
The Concurrency Factory: A Deve lopment
Environment for Concurrent Systems*

Rance Cleaveland
Dept. of Computer Science

N.C. State University
Raleigh, NC 27695-8206

r a n c e | edu

Philip M. Lewis, Scott A. Smolka, Oleg Soko]sky
Dept. of Computer Science

SUNY at Stony Brook
Stony Brook, NY 11794-4400

{pml, sas , o leg}Qcs .sunysb .edu

Abstract . The Concurrency Factory supports the specification, simu-
lation, verification, and implementation of real-time concurrent systems
such as communication protocols and process control systems. While the
system uses process algebra as its underlying design formalism, the prl-
mary focus of the project is practical utility: the tools should be usable
by engineers who are not fvaniliar with formal models of concu~ency~
and it should be capable of handling large-scale systems such as those
found in the telecommunications industry.
This paper serves as a status report for the Factory project and briefly
describes a case-study involving the GNU UUCP i-protocol.

1 Introduction

The Concurrency Factory is an integrated too]set for specification, simulation,
verification, and implementation of real-time concurrent systems such as com-
munication protocols and pzocess control systems, Two themes underpin the
work done on the project: the use of process algebra {Mi189, BK84, Hoa85] as a
formal design notation, and the provision of practical support for formal design
analysis. Our goal is to make the Factory usable by system engineers who may
not be familiar with formal verification as well as applicable to problems of the
size found in industrial applications.

In order to achieve these aSms, the Factory includes the following major
components.

- A graphical editor, VTView ITre92], and a simulator, VTSim [:Iai93], for for
hierarchically structured networks of flnlte-state processes. The graphical
language, GCCS, resembles informal design diagrams drawn by engineers
but possesses a formal, process-algebra-based semantics. We are currently
extending the GUI to allow processes to be embedded in states of other
processes, thereby permitting compact specifications such as those found in
statecharts [Har87].

* Research supported in part by NSF Grants CC1%-9120995~ CC1%-9208585, CCR-
9257963, and CC1%-9402807, AFOSlq. Grants F49620-93-1-0250 and F49620-95-1-
0508, and ONR Grant NO0014-92-J-1582.

399

- Support for system designs expressed in a progrsmmlng-language-inspired
design notation, VPL [Sok96]. VPL is a simple language for concurrent pro-
eesses that communicate values from a finite data domain; as is the case
with GCCS, however, the language features an underlying process-algebraic
semantics. A compiler translates VPL programs into networks of finite-state
processes.

- A collection of analysis routines that currently includes linear-time local
and global model checker for the alternation-free fragment of the modal mu-
calculus [CS93, Sok96], a local model checker for a real-time extension of this
logic [SS95], and strong and weak bisimulation checkers.
Care is being taken to ensure that these algorithms are efficient enough to
be used on real-life systems. For example, we are investigating how these
algorithms can be parallelized [ZS92, Iic94], and made to perform incremen-
t Uy [ss94]

- A c o m p i l e r for transforming VTView and VPL specifications into executable
code. The current Factory prototype produces Facile [GMP89] code, a con-
current language that symmetrically integrates many of the features of Stan-
dard ML [Mil84] and CCS [MUg9]. We are considering adding a concur-
rent extension of C++ as another target language. The compiler relieves the
user of the burden of manuMly zecoding their designs in the target language
of their final system.

The Concurrency Factory is written in C++ and executes under X-Windows,
using Motif as the graphics engine, so that it is efficient, easily extendible, and
highly portable. It is currently running on SUN SPARCstations under SunOS
Release 4.1.

The remainder of this note describes VTView and VTSim and briefly dis-
cusses the i-protocol study. A fuller account of the system may be found in
[CGL + 94] and at URL http://~'ww, cs. sunysb, edu/~oncuxr/.

2 V T V i e w , G C C S a n d V T S i m

The graphical user interface of the Concurrency Factory consists of the graphical
editor, VTView [Tre92], and the graphical simulator, VTSim [Jai93]. VTView
[Tre92] supports the design of hierarchically structured systems of communicat-
ing tasks expressed in GCCS, a graphical specification language. GCCS provides
system builders with intuitive constructs (buses, ports, links, a subsystem facil-
ity, etc.) for concurrent systems, and it allows for both top-down and bottom-up
development methodologies. The tool maintains an internal representation of
systems as they are being crcated; this internal representation may then be ma-
nipulated by other tools in the system.

In contrast with other graphical languages [Hat87, Mar89], GCCS is designed
to model systems in which processes execute asynchronously (although commu-
nication between processes is synchronous). The language is equipped with two
semantics: one involving a translation into Milner's CCS [Mi189], and another in

400

the form of a structural operational semantics, g la Plotkin [Pio81]. The latter
semantics has been "implemented" in the Factory as a collection of methods that
compute the set of transitions that are possible for a system in a given state.
encapsulating the semantics of VTView objects, all tools within the Factory,
including the simulator and model checkers, a~e guaranteed to interpret GCCS
systems.

VTSIm [Jai93] permits users to simulate graphically the execution of GCCS
systems built using VTView. The tool provides both interactive and automatic
modes of operation, and it also includes features such as breakpoints and reverse
execution. The user may view the simulated execution of a system at different
levels in the structure; one can either choose to observe the simulation at the
interprocess level and watch the flow of messages, or one can look at individual
processes in order to see why messages are sent when they are.

3 A Case Study: The i-protocol

The most sophisticated case study undertaken to date involved the use of the
Concurrency Factory's local model checker to uncover and correct a subtle live-
lock in the i-protocol, a bidirectional sliding-window protocol implemented in the
GNU UUCP file transfer utility. We analyzed a version of the protocol whose
window size was 2; in the course of the analysis, the model checker explored
1.079 x 10 s states out of a total estimated global state space of 1,473 x 1012.

One key to the successful outcome of the case study was the use of an ab-
straction to reduce the message sequence number space horn 32 D the constant
defined in the protocol's C-code - - to 2W, where W is the window size. This
insight underscores a central feature of practical use of formal verification: user
understanding of the system being analyzed is crucial.

4 Fu tu r e Work

We plan to extend the Factory in several directions, including the generation
of simulator-based diagnostic information for verification routines, the develop-
ment of improved state-space management techniques based on the underlying
process-algebraic model, the support of languages besides Facile by the design
compiler, and broader support for real-time systemso

References

[BK84] J.A. Bergstra and J. W. Klop. Process algebra for synchronous communi-
cation, lnforraotlon and Computation, 60:]09-137, 1984.

[CGL + 94] R. Cleaveland, J. N. Gada, P.M. Lewis, S. A. Smolka, O. Sokolsky, and
S~ Zhang. The concurrency factory ~ practic~ tools for specification, simu-
lation, verification, and implementation of concurrent systems. In G.E. Blel-
loch, K.M. Chandy, and S. Jagaxmathaxt, editors, Proceeding~ of DIMAC8

401

[CS93]

[aMP89]

[Har87]

[oa85]

p i93]

 ic94]

[Mar89]

[84]

[Mu89]

[PioSa]

[Sok96]

[ss94]

[ss95]

[%e92]

[zs92]

Workahop on Specifica~on of Pa~oJlel Algorithma, volume 18 of DIMA CS
Seriea in Diacrete Mathematic, and Theoretical Computer Science, pages
75-90, Princeton, N J, May 1994. American Mathematical Society.
R. Cleaveland and B. U. Stetfen. A linear-time model checking algorithm for
the alternation-free modal mu-calculus. Formal Methodz in Syatem Design,
2, 1993.
A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmertric integration of
concurrent and functional programm;ng. International Journal of Parallel
Programming, 18(2), 1989.
D. Hazel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.
C. A. R. Hoare. Communicating Sequential P~oceszes. Prentice-Hall, Lon-
don, 1985.
S. Jain. VTSIM: A graphical simulator for finlte-state networks. Master's
thesis, Department of Computer Science, North Carolina State University,
1993.
Ninth Annual Symposium on Logic in Computer Science (LICS '9,~), Ver-
sailles, France, July 1994. Computer Society Press.
F. Maranlnchi. Argonaute, graphical description, semantics and verification
of reactive systems by using a process algebra. In Proc. CA V '89, volume 407
of Lecture Notes in Computer Science,pages 38-53, Grenoble, June 1989.
Springer-Verlag.
R. Milner. A proposal for standard ML. Technical Report CSR-157-83,
Department of Computer Science, University of Edinburgh, 1984.
R. M~iner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.
G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.
O. Sokolsky. E~cient Graph-Based Algorithms Jar Model Checking in the
Modal Mu-Calculus. PkD thesis, Department of Computer Science, SUNY
at Stony Brook, April 1996.
O. Sokolsky and S. A. Smolka. Incremental model checking. In Proceed-
ings of the 6th International Conference on Computer-Aided Verification.
American Mathematical Society, 1994.
O. Sokolsky and S. A. Smolim. Local model checking for real-time systems.
In Proceedings of the 7th International Conference on Computer-Aided Ver-
ification. American Mathematical Society, 1995.
V. Trchan. VTVIEW: A graphical editor for hierarchical networks of finite-
state processes. Master's thesis, Department of Computer Science, North
Carolina State University~ December 1992.
S. Zhang and S. A. Smolka. Efficient parallelization of equivalence checking
algorithms. In M. Dias and R. Gzos, editors, Proceedings of FORTE '9~
- Fifth International ConJerence on Formal Description Techniques, pages
133-146, October 1992.

