o n 3.2 We define DAGs syntactically as n :: 0 I 1 I a ; n tn + n
We also define a predicate ~_v for v = 1,2,3. by (pTp,pS) : n means '~he

node associated with (pTP,pS) is n and belongs to the preamble, test case body

354

and postamble if v is respectively 1, 2 or 3". We use Node((p vp,ps)) to denote
the node currently associated to (pTP,pS). Initially Node((pTe,pS)) = O. An oper-
ator Comb is used to accumulate the nodes in order to ensure the controlability
condition:

{ ~ n if a E Ao, m = Zai; ni a.nd Vi, c~i 6 AI
Comb(m, 4; n) := if m = a ' ; n' and 4' 6 Ao

+ 4; n otherwise
P r e a m b l e

v e {1, 2} 11~ ~qTP TP S TP S \ init,qs) : n (qinit,P) --%P (qinit ,q)
T P S Test Case B o d y 111 (qinit,P) : C~176

112 (qTP, qS) :n qTP~ TP TP S qinit (qinit,P) ~ P (qTP qS)
T P S T P S . ~.2 (q in i t ,P) : C~176)), 4, n)

~_2 (qTP, qS) :n pTP:# WP qinit (pTP ps) ~ p (qWP qS)

I-2 (pTP,pS): Comb(Node((pTP pS)), (~; n)

P o s t a m b l e

t.2 (pTP,pS): Comb(Node((pTP,pS)), o*; n)

~ (p~,q~) :u (p~',p~) &~ (f L q ~) p ~ e Accept
113 (pWP,pS) : Comb(Node((pTP,pS)), 4; n)

T h e t e s t c a s e v e r d i c t s We define the par t ia l funct ion v e r d i c t which assigns
verdicts to some t ransi t ions in the D A G which construct ion is defined above.
This funct ion is defined by means of the rules below.

We comple te the definition of the predicate t -v for v = 4, 5. ~_4 (p r P pS) : 1
means t ha t " the node associated with (pTP,ps) is 1 and is the ending s ta te of a
t rans i t ion labelled by an Inconclusive. We need a new s ta te Fail .State in the
synchronous p roduc t and the ax iom ~-'~ Fail_State : 1.

In the sequel, u, v range over 1,2, 3,4, 5.

Pass : assigned to a transition in the DAG if the ending state is in the Postamble and
the specification is in state q~nit

~ p T , , p S) : n V~ {2,3} e ~ (C L s qini~;) : 1 (pTP,ps) .~p (qTP, qinitS)
verdict(n~ c~, 1) = Pass

(Pass) : assigned to a transition linking a state of the Test Case Body to a state in
the Postamble.

e2 (pT~,ps): m e~ (CLqs) : ~ (fLp~) &. (qT.,qs)
v e r d i c t (m , 4, ~) = (Pa~,~)

I n c o n c l u s i v e : add a new transition with verdict Inconclusive from a state in the
DAG which allows an input reaching a state not in the DAG

t_,(pWP,pS): n y.~(qWP, qS) U, V6{1 ,2 ,3} (pTP, pS) 2+p(qTP,q s) i . 6 A I

p4 (qTP, qS): 1 (n,i, 1) 6 DAG ve rd i c t (n , i , 1) = Inconclusive

355

F a i l : in each state of the DAG, an input of the implementation which is not allowed in
the specification should produce a Fail verdict. A new transition with verdict Fail
is .(virtually) added. In practice this corresponds to an Otherwise Fail in TTCN.

~_, (pWP,pS): n v e {1,2,3} ((i e A~,"((pTP, p s) -~P)) or i E A} \ A I)

F 5 Fail_State : 1 (n,i, 1) E DAG ve rd i c t (n , i , 1) = Fail

T i m e r s T imer s are useful in practice in order to insure against imp lemen ta t ion
deadlocks. T h e m a n a g e m e n t of t imers is made on the DAG generated by the
test genera t ion rules 3.2. As t imers depend on inputs, we associate a t imer t~ to
each input i labell ing a t rans i t ion in the test case. Three opera t ions on a t imer
are available: S t a r t (t l) which initializes the t imer and mus t be done as soon as
input i is expected, Caacel(t~) which is done when i is received or when, due to a
choice, i is no m o r e expected, and T imeout (t i) which represents the observat ion
of a deadlock when wait ing for i.

Let (pTP,ps) ~-~T (qTP, qS) be a t rans i t ion of the synchronous produc t and
t : (n , a , m) the corresponding t rans i t ion in the DAG. Let IrLd((prP,p~)) be
the independency relat ion which represents the concurrency. The independency
re la t ion is a b inary symmet r i ca] relat ion defined on the inputs of a state: two
inputs are independan t if they m a y be received in any order. We denote by
Running(n) the set of t imers tha t have been s ta r ted in the sequences leading to
n and have not yet been cancelled, C1 and St are sets of t imers t ha t have to be
respect ively cancelled or s ta r ted after act ion o~. Finally, d i s c a r d (t) means t ha t t
is discarded f rom the DAG. The following rules specify the t imers m a n a g e m e n t :

In l t As specifications, test cases start with an output, thus if r is the root of the DAG,
Running(r) = 0

C a n c e l a n d S t a r t

t : (n ,~ ,m) e DAG Running(n) = R
t ' : (n, a; Cancel(C/); S ta r t (S t) , m) E DAG Running(m) = (R \ Cl) U St

discard(t)

where c l = {t~li ~ z((pTP,ps)) ^ (~,i) r Ind((pT~,ps))}
s t = {t,l~ e z((pT~,p~))} \ (R \ CI)

i.e. all timers corresponding to inputs not concurrent with a must be cancelled and
a timer must be started for each input available in m if it is not ~lready running
in n, except if it has just been cancelled.

T i m e o u t s We suppose that 5 E Az. By the construction and verdict rules, in each
node of the DAG, there is a transition labelled 5 and its verdict may be (PASS) if
5 is in the test purpose, Inconclusive if it is in the specification or Fail otherwise.
If an input i (i may be 5) is possible in a state of the synchronous product, a
transition labelled by Timeout(t 0 is added. The verdict assigned to this timeout
must be the same as the verdict assigned to 5.

t : (n , i , m) E DAG l e A r v e r d i c t (t) # F a i l t ' : (n , 5,1) E DAG
t " : (n, Timeout(ti), 1) e DAG ve rd i c t (t ") = ve rd i c t (t ')

D i s c a r d 5 For each transition t : (n, 5, 1) E DAG, apply d i scard(t)

356

Another depth first search is performed on the DAG to generate the timers
operations. Unlike the DAG construction, which works by synthesis (just around
the pop operation) the operations on timers are generated before the exploration
of the state successors (around the push operation). The running set associated
with each state is initialized to empty set at the initial state. It is inherited from
a state to its successor. During this step, on one hand, each transition of the
DAG is decorated with cance l and s t a r t operations on timers, on the other
hand some transitions labelled by t i m e o u t are added, following the previous
rules.

3.3 R e s u l t s

P r o p o s i t i o n 3.1 Let P be the synchronous product between S and T P (defi-
nition 3.1) and 7.(TP, S) be the DAG synthesized by applying the rules of def-
inition 3.1. TP S If (qinit,qinit) is the root of the dag, then TP s qinit -~ qinit else the test
purpose and the specification are not consistent.

Let OT(E) = {TP G IO.LTS] qTP s init "~ qinit } be the set of test purposes which
are consistent with respect to the specification S. Let TS(S) = {7"(TP, S) I
T P G OT(S)} i.e. the set of test cases (test suite) that can be constructed for a
specification S. For 7" E TS(S) , we denote Max_traces(7.) = {a]A(7" a f t e r c~) =
0} the set of maximal traces of 7-. For ~ = cr~.a E Max.Traces(7.), and for an
implementation I, we define verd• I) = vez'd• a f t e r ~r', a, 1). Notice
that 7" is deterministic, thus 7" a f t e r ~r' is unique. We have the two following
results:

P r o p o s i t i o n 3.2 (Soundness) Assuming that timeouts are produced if and only
if the implementation is deadlocked, for every implementation I, if the applica-
tion of a test case 7- E TS(S) produces a Fail verdict then I does not conform
with S:
(37- e TS(S) , 3a ~ Max_Traces(7.), , , e rd ic t (~ , Z) = Fail) ~ - (I ioconfS) .

This second proposition is not exactly the converse. Implementations can be non
deterministic. Thus the application of the same sequence of actions of the tester
may produce different verdicts. Thus, like other authors [Pha94a], we assume a
bounded fairness hypothesis on implementations. This informally means that a
bounded number of executions of a non deterministic implementation will show
all its behaviours. For n 6 IN, we define ve rd i c t* (n , a, I) to be Fail if one of the
n applications of a on I produces a Fail verdict, Pass otherwise.

P r o p o s i t i o n 3.3 (Exhaustivity) For every implementation I, if I does not con-
form with S, there exists a test case 7. E TS(S) which can produce a Fail verdict:

io r s) (37- z Ts(s) , Max_Traces(7.), 3n e verdict(n, Z) =
Fail).

357

4 E x p e r i m e n t a t i o n

The algorithms and transforma'cions described in previous sections have been
developed in the CADP toolbox [FGM+92] as a software component named
TGV (for Test Generation using Verification techniques). In order to prove the
feasibility of the approach, we have applied TGV to an industrial protocol, the
DREX protocol.

4.1 T G V

As we were primary interested by demonstrating the feasibility of our approach
before a real implementation, all algorithms are not yet combined into a unique
on the fly algorithm. We have used the Geode simulator [ALHH93] from Ver-
ilog as an SDL [CCI88] front-end which produces state graphs representing the
behaviour of a specification, constrained by the test purpose constraints.

Thus the inputs of TGV are a state graph produced by Geode (from a SDL
specification of the protocol) and an automaton formalizing the behavioural
part of a test purpose. The output is the behaviour description and constraints
definitions of a test case in the standard TTCN format [IS092].

Different steps bring out this output. The first step takes as input the state
graph produced by Geode and transforms it into a graph representing the observ-
able behaviour of the protocol specification in the testing environment (external
view graph). Several transformations are performed in this step: abstraction of
unobservable internal actions, determinization, mirror image which transforms
inputs into outputs and vice versa and construction of diamonds modelling con-
currency introduced by the asynchronous interaction between the tester and the
IUT. The next step is the kerneI of TGV. The output is the DAG which con-
tains all informations needed in TTCN test cases. The last step takes as input
the DAG. The algorithm extracts from the transition labels the message pa-
rameters and produces the constraint part in TTCN GR format. The remaining
graph is unfolded into a tree describing the behavioural part of the test case in
TTCN GR format. Finally the constraint and behavioural parts of the test case
are translated into the graphical format TTCN GR.

4.2 Expe r imen t wi th the D R E X protocol

TGV has been used during an industrial contract for the Direction Gdndrale pour
l'Armement. The protocol used for the experiment was a military protocol called
the DREX protocol which allows the access to the transit network Socrate of the
French Army, defined in the framework of Integrated Service Military Network.
This protocol has been chosen for three main reasons: firstly, we wanted to prove
the feasibility of automatic test generation methods on realistic specifications;
secondly, an SDL specification of a similar protocol was already available, and
finally, hand written test suites had already been produced. This last point is
important as hand written test cases have served as a basis for comparison with
automatically generated test suites.

358

The SDL specification models the behaviour of the DREX protocol on the
network, communicating asynchronously with two users by two PCOs. The size
of the' SDL specification was about 2000 lines. 54 test purposes have been con-
sidered and 54 corresponding test cases have been generated. The time needed
for the generation of a test case has to be separated into two parts: the time
needed for the graph generation with Geode which took between 3.5s and 400s
and the test case generation with TGV which took between ls and 2s.

We have compared automatic test suites generated by TGV with hand writ-
ten test suites in a qualitative way. Even though TGV is just a prototype, all
hand written test suites or similar ones have been generated. The differences
that were observed were principally due to the fact that TGV treats system-
atically concurrency and timers. For example, in some hand written test cases,
concurrency between events were forgotten and risked an incorrect verdict. Some
differences were also due to the formal interpretation of test purposes. More de-
tails and other quantitative results of this study can be read in [FJJV96].

5 C o n c l u s i o n

In this paper, we have shown how on-the-fly verification techniques could be used
in the generation of test suites. Starting from an already known conformance re-
lation and from the experiment gained with the analysis of hand written test
cases, we have formally defined the rules allowing a construction of complete test
cases, with preambles, postambles, verdicts and timers. These rules allowed us
to prove that generated test cases are sound (correct implementations are not
rejected) and exhaustive (if we assume a fairness hypothesis on implementations
under test, incorrect implementation can be detected) with respect to the con-
formance relation. A depth first search algorithm implementing these rules has
been described. A first version of.this algorithm has been implemented in a pro-
totype named TGV which produces TTCN test suites from SDL specifications.
TGV has been experimented on an industrial protocol, proving the efficiency
and maturity of the algorithm.

The next step in this study will be the development of a new prototype which
will incorporate the algorithm described in this paper in a unique on-the-fly
algorithm and its integration in a complete validation toot. Another continnation
of the work is to deal with concurrent testing and links with interoperability
testing.

R e f e r e n c e s

[ALHH93] B. Algayres, Y. Lejeune, F. Hagonnet, and F. Hantz. The AVALON
project : A VALidatiON Environment For SDL/MSC Descriptions. In
6th SDL Forum, Darmstadt, 1993.

[Bri88] E. Brinksma. A theory for the derivation of tests. In S. Aggarval and
K. Sabnani, editors, Protocol Specification, Testing and Verification VIII,
tFIP, pages 63-74. Elsevier Science Publishers, B.V., North-Holland, 1988.

359

[CCI88]

[CGPT95]

[CVWY90]

[FGM+92]

[FJJV96]

[FM91]

[FMJJ92]

[IS092]

[JJ89]

[JJ91]

[Pha94a]

[Pha94b]

[Tre95]

CCITT/SGx/WP3-1, Specification and Description Language, SDL.
CCITT Recommendation Z.IO0, 1988.
M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches link-
ing a test generation tool with verification techniques. In A. Cavalli and
S. Budkowski, editors, 8th Int. Workshop on Protocols Test Systems, Evry,
France, pages 159-174, September 1995.
C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory effi-

cient algorithms for the verification of temporal properties. In E.M. Clarke
and R.P. Kurshan, editors, Computer Aided Verification, 2nd International
Workshop, CA V'90, New Brunswick, N J, USA. Springer Verlag, LNCS 531,
1990.
J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A Tool Box for the Verification of Lotos Programs. In 14th
International Conference on Software Engineering, Melbourne, Australia,
May 1992.
J.-C. Fernandez, C. Jard, T. J~ron, and G. Viho. An experiment in auto-
matic generation of test suites for protocoles with verification technology.
under revision for SCP, 1996.
J.-C. Fernandez and L. Mounier. On the fly verification of behavioral
equivalences and preorders. In K.G. Larsen and A. Skou, editors, Com-
puter Aided Verification, 3rd Interna'tional Workshop, CAV'91, Aalborg,
Denmark, pages 181-190. Springer Verlag, LNCS 575, June 1991.
J.-C. Fernandez, L. Mounier, C. Jard, and T. J~ron. On-the-fly verification
of finite transition systems. Formal Methods in System Design, 1:251-273,
1992. Kluwer Academic Publishers.
OSI-Open Systems Interconnection, Information Technology - Open Sys-
tems Interconnection Conformance Testing Methodology and Framework
- Part 1 : General Concept - part 2 : Abstract Test Suite Specification -
part 3 : The Tree and Tabular Combined Notation (TTCN). International
Standard ISO/IEC 9646-1/2/3, 1992.
C. Jard and T. J~ron. On-fine model-checking for finite linear temporal
logic specifications. In J. Sifakis, editor, Automatic Verification Methods
for Finite State Systems, International Workshop, Grenoble, France, pages
275-285. Springer-Verlag, LNCS 407, June 1989.
C. Jard and T. J~ron. Bounded memory algorithms for verification on the
fly. In K.G. Larsen and A. Skou, editors, Computer Aided Verification,
3rd International Workshop, CAV'91, Aalborg, Denmark, pages 192-202.
Springer Verlag, LNCS 575, June 1991.
M. Phalippou. Relations d'implantations et Hypotheses de Test sur des
automates ~ entrdes et sorties. Th~se de doctorat, Universit~ de Bordeaux,
France, 1994.
M. Phalippou. Test sequence using Estelle or SDL structure information.
In FORTE'94, Berne, October 1994.
J. Tretmans. Testing Labelled Transition Systems with Inputs and Out-
puts. In A. Cavalli and S. Budkowski, editors, 8th Int. Workshop on Pro-
tocols Test Systems, Evry, France, pages 461-476, September 1995.

