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Abstract. '/'his is a brief overview of the Mul~p verification system. 

The Mur~ description language 

Mur~ is both a description language and a verifier for finite state concurrent sys- 
tems [DDHY92]. It is appropriate for protocols and finite-state systems which can 
reasonably be modelled as a collection of processes that run at arbitrary speeds, where 
the steps of the processes interleave (only one process takes a step at any time), and 
where the processes interact by reading and writing shared variables. The Murp ver- 
ifier works by explicitly generating states and storing them in a hash table. We have 
put some effort into developing state reduction techniques, including symmett2t re- 
duction [ID93a, ID93b] , exploitation of reversible rules [ID96a], and verification of 
systems with varying numbers of replicated components [ID96b]. We have also inves- 
tigated probabilistic verification techniques in Mur~ [SD95c]. 

The Mur~ description language was inspired by Misra and Chandy's Unity formal- 
ism [CM88]. A Mur~ description consists of a collection of declarations of constants, 
data types such as subranges, records, and arrays, global variables, transition rules 
(which are guarded commands), start rules, and invariants. 

The rules are similar to compound statements Pascal or Modula. Indeed, a rule 
can be arbitrarily complex, yet it is still executed atomically, meaning that the other 
rules cannot interfere. A state consists of the current values of the global variables. 
An execution of a Murqa program is any sequence of states that can be generated by 
starting in one of the states generated by a start rule, then repeatedly selecting a rule and 
executing it. Executing a rule generally changes the state, because the rule assigns to 
the global variables. Mur~ is nondeterministic: there can be many executions, varying 
according to which rule was selected at each step of the execution. 

A user can encode one of several concurrent processes by declaring variables for 
the process state and providing rules to capture its behavior. The behavior of several 
processes can be simulated by forming the union of the state variables and rules into 
a single Mur~ program. Rule selection then simulates scheduling choices (the process 
whose rule is chosen runs next) as well as nondeterministic choice within a process. 

Verification 
The basic Mur~ verifier generates all of the reachable states systematically, using 
a standard search algorithm such as breadth-first search. The search uses two data 
structures: a set of states whose descendants must be explored, and a table of states 
which have been previously encountered. When the search generates a state that is 
already in the table, the search is cut off. The invariant, which is a predicate which 
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reads the state variables, is evaluated in each newly generated state. If the result is false, 
verification halts and an error message is generated. The same effect can be achieved by 
an execution of an error  statement in a rule. Similarly, if a state has no successors other 
than itself, the verifier halts and reports an error. In either event, the verifier also prints 
an execution from a start state to the offending state, to help with debugging. 

We believe that explicit state verifiers are still useful, even when there are highly 
efficient B DD-based verifiers. One reason is that they are more predictable- performance 
is more closely related to the number of states, so the behavior of the verifier is more 
stable than with clever symbolic representations. The other reason is that some protocols, 
notably the ones we were most interested in verifying, require great cleverness to attack 
with successfully with BDDs. A naive approach performs much worse than Murk. 
It is necessary to use non-obvious representations of state, identify variables that are 
functions of other variables, and/or decompose BDDs in various ways [HD93b, HD93a, 
HYD94]. Thus, verifying a such protocol with BDDs requires more expert users than 
attacking the same protocol with Murk. 

The basic Mur~ verifier has been applied very successfully to several problems. 
It is especially suitable for multiprocessor cache coherence problems, because those 
were the problems we were working on most intensively when we were designing 
and redesigning the verifier. However, it has also been used for link-level protocols, 
a hybrid byzantine agreement algorithm, mutual exclusion algorithms, memory model 
specifications, and probably numerous other examigles. 

Symmetry reduction 
In the last few years, we have found several ways of improving the performance of 
Murk. The first was to exploit symmetry [ID93a, ID93b]. In some cases (particularly 
high-level descriptions of multiprocessor cache coherence protocols), components or 
values of a type can be exchanged arbitrarily without affecting the future behavior of the 
protocol. We have exploited this in Mur~ by adding a new data type, called a ScalarSet, 
which is a subrange type with the additional restriction that it cannot be used in any 
way that "breaks the symmetry" between elements of the type (for example, there are 
no literal constants of the type, and one value cannot be compared with another using 
<). The Mur~ semantic analyzer enforces these constraints, so that symmetry cannot 
be broken in the description. 

Symmetry is exploited in the verifier by doing symmetry reduction. A canonicaliza- 
tionfunction is constructed by the verifier, which maps all states which are equivalent 
up to rearrangement of the elements of a scalarset to a particular representative state 
(a simple example of normalization would be sorting an array whose index set is a 
scalarset, if there are no scalarsets in the array itself). States are canonicalized before 
they are looked up or stored in the state table, so a state is not inspected if it is equiv- 
alent to a state in the state table, even if the states are not identical. This optimization 
has resulted in 100-fold reductions in the numbers of states generated in some cache 
coherence protocols. In certain cases (when a scalarset is not used as an array index), 
systems with unbounded scalarsets can be verified. For example, this property can be 
used to verify cache coherence regardless of the number of data values, and, hence, the 
number of bits in each data value. 

Recent improvements 
More recently, we have found an optimization which avoids storing transient st/~tes in 
the state table. The optimization works by identifying rules that do not lose information 
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when they are executed. The verifier can execute the "backwards" to map normalize 
transient states by finding a unique non-transient progenitor state from which they 
evolved [ID96a], 

Most recently, we have developed a way of verifying certain systems with arbitrary 
numbers of replicated components in Mur~ [ID96b]. The replicated components are 
flagged by using a datatype RepetitivelD, which is similar to a scalarset type but even 
more restricted. The verifier exploits this by working in an abstract space, where every 
global state is mapped to an abstract state which keeps track of whether there are zero, 
one, or more than zero of the replicated components in each component state. This 
method can be used to show that cache coherence protocols work properly for any 
number of processors. The method can be combined with symmetry reduction and the 
method of the previous paragraph to yield truly massive reductions in the state explosion 
problem. 

We have also been exploring probabilistic verification algorithms, originally based 
on ideas from Gerard Holzmann, Pierre Wolper, and Denis Leroy [Ho187, WL, WL93], 
in which a small signature for each state is entered into the hash table instead of the state 
itself, saving a great deal of space at the expensive of some probability of producing 
a false positive result. The key is to find a bound on this probability, as Leroy and 
Wolper did. We have found several ways to reduce this bound, by changing the search 
and hashing algorithms and doing a more refined analysis of the probability [SD95a, 
SD95b, SD96]. This work has culminated in a factor-of-four reduction in the number 
of bits required per state, compared with Wolper and Leroy's original result, while 
guaranteeing the same or lower probability of missing an error, 

Liveness 

A few years ago, we implemented a version of Mur~ which could verify common forms 
of liveness properties, expressed in a subset of linear temporal logic, using quite efficient 
state exploration algorithms. However, we have not updated the liveness verifier to use 
symmetry reduction and subsequent optimizations. 

The Mur~ verifier is available free by anonymous ftp from 
s n o o  z e .  s t a n f o r d ,  edu  (directory/pub/murphi), under very liberal licensing terms. 
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