
The Real -Time Graphical Interval Logic Toolset

L. E. Moser, P. M. Melliar-Smith, Y. S. Ramakrishna, G. Kutty, L. K. Dillon

Department of Electrical and Computer Engineering
Department of Computer Science

University of California, Santa Barbara 93106

1 Introduction
The tools that we have developed for Real-Time Graphical Interval Logic (RTGIL) are
intended for specifying and reasoning about time-bounded safety and liveness proper-
ties of concurrent real-time systems. These tools include a syntax-directed editor that
enables the user to construct graphical formulas on a workstation display, a theorem
prover based on a decision procedure that checks the validity of attempted proofs and
produces a counterexample if an attempted proof is invalid, and a proof management
and database system that tracks proof dependencies and allows graphical formulas to
be stored and retrieved.

2 Real-Time Graphical Interval Logic
RTGIL is a linear-time temporal logic in which formulas are interpreted on traces
of states indexed by the non-negative rea] numbers. To exclude the occurrence of
instantaneous states and Zeno runs, these traces are required to be right continuous
and finitely variable. Right continuity requires that each primitive proposition holds
its value for a non-zero duration, while finite variability ensures that there are only a
finite number of state changes in any finite duration.

The key construct of RTGIL is the interval, which provides a context within which
properties are asserted to hold. An interval is defined by two search patterns, which
locate its left and right endpoints. A search pattern is a sequence of one or more
searches. Each search locates the first state at which its target formula holds. The
state located by one search is the state at which the next search begins. An interval
is half-open in that it begins with the state located by the first of its two search
patterns and extends up to but does not include the state located by the second
search pattern. Once an interval is defined, properties can be asserted to hold on the
interval, including initial, henceforth, and eventuality properties. Most importantly,
real-time bounds on the duration of an interval can be specified.

For example, in the following RTGIL formula,

~.~[
t

fen (d, D] J

the interval begins with the first state at which the formula f holds and ends just
prior to the next state at which the formula g holds. The duration of that interval is
asserted to be greater than d time units and less than or equal to D time units.

This research was supported in part by NSF/ARPA grant CCR-9014382.

447

r - ~ E E [) ~ I I �9 ~.o. .0.~o~l ' t [

F - ~ �9 1,,,~o.o,~.o~ j j 1

len{O~,5.0| J

Fig. 1. The graphical user inter-
face with a validated proof. The
premises P1 and P2 a~e conjoined,
represented by vertical composi-
tion, and imply the theorem T.
Premise P1 requires that if the air-
craft is in the glide path for more
than 3.0 secs, then it will land
within 3.0 secs of entering the glide
path. Premise P2 requires that ff
the aircraft does not land before
leaving the glide path, then it will
abort within 2.0 secs of leaving the
glide path. Theorem T states that
within 5.0 secs of entering the glide
path, the aircraft will either land or
abort.

Formulas in I:LTGIL are read from top to bottom and from left to right, starting
with the topmost interval. Formulas can be combined using standard logical infix
operators laid out vertically. In vertical layout, a conjunction is indicated by stacking
the formulas one below the other without the conjunction operator. Braces are used
to disambiguate formulas.

3 T h e G r a p h i c a l E d i t o r

The graphical user interface t o the RTGIL editor is shown in Fig. 1. The editor
provides high-level editing operations and supplies templates containing boxes for
formulas that enable the user to construct graphical formulas incrementally. The
mouse enables the user to select a box or formula on the display and to highlight it.

The pull-down menus (File, Edit, Misc) at the top of the display contain commands
for storing and retrieving formulas, for overriding the default layout of formulas, and
for invoking the theorem prover. The buttons on the upper left (New, Del, Cut, Paste,
etc) provide editing operations that enable the user to create a new formula, delete
a selected formula, store a selected formula in a buffer, and subsequently insert that
formula in a selected box. The buttons on the lower left (Text, [--), len, etc) enable the
user to select an appropriate RTGIL construct to apply to the currently highlighted
subformula. Scroll bars allow the user to view large formulas.

The editor provides capabilities for automatically replacing formulas with other
formulas, resizing formulas to suit the context length, etc. If a formula does not fit
into the allotted space, an error is indicated by highlighting the formula. The user can
then resize the context length or the search arrows to allow the formula to be drawn
correctly. All subformulas of the formula are automatically resized to scale.

The editor also enables the user to align corresponding points in the formulas that
comprise a proof. The user can thus see how states in different formulas are ordered
relative to one another, how intervals are aligned relative to each other, and how
durations of intervals are related to satisfy real-time constraints. Alignment is helpful
in. constructing proofs and in debugging attempted proofs that are invalid.

448

4 T h e T h e o r e m P r o v e r

The RTGIL theorem prover is a satisfiability checker based on a decision procedure,
rather than a Gentzen-style theorem prover based on inference rules. The decision
procedure for RTGIL is given as an automata-theoretic method in [4]. The implemen-
tation, however, is a tableau-theoretic method that achieves better time and space
efficiency, on average, than the automata-theoretic method. It employs the notion of
timed tableau, the analogue of the timed automaton of Alur and Dill [1].

The user, working in the theory defined by his specifications and the underlying
logic, creates theorems and proofs and submits the proofs to the decision procedure
for validation. To prove a theorem T, the user selects a subset of the axioms and
previously proved lemmas and theorems as the premises P 1 , . . . , P N of the proof.
The editor displays the proof represented by the formula P1 A . . . A P N =~ T in its
graphical form. The graphical representation is converted into a Lisp S-expression, is
negated, and is then submitted to the decision procedure.

The decision procedure checks the satisfiability of the negated implication by build-
ing a tableau for that formula and checking the emptiness of the tableau. The proce-
dure first constructs an untimed tableau for the formula and performs the standard
eventuality-based pruning of the tableau. Using the duration formulas in the nodes
of the remaining tableau, it then constructs a timed tableau by adding timing con-
straints to the edges of the untimed tableau. Timing consistency of the timed tableau
is checked using Dill's algorithm [2]. This step may eliminate some possible traces
from the original tableau because of timing restrictions and, consequently, a further
round of eventuality-based pruning is required. If, at any stage, the tableau becomes
empty or the initial node is eliminated, the negated implication is unsatisfiable and
the attempted proof is valid. Otherwise, there exists a timing consistent trace through
the final tableau that constitutes a counterexample to the attempted proof.

If the decision procedure determines that an attempted proof is invalid, the user
can invoke the theorem prover to produce a counterexample by extracting a satisfying
model for the negated implication from the tableau. The counterexample is displayed
in an accompanying window, shown in Fig. 2, as a sequence of states and, additionally,
as a timing diagram if the user selects that option. By associating the targets of the
searches in the formulas of the proof with the states in the sequence at which the
predicates become true or false, or the points in the timing diagram at which the
signals rise and fall, the user can more readily discover the fallacy in the attempted
proof and correct it.

The worst-case time complexity of the decision procedure is 2~176176
where n is the number of logical connectives, k is the depth of interval nesting, and t
is the size of the binary encoding of the largest duration constant in the formula.

5 T h e P r o o f M a n a g e m e n t a n d D a t a b a s e S y s t e m

RTGIL formulas saved to disk are stored in a simple database consisting of Unix files.
Several formulas can be stored in the same file by associating a unique name with
each of them. The user can invoke the editor to display the names of the formulas in
a file and also to load, add or delete a formula to or from a file. For each formula in
a file, the user can invoke the proofmanager to determine if a proof already exists,
and to list the premises of an existing proof.

I r a r a ~

449

~ott

glide

............ ~ L ~ I - -

Fig. 2. The graphical user inter-
face with a counterexample model.
The proof in Fig. 1 is modified so
that the upper bound of 2.0 secs in
premise P2 is replaced by 3.0 secs.
The attempted proof is invalid, and
this counterexample is generated.
Note that the interval from glide to
-~glide without an intervening land
is at most 3.0 secs and the interval
from -~glide to abort is at most 3.0
secs. Thus, the interval from glide
to land v abort is at most 6.0 secs,
which is greater than the 5.0 secs in
theorem T.

If an at tempted proof of a theorem is valid, the proof dependency file is updated
with information about the premises of the proof and the time at which the proof
was performed. To confirm that a proof is up-to-date, the proof manager checks that
neither the theorem nor any of the premises has been modified since the time of the
proof. It also detects circularities in a proof and.ensures that the proof dependency
graph is acyclic.

6 Conclusion

Our experience in using the RTGIL tools has shown that these tools and the graphical
representation of the logic are very helpful for specifying and verifying properties of
concurrent real-time systems. In addition to the aircraft example, we have used these
tools to specify and verify properties of a railroad crossing system, a robot, an alarm
system, and a four-phase handshaking protocol.

The RTGIL tools are implemented in Lucid Common Lisp and also in Franz
Allegro Common Lisp, and require at least 32 MBytes of main memory and 64 Mbytes
of swap space. The graphical editor was implemented using the Garnet graphics toolkit
[3], which runs within the X window system. The RTGIL tools and related papers are
publicly available, and can be obtained by anonymous ftp from alpha.ece.ucsb.edu in
d i r ec to ry /pub /RTGIL .

References

1. It. Alur and D. Dill, ~Automata for modelling real-time systems," Proceedings of 17th In-
ternational Conference on Automata Languages and Programming, Warwick University,
England (July 1990), LNCS 443, Springer-Verlag, pp. 322-335.

2. D. L. Dill, "Timing assumptions and verification of finite-state concurrent systems,"
Proceedings of International Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, France (June 1989), LNCS 407, Springer-Verlag, pp. 196-212.

3.]3. A. Myers, D. A. Giuse, R. B. Danneberg, B. VanderZanden, D. S. Kosble, E. Per-
vin, A. Mickish and P. Marchal, "Garnet: Comprehensive support for graphical, highly
interactive user interfaces," 1EEE Computer (November 1990), pp. 71-85.

4. Y. S. Ramakrishna, L. K. Dillon, L. E. Moser, P. M. Melliar-Smith and G. Kutty, "A real-
time interval logic and its decision procedure," Proceedings of Thirteenth Conference on
Foundations of Software Technology and Theoretical Computer Science, Bombay, India
(December 1993), LNCS 761, Springer-Verlag, pp. 173-192.

