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Abs t r ac t .  In this paper we attempt to demonstrate that on-the-fly tech- 
niques, developed in the context of verification, can help in deriving test 
suites. Test purposes are used in practice to select test cases accord- 
ing to some properties of the specification. We define a consistency pre- 
order linking test purposes and specifications. We give a set of rules to 
check this consistency and to derive a complete test case with preamble, 
postamble, verdicts and timers. The algorithm, which implements the 
construction rules, is based on a depth first traversM of a synchronous 
product between the test purpose and the specification. We shortly relate 
our experience on an industrial protocol with TGV, a first prototype of 
the algorithm implemented as a component of the CADP toolbox. 

1 Introduct ion 

It  is widely recognized that  testing is an essential component  of the full life- 
cycle of communicat ing systems. However, the process of generating test suites 
is complicated, error-prone and expensive. The intrinsic difficulty comes from 
the black-box nature of the implementation: its behaviour is only observable 
and controlable at the interfaces. In that  context, a formal framework is a pre- 
requisite for giving precise and consistent meanings of test verdicts. The usual 
theoretical approach [Bri88] is to consider a formal specification of the intended 
behaviour of the Implementa t ion  Under Test (IUT). It permits to define the no- 
tion of conformance relation linking an implementat ion to the specification and 
the notion of verdict associated to the application of a test case (set of interaction 
sequences) to an implementat ion,  w.r.t, the conformance relation. The problem 
is to automatical ly  generate correct test cases from a formal specification of 
the IUT. A correct test case, applied to an IUT, will declare "fail" only imple- 
mentat ions which do not conform to the specification (soundness property).  We 
also require that  an implementat ion which does not conform to the specification 
might  be detected by repeating the application of a test case, under a fairness 
assumption on the implementat ion (property of exhaustivity). 

* This work has been partially supported by an industrial contract with Verilog in a 
study for the french DGA (Direction G@n@rale pour l'Armement) 
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During the last decade, testing theory and algorithms for the generation of 
tests have been developed from Labelled Transition System specifications (LTS). 
Test generation involves sub-problems of traversal, comparison or reduction of 
LTS, already addressed by verification. Consequently, we think, among others 
[CGPT95], that time is ripe for linking test and verification. The experience of 
practitioners tells them that it is not reasonable to try to validate all possible 
behaviours of their protocol. It is why they use informal test purposes. Basi- 
cally, we traverse in a depth-first manner, the synchronous product of the IUT 
specification and of the test purpose. During the traversal, we check their mu- 
tual consistency. If so, an acyclic test graph is generated and decorated with 
verdicts and timers. The algorithm is an original extension of the on-the-fly ver- 
ification kernel we developed a few years ago [JJ89, JJ91, FM91, FMJJ92]. It 
provides a complete treatment of the problem of test cases, including pream- 
bles and postambles, verdicts and timers management. It is now well known 
that depth-first traversals are the heart of some good verification algorithms, 
for behavioural comparison and reduction [FM91], as well as for model-checking 
[JJ89, CVWY90, JJ91]. We show that it is also true for test generation, which 
constitutes a good example of transfer from verification to testing. 

The test generator, based on verification technology, has been prototyped in 
the context of an industrial consortium, linking V6rilog, Cap-Sesa, Cnet, Inria 
and the French Army. An experiment was performed on a real ISDN protocol 
specification. The results were very encouraging, confirming the interest of us- 
ing this kind of algorithmic, which is now mature enough to be transfered in 
the industrial world, to deal with real formal specifications. Our approach is 
compatible with symbolic (or structural) ones like TVEDA [Pha94b] which may 
compute test purposes using teachability analysis. 

The presentation is organized as follows. We start by defining the different 
models used for describing test purposes, test cases, the specification and the 
IUT. We define a consistency preorder between test purposes and specifications, 
and a test conformance relation linking implementations to specifications. We 
give the formal rules allowing the construction of a test case from a test purpose 
and a specification. We give some results concerning soundness and exhaustivity 
of our generated test cases. Finally, we give the main results gained during an 
experiment on an ISDN protocol. 

2 M o d e l s  

In this section we first describe the models used for the description of the different 
objects involved in the generation of test cases. They are used to define the 
notion of consistency relating a test purpose with a specification and the notion 
of conformance relating an implementation with a specification. These models 
are then used to define formal rules for the construction of test cases. 
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2.1 Input-Outputs  l abe l l ed  t r a n s i t i o n  systems 

The models used are all based on Input-Output Labelled Transition Systems 
(IOLTS) in which input and output actions are differentiated because of the 
asymmetrical nature of the testing activity. 

We consider a finite alphabet of actions A, partitioned into two sets: input 
actions AI and output actions Ao.  We shall let a,/3 range over A, i, i r range 

M M over AI and o, o / range over Ao. We consider finite IOLTS M=(Q M, A, T , q in i t )  
where Q• is the set of states, q M is the initial state, T M C QM • A • QM is the m l t  

transition relation. 
We adopt the following notations and conventions: Let a E A*, p, q E QM. 

We write p ---~M q iff (p,a,q)  E T M and write p :=:~M q iff 3 a l , a 2 . .  "an E A, 
c~i+l 

P0,'" ",Pn E QM. O" = a l .a2  . . . a n  and Po = P, Pi -+ M Pi+I with i < n, Pn = q. 
A(q) = {a I 3q r and q -%M q'} is the set of immediate actions after q, Z(q) = 
A(q) MAx is the set of inputs after q, and O(q) = A(q) M Ao is the set of 
outputs after q. Suec~(q) = {q' [ q ~M q~} is the set of states reachable from 
q by means of a transition labelled by a. We write ~(p --%M) if there is no 
transition starting from p and labelled by a, -~(p -%M) = (Succ~(p) = 0). We 
note p a f t e r  c~ = {q E QM ] p ~ M  q} the set of states reachable from p by the 
sequence of transitions cr and traces(p) = {cr E A*[p a f t e r  a r 0} the set of 
sequences starting from p and reaching a state in QM In the sequel, we will not 
distinguish between a transition system and its initial state. 

An IOLTS satisfies the controlability condition if and only if for each state, 
if an output is enabled, then there is exactly one outgoing transition. More 
formally, if IX[ denotes the cardinality of the set X,  Pp. ]O(p)t = 0 V (tO(p)l = 
1 A O(p) = X ( p ) ) .  

An IOLTS is deterministic if and only if Vp, V~r. IP a f t e r  cr] _< 1. 
We consider four kinds of !OLTS: the specification, the implementation, the 

test purpose behaviour and the test cases which meanings are described below. 

2.2 Spec i f i ca t ion  a n d  i m p l e m e n t a t i o n  

An IUT is placed in a test environment in which the tester can only interact with 
inputs and outputs. Thus the tester has an external view of the implementation. 
In contrast, a specification generally models the interna~ view of the system, i.e. 
the behaviour of the system with its internal actions, without considering the 
way it interacts with the environment. But this interaction should be taken into 
account in the test generation. As an example, if the implementation commu- 
nicates asynchronously with its environment through several points of control 
and observation (PCOs), two subsequent and causally ordered outputs may be 
observed by the environment as two concurrent inputs if they occur on two dif- 
ferent PC0s.  In the following, we will consider the environmental point of view: 
outputs are controlable actions initiated by the environment (which may be the 
tester) and sent to the IUT whereas inputs are observable actions~ initiated by 
the IUT and received by the environment. 
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While testing an IUT, we check for the conformance of the IUT in its envi- 
ronment with the specification in the same environment. Thus we first have to 
transform the specification into its external view. Internal actions which are not 
observable by the environment have to be hidden and replaced by a v transition. 
Inputs are replaced by outputs and vice versa, taking care of concurrency which 
may be produced by asynchronous interaction. This is called the mirror image 
operation. After that,  we have to apply a v-reduction which suppresses v transi- 
tions. The transition system of the resulting specification is then an IOLTS. This 
has been implemented on-the-fly in our prototype but, due to space limitations, 
we will not give more details of how this can be done effectively. Deadlocks are 
often supposed to be observable by a tester. In practice the tester uses timers to 
achieve this (see 3.2) and we have to suppose that  a t imeout occurs if and only if 
the implementation is deadlocked. This is why timeouts are considered as inputs 
of the tester. If the specification is allowed to deadlock in a particular state, this 
is modelled by a special transition ~ considered as an input of the environment 
initiated by the system. This treatment of deadlocks is quite similar with what 
is done in [Tre95, Pha94a]. Finally, the last operation is determinization. 

S The resulting specification is a deterministic IOLTS S = (QS, A, T s, qinit) 
with A = AI  U Ao  and ~ C AI  a distinguished'input. Without loss of generality, 
we will suppose that  S starts with outputs of the environment i.e. A(qSnit) c Ao .  
In the following, specification will always correspond to the external view S 
of the specification. Though the implementation is not necessarily a transition 
system (it may be a physical system), as in all testing theories, we have to 
reason formally about it and model its behaviour. As it is only considered by 
its interactions with the environment, it is also modelled as an IOLTS I = 
(QI  A I, T' ,  q~,it), with A ~ = A~ U A~), Ax C A~. 

2.3 Tes t  P u r p o s e  

A test purpose defines a property on some particular interactions between the 
IUT and the tester. It consists in two parts : a behavioural part and a constraint 
part. The constraint part gives some property on the state of the implementation. 
It can be seen as computable by the environment and will be modelled by an 
input for the tester. Thus it is integrated in the behavioural part: 

D e f i n i t i o n  2.1 (Test Purpose behaviour) A test purpose behaviour is a deter- 
ministic acyclic IOLTS  T P  = (QTe, A, TTP, qiTni~) satisfying the controlability 
condition and with a set of distinguished states AcceptC QTP with no successor. 

2.4 Test  Cases  

A test case is a set of sequences of actions describing all the interactions occuring 
between an IUT and a tester which wants to verify that  an implementation 
conforms with the specification according to a test purpose. In an industrial 
context, test cases are often described using the Tree and Tabular Combined 
Notation (TTCN [ISO92]). Some transitions are decorated with verdicts with 
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the following informal meaning : 
(PASS): means that  the test purpose is satisfied by the current sequence. But 
a sequence leading to the initial state (Postamble) must be applied in order to 
carry on another test case. It is a temporary verdict as the application of the 
postamble may produce Fail verdicts. 
PASS: this is a definitive verdict meaning that the initial state has been reached 
after a (PASS) verdict. The sequence between (PASS) and PASS is a Postamble. 
FAIL: means non-conformance of the IUT. 
INCONCLUSIVE: this verdict is used in practice when a reception is allowed in 
the specification but cannot lead to a (PASS) or leads to a behaviour that  is not 
considered in the test case because testing cannot be exhaustive in practice. 

De f in i t i on  2.2 (Test Case) A test case is a deterministic acyclic IOLTS T C  = 
(QTC, A, TIc,  qiTiCt) satisfying the controlability condit{on. A test suite is a set of 
test cases. 

2.5 C o n s i s t e n c y  a n d  t e s t  c o n f o r m a n c e  r e l a t i o n  

In this section, we define what we mean by consistency of a test purpose w.r.t 
a specification and which conformance relation linking the implementation with 
its specification is considered. 

A test purpose T P  is said to be consistent w.r.t a specification S, denoted 
by TP s qinit "~ qinit, if the two following conditions are satisfied: the set of behaviours 
described by the test purpose is included (see the definition below) in the set 
of behaviours of the specification, and from each state of S corresponding to an 
Accept state of TP, there is a path in S to s qinit' 
D e f i n i t i o n  2.3 (Consistency preorder). A relation [" C_ QTr, • QS is a consis- 
tency relation i f  and only if R C .T(R) where, 

:r(R) = P )I 
(Va, VqTr, . pTr" ~TP qTP = 

pVP E Accep~ 

TP S if and only if there qinit "~ qinit 

3q s, q~, 3cr E (A \ {a})* �9 ps : :~s  q~ a--%s qS A 
(qTp, qS) E n A (pTP, q~) E R) A 

30"EA* - pS ~ s  qiSnit} 

is a relation R C_ . r (R) ,  containing (qi ni , qi i ) 

If the test purpose and the specification are consistent, we can derive sound 
test cases. A test case is sound if it gives a negative verdict only if thc imple- 
mentation is not correct w.r.t, the specification. 

We consider a conformance relation quite similar to those in [Tre95, Pha94a]. 
Informally, the conformance relation states that outputs of the environment 
which are not accepted by the specification may be accepted by the implemen- 
tation but inputs produced by the implementation must be also produced by the 
specification. 

D e f i n i t i o n  2.4 (Test conformance relation) Let S and I be two IOLTS describ- 
ing the external view of a specification and an implementation, 

I i o c o n f S / f  and only if V~ E t races (S ) ,Z ( I  a f t e r  0-) C 77(S a f t e r  0-) 
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3 C o n s t r u c t i o n  rules  

The essence of the on-the-fly method is to traverse a kind of synchronous product 
between two graphs, one for the specification and the other for the property to 
be checked. We first define this synchronous product. Then we give the rules for 
the test case construction, including decoration with verdicts and timers. Finally 
we give some properties of the generated test cases. 

3.1 S y n c h r o n o u s  p r o d u c t  

A transition is firable in the product if either it is firable in the two components 
or it is firable only in the specification. 

D e f i n i t i o n  3.1 (synchronous product) We define the product 
s Qp QTP QS OP T ~ P = (QP, A, T P, (qiWiPt, qinit)), with C_ • where and are the 

smallest sets obtained by application of the following rules: 
- [Sync 1] TP S (qinit, qinit) E QP, 
- [Sync2] (pTP, pS) E QP pTP ~TP qTr' pS ~S qS 

(qTP, qS) EQP (pTP pS)~r,(qTP,qS) 

-- [Sync3] (pTP, pS) E QP ..~(pTP ~TP) pS ~S qS (pTP, pS) ~ Accept  x {qiSnit } 
(p~P,q~) ~ Q~ (p~,p~) ~ (p~P, qS) 

3.2 T h e  t e s t  case  c o n s t r u c t i o n  

The algorithm is based on a depth first traversal of the synchronous product, def- 
inition 3.1. Two mains actions are performed : the consistency relation between 
the test purpose and the specification is checked while a direct acyclic graph 
DAG is synthesized, definition 3.2. More precisely, a stack stores the states of 
the current execution sequence. The algorithm proceeds as follows, starting from 
the initial state, (qi~iPt, qiSnit). Let (pTP, pS) be the current state, i.e. the top of the 
stack, and (pTp,pS) ..%p (qTP, qS) a transition not yet analyzed. If qTP is an ac- 
cepting state, then a postamble is computed by searching a shortest path from 
qS to s . qinit, else if (qTr,, qS) belongs to the DAG then the transition is added to 
the DAG; otherwise, if (qrP, qS) does not belong to the stack nor to the visited 
states, then the state (prP pS) is pushed on the stack. When all the transitions 
starting from the state (prP pS) are analyzed, then (pry, pS) is popped in the set 
of visited states. The operator Comb is used in order to ensure the controlability 
condition. The algorithm terminates when the stack is empty and succeeds if 
(qiTniet, qiSnit) belongs to the preamble and if Accept x {qSinit } is a subset of the vis- 
ited states. The algorithm requires a time complexity linear with respect to the 
size of the transition relation of the synchronous product and a space complexity 
linear with respect to its state space. 

D e f i n i t i o n  3.2 We define DAGs syntactically as n :: 0 I 1 I a ; n  tn  + n  
We also define a predicate ~_v for v = 1,2,3. by (pTp,pS) : n means '~he 

node associated with (pTP,pS) is n and belongs to the preamble, test case body 
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and postamble if  v is respectively 1, 2 or 3". We use Node((p vp,ps)) to denote 
the node currently associated to (pTP,pS). Initially Node((pTe,pS)) = O. An oper- 
ator Comb is used to accumulate the nodes in order to ensure the controlability 
condition: 

{ ~  n if a E Ao, m = Zai; ni a.nd Vi, c~i 6 AI 
Comb(m, 4; n) := if m = a ' ;  n' and 4' 6 Ao 

+ 4; n otherwise 
P r e a m b l e  

v e {1, 2} 11~ ~qTP TP S TP S \ init,qs) : n  (qinit,P) --%P (qinit ,q) 
T P  S Test  Case  B o d y  111 (qinit,P) : C~176 

112 (qTP, qS) :n  qTP~ TP TP S qinit (qinit,P) ~ P  (qTP qS) 
T P  S T P  S . ~.2 (q in i t ,P) :  C~176 )), 4, n) 

~_2 (qTP, qS) :n  pTP:# WP qinit (pTP ps) ~ p  (qWP qS) 

I-2 (pTP,pS): Comb(Node((pTP pS)), (~; n) 

P o s t a m b l e  

t.2 (pTP,pS): Comb(Node((pTP,pS)), o*; n) 

~ (p~,q~) :u (p~',p~) &~ ( f L q  ~) p ~  e Accept 
113 (pWP,pS) : Comb(Node((pTP,pS)), 4; n) 

T h e  t e s t  c a s e  v e r d i c t s  We define the par t ia l  funct ion v e r d i c t  which assigns 
verdicts  to some t ransi t ions  in the D A G  which construct ion is defined above. 
This  funct ion is defined by means  of the rules below. 

We comple te  the definition of the predicate  t -v for v = 4, 5. ~_4 ( p r P  pS) : 1 
means  t ha t  " the node associated with (pTP,ps) is 1 and is the ending s ta te  of a 
t rans i t ion  labelled by an Inconclusive. We need a new s ta te  Fail .State  in the 
synchronous  p roduc t  and the ax iom ~-'~ Fail_State : 1. 

In the sequel, u, v range over 1,2, 3,4, 5. 

Pass  : assigned to a transition in the DAG if the ending state is in the Postamble and 
the specification is in state q~nit 

~ p T , , p S ) : n  V~ {2,3} e ~ ( C L  s qini~;) : 1 (pTP,ps) .~p (qTP, qinitS ) 
verdict(n~ c~, 1) = Pass 

(Pass)  : assigned to a transition linking a state of the Test Case Body to a state in 
the Postamble. 

e2 (pT~,ps): m e~ (CLqs) :  ~ ( fLp~)  &.  (qT.,qs) 
v e r d i c t ( m ,  4, ~) = (Pa~,~) 

I n c o n c l u s i v e  : add a new transition with verdict Inconclusive from a state in the 
DAG which allows an input reaching a state not in the DAG 

t_,(pWP,pS): n y.~(qWP, qS) U, V6{1 ,2 ,3}  (pTP, pS) 2+p(qTP,q s) i . 6 A I  

p4 (qTP, qS): 1 (n,i,  1) 6 DAG ve rd i c t (n , i ,  1) = Inconclusive 
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F a i l  : in each state of the DAG, an input of the implementation which is not allowed in 
the specification should produce a Fail verdict. A new transition with verdict Fail 
is .(virtually) added. In practice this corresponds to an Otherwise Fail in TTCN.  

~_, (pWP,pS): n v e {1,2,3} ((i e A~,"((pTP, p s) -~P)) or i E A} \ A I )  

F 5 Fail_State : 1 (n,i,  1) E DAG ve rd i c t (n , i ,  1) = Fail 

T i m e r s  T imer s  are useful in practice in order to insure against  imp lemen ta t ion  
deadlocks.  T h e  m a n a g e m e n t  of  t imers  is made  on the DAG generated by the 
test  genera t ion  rules 3.2. As t imers  depend on inputs,  we associate a t imer  t~ to 
each input  i labell ing a t rans i t ion in the test  case. Three  opera t ions  on a t imer  
are available:  S t a r t ( t l )  which initializes the t imer  and mus t  be done as soon as 
input  i is expected,  Caacel( t~)  which is done when i is received or when, due to a 
choice, i is no m o r e  expected,  and T imeout ( t i )  which represents the observat ion 
of a deadlock when wait ing for i. 

Let (pTP,ps) ~-~T (qTP, qS) be a t rans i t ion of the synchronous produc t  and 
t : ( n , a ,  m)  the corresponding t rans i t ion in the DAG.  Let IrLd((prP,p~)) be 
the  independency  relat ion which represents the concurrency. The  independency 
re la t ion is a b inary  symmet r i ca ]  relat ion defined on the inputs  of a state:  two 
inputs  are independan t  if they m a y  be received in any order.  We denote by 
Running(n)  the set of t imers  tha t  have been s ta r ted  in the sequences leading to 
n and have not  yet  been cancelled, C1 and St are sets of t imers  t ha t  have to be 
respect ively  cancelled or s ta r ted  after act ion o~. Finally, d i s c a r d ( t )  means  t ha t  t 
is discarded f rom the DAG.  The  following rules specify the t imers  m a n a g e m e n t :  

In l t  As specifications, test cases start  with an output, thus if r is the root of the DAG, 
Running(r) = 0 

C a n c e l  a n d  S t a r t  

t :  (n ,~ ,m)  e DAG Running(n) = R 
t ' :  (n, a; Cancel(C/); S ta r t (S t ) ,  m) E DAG Running(m) = (R \ Cl) U St 

discard( t )  

where c l  = {t~li ~ z((pTP,ps)) ^ (~,i) r Ind((pT~,ps))} 
s t  = {t,l~ e z((pT~,p~))} \ ( R \  CI) 

i.e. all timers corresponding to inputs not concurrent with a must be cancelled and 
a timer must be started for each input available in m if it is not ~lready running 
in n, except if it has just been cancelled. 

T i m e o u t s  We suppose that  5 E Az. By the construction and verdict rules, in each 
node of the DAG, there is a transition labelled 5 and its verdict may be (PASS) if 
5 is in the test purpose, Inconclusive if it is in the specification or Fail otherwise. 
If an input i (i may be 5) is possible in a state of the synchronous product, a 
transition labelled by Timeout(t  0 is added. The verdict assigned to this timeout 
must be the same as the verdict assigned to 5. 

t : ( n , i , m )  E DAG l e A r  v e r d i c t ( t ) # F a i l  t ' : (n ,  5,1) E DAG 
t " :  (n, Timeout(ti), 1) e DAG ve rd i c t ( t " )  = ve rd i c t ( t ' )  

D i s c a r d  5 For each transition t : (n, 5, 1) E DAG, apply d i scard( t )  
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Another depth first search is performed on the DAG to generate the timers 
operations. Unlike the DAG construction, which works by synthesis (just around 
the pop operation) the operations on timers are generated before the exploration 
of the state successors (around the push operation). The running set associated 
with each state is initialized to empty set at the initial state. It is inherited from 
a state to its successor. During this step, on one hand, each transition of the 
DAG is decorated with cance l  and s t a r t  operations on timers, on the other 
hand some transitions labelled by t i m e o u t  are added, following the previous 
rules. 

3.3 R e s u l t s  

P r o p o s i t i o n  3.1 Let P be the synchronous product between S and T P  (defi- 
nition 3.1) and 7.(TP, S) be the DAG synthesized by applying the rules of def- 
inition 3.1. TP S If (qinit,qinit) is the root of the dag, then TP s qinit -~ qinit else the test 
purpose and the specification are not consistent. 

Let OT(E) = {TP G IO.LTS ] qTP s init "~ qinit } be the set of test purposes which 
are consistent with respect to the specification S. Let TS(S)  = {7"(TP, S) I 
T P  G OT(S)}  i.e. the set of test cases (test suite) that can be constructed for a 
specification S. For 7" E TS(S) ,  we denote Max_traces(7.) = {a ]A(7" a f t e r  c~) = 
0} the set of maximal traces of 7-. For ~ = cr~.a E Max.Traces(7.), and for an 
implementation I, we define verd• I) = vez'd• a f t e r  ~r', a, 1). Notice 
that  7" is deterministic, thus 7" a f t e r  ~r' is unique. We have the two following 
results: 

P r o p o s i t i o n  3.2 (Soundness) Assuming that timeouts are produced if and only 
if the implementation is deadlocked, for every implementation I, if the applica- 
tion of a test case 7- E TS(S )  produces a Fail verdict then I does not conform 
with S: 
(37- e TS(S) ,  3a ~ Max_Traces(7.), , , e rd ic t (~ ,  Z) = Fail) ~ - ( I  ioconfS) .  

This second proposition is not exactly the converse. Implementations can be non 
deterministic. Thus the application of the same sequence of actions of the tester 
may produce different verdicts. Thus, like other authors [Pha94a], we assume a 
bounded fairness hypothesis on implementations. This informally means that  a 
bounded number of executions of a non deterministic implementation will show 
all its behaviours. For n 6 IN, we define ve rd i c t* (n ,  a, I) to be Fail if one of the 
n applications of a on I produces a Fail verdict, Pass otherwise. 

P r o p o s i t i o n  3.3 (Exhaustivity) For every implementation I, if I does not con- 
form with S, there exists a test case 7. E TS(  S) which can produce a Fail verdict: 

io r  s)  (37- z Ts(s ) ,  Max_Traces(7.), 3n e verdict(n,  Z) = 
Fail). 
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4 E x p e r i m e n t a t i o n  

The algorithms and transforma'cions described in previous sections have been 
developed in the CADP toolbox [FGM+92] as a software component named 
TGV (for Test Generation using Verification techniques). In order to prove the 
feasibility of the approach, we have applied TGV to an industrial protocol, the 
DREX protocol. 

4.1 T G V  

As we were primary interested by demonstrating the feasibility of our approach 
before a real implementation, all algorithms are not yet combined into a unique 
on the fly algorithm. We have used the Geode simulator [ALHH93] from Ver- 
ilog as an SDL [CCI88] front-end which produces state graphs representing the 
behaviour of a specification, constrained by the test purpose constraints. 

Thus the inputs of TGV are a state graph produced by Geode (from a SDL 
specification of the protocol) and an automaton formalizing the behavioural 
part of a test purpose. The output is the behaviour description and constraints 
definitions of a test case in the standard TTCN format [IS092]. 

Different steps bring out this output. The first step takes as input the state 
graph produced by Geode and transforms it into a graph representing the observ- 
able behaviour of the protocol specification in the testing environment (external 
view graph). Several transformations are performed in this step: abstraction of 
unobservable internal actions, determinization, mirror image which transforms 
inputs into outputs and vice versa and construction of diamonds modelling con- 
currency introduced by the asynchronous interaction between the tester and the 
IUT. The next step is the kerneI of TGV. The output is the DAG which con- 
tains all informations needed in TTCN test cases. The last step takes as input 
the DAG. The algorithm extracts from the transition labels the message pa- 
rameters and produces the constraint part in TTCN GR format. The remaining 
graph is unfolded into a tree describing the behavioural part of the test case in 
TTCN GR format. Finally the constraint and behavioural parts of the test case 
are translated into the graphical format TTCN GR. 

4.2 Expe r imen t  wi th  the  D R E X  protocol  

TGV has been used during an industrial contract for the Direction Gdndrale pour 
l'Armement. The protocol used for the experiment was a military protocol called 
the DREX protocol which allows the access to the transit network Socrate of the 
French Army, defined in the framework of Integrated Service Military Network. 
This protocol has been chosen for three main reasons: firstly, we wanted to prove 
the feasibility of automatic test generation methods on realistic specifications; 
secondly, an SDL specification of a similar protocol was already available, and 
finally, hand written test suites had already been produced. This last point is 
important as hand written test cases have served as a basis for comparison with 
automatically generated test suites. 
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The SDL specification models the behaviour of the DREX protocol on the 
network, communicating asynchronously with two users by two PCOs. The size 
of the' SDL specification was about 2000 lines. 54 test purposes have been con- 
sidered and 54 corresponding test cases have been generated. The time needed 
for the generation of a test case has to be separated into two parts: the time 
needed for the graph generation with Geode which took between 3.5s and 400s 
and the test case generation with TGV which took between ls and 2s. 

We have compared automatic test suites generated by TGV with hand writ- 
ten test suites in a qualitative way. Even though TGV is just a prototype, all 
hand written test suites or similar ones have been generated. The differences 
that were observed were principally due to the fact that TGV treats system- 
atically concurrency and timers. For example, in some hand written test cases, 
concurrency between events were forgotten and risked an incorrect verdict. Some 
differences were also due to the formal interpretation of test purposes. More de- 
tails and other quantitative results of this study can be read in [FJJV96]. 

5 C o n c l u s i o n  

In this paper, we have shown how on-the-fly verification techniques could be used 
in the generation of test suites. Starting from an already known conformance re- 
lation and from the experiment gained with the analysis of hand written test 
cases, we have formally defined the rules allowing a construction of complete test 
cases, with preambles, postambles, verdicts and timers. These rules allowed us 
to prove that generated test cases are sound (correct implementations are not 
rejected) and exhaustive (if we assume a fairness hypothesis on implementations 
under test, incorrect implementation can be detected) with respect to the con- 
formance relation. A depth first search algorithm implementing these rules has 
been described. A first version of.this algorithm has been implemented in a pro- 
totype named TGV which produces TTCN test suites from SDL specifications. 
TGV has been experimented on an industrial protocol, proving the efficiency 
and maturity of the algorithm. 

The next step in this study will be the development of a new prototype which 
will incorporate the algorithm described in this paper in a unique on-the-fly 
algorithm and its integration in a complete validation toot. Another continnation 
of the work is to deal with concurrent testing and links with interoperability 
testing. 
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