
Symbolic Model Checking*

E. Ciarke 1, K. McMillan 2, S~ Campos 1 and V. Hartonas-Garrnlaausen l

1 Carnegie Mellon University School of Computer Science, Pittsburgh, USA.
2 Cadence Labs, Berkeley, USA

1 Introduction

Extensive simulation is currently the most widely used verification technique. However,
simulation does not check all possible behaviors of a computing system. Exhaustive
simulation is too expensive, and non-exhaustive simulation can miss important events,
especially if the number of states in the system being verified is large. Other approaches
for Verification include theorem provers, term rewriting systems and proof checkers.
These techniques, however, are usually very time consuming and require significant
user intervention. Such characteristics limit the size of the systems they can verify in
practice.

Temporal logic model checking [6, 7] is an alternative approach that has achieved
significant results recently. Efficient algorithms are able to verify properties of realistic
complex systems. In this technique, specifications are written as formulas in a proposi-
tional temporal logic and computer systems are represented by state-transition graphs.
Verification is accomplished by an efficient breadth first search procedure that views
the transition system as a model for the logic, and determines if the specifications are
satisfied by that model.

Recent model checkers use symbolic algorithms, which allow the verification of
extremely large state-spaces. In this approach the transition relation is represented
implicitly by boolean formulas, and implemented by binary decision diagrams [1]. This
usually results in a much smaller representation for the transition relation [16], allowing
the size of the models being verified to increase up to more than 1020 states [2].

There are several other advantages to this approach. An important one is that the
procedure is completely automatic. The model checker accepts a model description,
specifications to be verified and determines, without user intervention, if the formulas
are true or not for that model. Another advantage is that, if the formula is not true, the
model checker will provide a counterexample. The counterexample is an execution trace
that shows why the formula is not true. This is an extremely useful feature because it
can help locate the source of the error and speed up the debugging process. Another
advantage is the ability to verify partially specified systems. If a component hasn't been
fully specified, some of its outputs can be assigned nondeterministic values. The set of

* This research was sponsored in part by the National Science Foundation under grant no.
CCR-8722633, by the Semiconductor Research Corporation under contract 92-DJ-294, and
by The Defense Advanced Research Projects Agency, Information Science and Technology
Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by
DARPA/CMO under Contract MDA972-90-C-0035.

420

behaviors modeled this way is a superset of the actual behaviors of the component. Useful
information about the correctness of the system can be gathered before all the details
have been determined. The abstracted model is then refined when more information
about the component becomes available. This allows the verification of a system to
proceed concurrently with its design. Consequently verification can provide valuable
hints that will help designers eliminate errors earlier and define better systems.

The model checker used in this work is Symbolic Model Verifier (SMV) [16]. It has
been applied successfully in the verification of several industrial systems. Examples
include the Futurebus+ cache coherence protocol [9], the PCI Local Bus [3], a railway
signalling system [14], an aircraft controller [5], a manufacturing system [13], and a
medical monitoring system [4]. A survey about the technique can be found in [11].

2 Describing the System

The system being verified is described in the SMV language. We can specify syn-
chronous or asynchronous, detailed deterministic or abstract nondeterrrfinistic finite
state machines. The language provides modular hierarchical descriptions, reuse of com-
ponents, and parameterization so that multiple instances of a module can use different
data values. Within every module, local variables may be declared. The type of a variable
may be boolean, an enumeration type or an integer subrange. For example:

VAR stateO: {noncritical, trying, critical};

The value of the variables in each state are defined using i n i t and n e x t :

init(stateO) := noncritical;

next(stateO) :=

case

stateO

stateO

stateO

stateO=

i: stateO;

esac;

= noncritical) : {trying,noncritical};

= trying) & (statel = noncritical): critical;

= trying) & (statel = trying) & (turn =turnO) :

critical;

critical) : {critical,noncritical};

An SMV program can be viewed as a system of simultaneous equations whose
solution determines the next state. When describing communication protocols, asy-
chronous circuits, or other systems whose actions are not sychronized, we can define a
set of parallel processes whose actions are interleaved arbitrarily in the execution of the
program.

Fairness constraints can also be specified in SMV. A fairness constraint is an arbitrary
set of states in the model, described by a temporal logic formula. A path in the model
is considered fair with respect to a set of fairness constraints if each constraint is true
infinitely often along the path (i.e. some state in the fair set of states is visited infinitely
often). In SMV verification can be restricted to fair paths.

421

3 V e r i f y i n g t h e S y s t e m

Computation tree logic, CTL, is the logic used by SMV to express properties that will be
verified. Formulas in CTL are built from atomic propositions, where each proposition
corresponds to a variable in the model, boolean conectives ~ and A, and temporal
operators. Each operator consists of two parts: a path quantifier followed by a temporal
operator. Path quantifiers indicate that the property should be true of all paths from a
given state (A), or some path from a given state (E). The temporal modality describes
how events should be ordered with respect to time for a path specified by the path
quantifier. They have the following informal meanings:

- F p u p holds sometime in the future.
- G p - - p holds globally on the path.
- X p - - p holds in the next state.
- p U q - - q holds in the future, and p holds in all states until the state in which

qholds.

The most common CTL operators are: AG p - - p is globally true in all paths from the
current state, i.e., p is invariant; A F p - - p holds sometime in the future in all paths, i.e.,
p is inevitable; EF p - - p holds sometime in the future for some path, i.e., p is reachable.
Some examples of CTL formulas are given below to illustrate the expressiveness of the
logic.

- A G (r e q -+ A F ack): It is always the case that if the signal req is high, then
eventually ack will also be high.

- E F (s t a r t e d A -~ready): It is possible to get to a state where s tar ted holds but
ready does not hold.

- A G E F restart : From any state it is possible to get to the res tar t state.
- A G (s e n d -+ A [s e n d U recv]): It is always the case that if send occurs, then

eventually recv is true, and until that time, send must remain true.

4 C o n c l u s i o n s

Symbolic model checking is a powerful formal specification and verification method
that has been applied successfully in several industrial designs. Using symbolic model
checking techniques it is possible to verify industrial-size finite state systems. State
spaces with up to 1030 states can be exhaustively searched in minutes. Models with
more than 10120 states have been verified using special techniques.

Several extensions to the original technique have been developed, making it even
more powerful. Timing properties can be verified by performing a quantitative timing
analysis [3, 5]. The designer can then analyze the performance of a system and gain
insight in how well a system works early in the design process. Word-level model
checking allows the verification of datapaths in addition to control [12]. Symmetry [8],
abstraction [10, 15] and compositional reasoning [15] techniques significantly extend
the power of model checking by exploiting the hierarchical structure of complex circuit
designs and protocols.

More information about SMV, as well as the source code for the model checker can
be found at: http : //www. cs. cmu. edu/~modelcheck

422

References

1. R. "E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
"on Computers, C-35(8), 1986.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model
checking: 1020 states and beyond. In Symposium on Logic in Computer Science, 1990.

3. S. Campos, E. Clarke, W. Marrero, and M. Minea. Verifying the performance of the PCI
local bus using symbolic techniques. In International Conference on Computer Design,
1995.

4. S. V. Campos, E. M. Clarke, W. Marrero, and M. Minea. Timing analysis of industrial reap
time systems. In Workshop on Industrial-strength Formal specification Techniques, 1995.

5. S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quantita-
tive characteristics of finite-state real-time systems. In IEEE Real-Time Systems Symposium,
1994.

6. E.M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NE, May 1981.
Springer-Verlag, 1981. Lecture Notes in Computer Science, volume 131.

7. E. M. Clarke, E. A. Emerson, and A. E Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

8. E. M. Clarke, T. Filkom, and S. Jha. Exploiting symmetry in temporal logic model checking.
In Proceedings of the Fifth Workshop on Computer-Aided Verification, June 1994.

9. E. M. Clarke, O. Gmmberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A.
Ness. Verification of the Futurebus+ cache coherence protocol. In L. Claesen, editor, Inter-
national Symposium on Computer Hardware Description Languages and their Applications.
North-Holland, April 1993.

10. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Proceed-
ings of the Nineteenth Annual ACM Symposium on Principles of Programming Languages,
January 1992.

11. E. M. Clarke, O. Grumberg, and D. E. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency - - Reflections and Perspectives, 1994. Springer
Lecture Notes in Computer Science, 803.

12. E. M. Clarke, M. Khaira, and X. Zhao. Word level model checking-- avoiding the pentium
FDIV error. In Design Automation Conference, June 1996.

13. V. Hartonas-Garmhausen, EM. Clarke, and S. Campos. Deadlock prevention in flexible
manufacturing systems using symbolic model checking. In International Conference on
Robotics and Automation, 1996.

14. V. Hartonas-Garmhausen, T. Kurfess, E.M. Clarke, and D. Long. Automatic verification
of industrial designs. In Workshop on Industrial-strength Formal specification Techniques,
1995.

15. D. E. Long. Model checking, abstraction and compositional reasoning. PhD thesis, SCS,
Carnegie Mellon University, 1993.

16. K~ L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

