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1 Introduction 

Extensive simulation is currently the most widely used verification technique. However, 
simulation does not check all possible behaviors of a computing system. Exhaustive 
simulation is too expensive, and non-exhaustive simulation can miss important events, 
especially if the number of states in the system being verified is large. Other approaches 
for Verification include theorem provers, term rewriting systems and proof checkers. 
These techniques, however, are usually very time consuming and require significant 
user intervention. Such characteristics limit the size of the systems they can verify in 
practice. 

Temporal logic model checking [6, 7] is an alternative approach that has achieved 
significant results recently. Efficient algorithms are able to verify properties of realistic 
complex systems. In this technique, specifications are written as formulas in a proposi- 
tional temporal logic and computer systems are represented by state-transition graphs. 
Verification is accomplished by an efficient breadth first search procedure that views 
the transition system as a model for the logic, and determines if the specifications are 
satisfied by that model. 

Recent model checkers use symbolic algorithms, which allow the verification of 
extremely large state-spaces. In this approach the transition relation is represented 
implicitly by boolean formulas, and implemented by binary decision diagrams [ 1]. This 
usually results in a much smaller representation for the transition relation [ 16], allowing 
the size of the models being verified to increase up to more than 1020 states [2]. 

There are several other advantages to this approach. An important one is that the 
procedure is completely automatic. The model checker accepts a model description, 
specifications to be verified and determines, without user intervention, if the formulas 
are true or not for that model. Another advantage is that, if the formula is not true, the 
model checker will provide a counterexample. The counterexample is an execution trace 
that shows why the formula is not true. This is an extremely useful feature because it 
can help locate the source of the error and speed up the debugging process. Another 
advantage is the ability to verify partially specified systems. If a component hasn't been 
fully specified, some of its outputs can be assigned nondeterministic values. The set of 
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behaviors modeled this way is a superset of the actual behaviors of the component. Useful 
information about the correctness of the system can be gathered before all the details 
have been determined. The abstracted model is then refined when more information 
about the component becomes available. This allows the verification of a system to 
proceed concurrently with its design. Consequently verification can provide valuable 
hints that will help designers eliminate errors earlier and define better systems. 

The model checker used in this work is Symbolic Model Verifier (SMV) [16]. It has 
been applied successfully in the verification of several industrial systems. Examples 
include the Futurebus+ cache coherence protocol [9], the PCI Local Bus [3], a railway 
signalling system [14], an aircraft controller [5], a manufacturing system [13], and a 
medical monitoring system [4]. A survey about the technique can be found in [11]. 

2 Describing the System 

The system being verified is described in the SMV language. We can specify syn- 
chronous or asynchronous, detailed deterministic or abstract nondeterrrfinistic finite 
state machines. The language provides modular hierarchical descriptions, reuse of com- 
ponents, and parameterization so that multiple instances of a module can use different 
data values. Within every module, local variables may be declared. The type of a variable 
may be boolean, an enumeration type or an integer subrange. For example: 

VAR stateO: {noncritical, trying, critical}; 

The value of the variables in each state are defined using i n i t  and n e x t :  

init(stateO) := noncritical; 

next(stateO) := 

case 

stateO 

stateO 

stateO 

stateO= 

i: stateO; 

esac; 

= noncritical) : {trying,noncritical}; 

= trying) & (statel = noncritical): critical; 

= trying) & (statel = trying) & (turn =turnO) : 

critical; 

critical) : {critical,noncritical}; 

An SMV program can be viewed as a system of simultaneous equations whose 
solution determines the next state. When describing communication protocols, asy- 
chronous circuits, or other systems whose actions are not sychronized, we can define a 
set of parallel processes whose actions are interleaved arbitrarily in the execution of the 
program. 

Fairness constraints can also be specified in SMV. A fairness constraint is an arbitrary 
set of states in the model, described by a temporal logic formula. A path in the model 
is considered fair with respect to a set of fairness constraints if  each constraint is true 
infinitely often along the path (i.e. some state in the fair set of states is visited infinitely 
often). In SMV verification can be restricted to fair paths. 
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3 V e r i f y i n g  t h e  S y s t e m  

Computation tree logic, CTL, is the logic used by SMV to express properties that will be 
verified. Formulas in CTL are built from atomic propositions, where each proposition 
corresponds to a variable in the model, boolean conectives ~ and A, and temporal 
operators. Each operator consists of two parts: a path quantifier followed by a temporal 
operator. Path quantifiers indicate that the property should be true of all paths from a 
given state (A), or some path from a given state (E). The temporal modality describes 
how events should be ordered with respect to time for a path specified by the path 
quantifier. They have the following informal meanings: 

- F p u p holds sometime in the future. 
- G p - -  p holds globally on the path. 
- X p - -  p holds in the next state. 
- p U q - -  q holds in the future, and p holds in all states until the state in which 

qholds. 

The most common CTL operators are: AG p - -  p is globally true in all paths from the 
current state, i.e., p is invariant; A F  p - -  p holds sometime in the future in all paths, i.e., 
p is inevitable; EF p - -  p holds sometime in the future for some path, i.e., p is reachable. 
Some examples of CTL formulas are given below to illustrate the expressiveness of the 
logic. 

- A G ( r e q  -+ A F  ack): It is always the case that if the signal req is high, then 
eventually ack will also be high. 

- E F ( s t a r t e d  A -~ready): It is possible to get to a state where s tar ted  holds but 
ready  does not hold. 

- A G  E F  restart :  From any state it is possible to get to the res tar t  state. 
- A G ( s e n d  -+ A [ s e n d  U recv]): It is always the case that if send  occurs, then 

eventually recv is true, and until that time, send  must remain true. 

4 C o n c l u s i o n s  

Symbolic model checking is a powerful formal specification and verification method 
that has been applied successfully in several industrial designs. Using symbolic model 
checking techniques it is possible to verify industrial-size finite state systems. State 
spaces with up to 1030 states can be exhaustively searched in minutes. Models with 
more than 10120 states have been verified using special techniques. 

Several extensions to the original technique have been developed, making it even 
more powerful. Timing properties can be verified by performing a quantitative timing 
analysis [3, 5]. The designer can then analyze the performance of a system and gain 
insight in how well a system works early in the design process. Word-level model 
checking allows the verification of datapaths in addition to control [12]. Symmetry [8], 
abstraction [10, 15] and compositional reasoning [15] techniques significantly extend 
the power of model checking by exploiting the hierarchical structure of complex circuit 
designs and protocols. 

More information about SMV, as well as the source code for the model checker can 
be found at: http : //www. cs. cmu. edu/~modelcheck 
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