
Automatic recalibration of a space robot:
an industrial prototype!

Vicente Ruiz de Angulo and Carme Torras

Institut de Cibernètica (CSIC-UPC). Diagonal 647, 08028-Barcelona. Spain
e-mail: ruiz@ic.upc.es, torras@ic.upc.es

Abstract. We present a neural network method to calibrate automati-
cally a commercial robot after undergoing wear or damage, which works
on top of the nominal inverse kinematics embedded in its controller.

1 Introduction

The recalibration of robots installed in unmanned space stations through teleop-
eration from earth is a very time-consuming task due to communication delays.
Within the project CONNY, Daimler-Benz Aerospace proposed an application
of maintenance of electronic equipment that required the automatic recalibration
of a 6-dof robot in-situ after wear had occurred. We present here the solution
that was implemented in the final demonstrator for the project.

Our starting point was the work of Ritter et al. [2, 1, 5] on learning inverse
kinematics from scratch using a hierarchical self-organizing map (SOM). We have
modified this model in several ways to suit a more practical setting. Instead of
learning the whole mapping, our algorithm learns only the appropriate correc-
tions, with respect to the inverse kinematics embedded in the controller, which
is thus maintained. The other modifications enhance the cooperation between
neurons, speeding up learning by a factor of 70 (near to 2 orders of magnitude).

A detailed description of the methods and results succinctly presented in this
paper can be found in [3].

2 Ritter et al.’s approach to learning inverse kinematics

Ritter et al.’s model, as applied to a 5-dof robot, consists of a 3D SOM whose
nodes have associated a 2D SOM each. Learning makes the 3D net converge to
a discrete representation of the workspace, while the 2D subnet represents the
gripper orientation space.

When a given position up and orientation uo are supplied as input, the
subnet k with input weights wk closest to up is selected and, within this subnet,

! This work was partially supported by the ESPRIT III Program of the European
Union under the contract No. 6715 (project CONNY). We thank Enric Celaya for
hepful discussions, Gabriela Cembrano for support and encouragement, and Conor
Doherty for providing an initial version of the extended Kohonen-maps program.



the neuron l with input weights wkl closest to uo is chosen. The joint angles
produced for this particular input are then obtained with the expression:

θ′ = θkl +Akl((up,uo)− (wk,wkl)). (1)

where θkl and Akl are respectively the vector of joint angles and the 5 × 8
Jacobian matrix associated with the winning neuron kl.

A learning cycle consists of the following four steps:

1. First, the classical Kohonen rule is applied to the weights wk and wkl.
2. By applying θ′ to the real robot, the end-effector moves to pose u′ =

(up

′
,uo

′). The difference between this pose and the desired one u = (up,uo)
constitutes an error signal that permits applying the LMS rule:

θ∗ = θkl +Akl(u− u′). (2)

3. By applying the correction increment Akl(u − u′) to the joints of the real
robot, a refined position u′′ is obtained. Now, the LMS rule can be applied
to the Jacobian matrix by using ∆θ = (θ′′ − θ′) as the error signal for
∆u = (u′′ − u′):

A∗ = Akl + (∆θ −Akl∆u)
∆uT

‖∆u‖2
. (3)

4. Finally, the Kohonen rule is applied to the joint angles:

θnewij = θoldij + c′ gk(i) gkl(j) (θ
∗ − θij), (4)

and the Jacobian matrix:

Anew
ij = Aold

ij + c′ gk(i) gkl(j) (A
∗ −Aij), (5)

where again c′ is the learning rate and gk(.) and gkl(.) are Gaussian functions
centered at wk and wkl, respectively, used to modulate the adaptation steps
as a function of the distance to the winning neuron. The widths of the
Gaussians decrease to zero with time.

3 A new application: Inverse kinematics update

Our application entails learning a mapping from desired robot poses to appro-
priate pose commands which, when supplied to the controller, lead to the attain-
ment of those desired poses. For the intact robot, this mapping is the identity.
After some degradation, this mapping amounts to sending the robot to a fake
pose in order for it to reach the desired one. Thus, u and θ represent for us
6D vectors denoting pose coordinates and pose commands, respectively. This
approach avoids the problem of the original application of having a multivalued
inverse function, because the controller always chooses the same joint angles for
a fixed command. Although we are still learning an inverse function, we now
know the workspace shape, so that we can directly place the centers of the cells



in a regular grid covering it, in order to minimize the quantization error. These
centers do not need to move, if the workspace shape does not change and, thus,
the first step of applying the Kohonen rule is eliminated from the algorithm.

The direct application of Ritter et al. algorithm, with this slight modification,
to our particular setting was not as quick as expected, even if the neighborhood
widths were tuned in order to maximize learning speed. There are several reasons
for this, which will be explained in the following sections together with the
modifications triggered by each of them.

4 Separating dependencies

Our mapping is a 6-variate function that depends on 3 position and 3 orienta-
tion coordinates of the end-effector. However the degree of dependency is not the
same between all the command components and coordinates. Due to the char-
acteristics of the workspace used (far from singularities and of small size relative
to that of the robot) changes in position coordinates influence very slowly the
orientation commands, and the same can be said about orientation coordinates
with respect to position commands. This advocates for using large gaussians
for gk and gkl. But, on the other hand, position and orientation commands are
very sensitive to the real position and orientation coordinates, respectively. This
means that, for example, too large neighborhoods in the position coordinates
space are counterproductive to learn position commands.

Since there is no good solution to these contradictory interests within Ritter
et al.’s framework, we decided to use two different hierarchical networks: one with
a narrow gk and a wide gkl to compute only position commands, and another with
a wide gk and a narrow gkl to compute only orientation commands. Moreover, the
position network needs less units in the supernet, while the orientation network
saves neurons at the subnet level. This modification leads to a significant increase
in learning speed.

As all the subsequent modifications to the algorithm do not distinguish be-
tween position and orientation commands, in the remaining of the paper we will
follow the notation in Section 2 to refer indistinctly to both networks.

5 What to propagate

Now we show that, in the usual case in which the kinematics change is not
drastic, the information propagated to neighboring units can be modified to
improve their cooperation.

Coooperation among the θkl. Ritter et al.’s approach consists in obtaining
an estimation θ∗ based on Akl and the first movement attempting to attain u.
θ∗ is immediately assigned to θkl and, in general, every θrs is moved towards
the same value θ∗ in keeping with the closeness of cells rs and kl. Consider a
modification of the learning rule in which the quantity to be propagated is not



θ∗, but the change that θkl must undergo, that is, θnewrs ← θoldrs + (θ∗ − θoldkl ).
Thus, (2) and (4) become somewhat simpler:

θ∗ = ∆θ = Akl(u− u′), (6)

θnewij = θoldij + c′ gk(i) gkl(j) θ
∗. (7)

It is easy to prove that this kind of cooperation works better than Ritter et al.’s
when the new function is more similar to the original one than to a constant
function in the proximity of wkl = (wk,wkl). To see this, suppose that we are
using σ2-wide neighborhoods, such that gkgkl is approximately 1 in a spherical
ball Ω centered on wkl. We depart from a network that has already encoded
the function f , so that every cell rs satisfies θrs = f(wrs). Now we evaluate
the changes made to θrs by steps (2) and (4) (classical version), and (6) and
(7) (new version), when trying to learn the new function f ′. Let θclas(w) and
θupd(w) be the new values that a hypothetical cell centered on w would assume
as a consequence of the classical and new update versions of the learning rule,
respectively . The goodness of the new and the classical versions can be evaluated
by the average error they would cause to cells located in the ball Ω:

Eclas =

∫
Ω
(θclas(w) − f ′(w))2 =

∫
Ω
(f ′(wk)− f ′(w))2 =

∫
Ω
(f ′(w) − k1)

2

Eupd =
∫
Ω(θupd(w)− f ′(w))2 =

∫
Ω(f(w) + (f ′(wk)− f(wk))− f ′(w))2 =∫

Ω(f
′(w)− (f(w) + k2))2,

where k1 and k2 are constants.

Cooperation among the Jacobians. It is not possible to estimate with only
two points the ideal Jacobian matrix at wkl, but it can be corrected in the
direction indicated by the two points. The corrected Akl matrix is called A∗ and
is used as desired matrix by all the Ars. Thus, in all the relevant aspects for us,
the problem is the same we encountered with the θrs update. The corresponding
suggested modifications for (3) and (5) are:

A∗ = (∆θ −Akl∆u)
∆uT

‖∆u‖2
(8)

Anew
ij = Aold

ij + c′ gk(i) gkl(j) A
∗. (9)

The discussion is similar to that in the last subsection: The new update
version is better than the classical one when the Jacobian function of f ′ is more
similar to ∂f

∂w than to a constant matrix.

6 Neighborhood scheduling

When the neighborhood width is large, there is a large number of updated cells
per iteration. Few iterations are then required to learn the mapping in all the
input space at a coarse level of resolution. Instead, when the neighborhoods are
small, the number of cells changing significantly their output in one iteration



is very low, and many more iterations are required to make all the cells learn
the same number of times as with a larger neighborhood. The neighborhood
scheduling proposed by Ritter et al. does not take into account this fact. We will
derive now a neighborhood scheduling expressing explicitly all the hypotheses
on which it is based. First, we define L(wr,σ) as the expected learning for cell
r in one iteration using neighborhoods of width σ:

L(wr,σ) =

∫
ΩI

p(w)h(w,σ,wr)dw =
σn (2π)n/2

Volume(ΩI)
, (10)

where ΩI is the n-dimensional input space of f , p(w) is the probability density
in ΩI , and h(w,σ,wr) is the value in wr of a neighborhood centered on w of
width σ. The second equality results from assuming Gaussian neighborhoods
and a uniform p(w), and it is valid for wr’s not too close to the border of ΩI .

Now we must establish how much L should be accumulated along time with
each σ. We assume the simplest hypothesis, that is, a cell is visited the same
mean number of times with every neighborhood width σ. This means that we
must stay with each σ a time inversely proportional to L(wr,σ).

7 Experimental results

Our recalibration system was tested on a Reiss robot in the space-station mock-
up installed in Daimler-Benz Aerospace, Bremen. The robot had to maneuver in
a workspace of 50× 60× 50 cm with an orientation range of 40 degrees in each
dimension. Evaluation with the real robot was necessarily much more restricted
than that carried out in simulation. Since the robot integrity was to be preserved,
only decalibrations consisting of translations and rotations of the whole robot
were tested. The results were in complete agreement with the simulation results
for the same situation [3].

Due to lack of space, we will present here only simulation results obtained
for a more interesting and representative case: one in which the geometry of the
robot undergoes serious distortion. The length of three links were shortened by
1, 1 and 4 cm, respectively, while three joint encoders were shifted by 4, 3, and
4 degrees. This could result, for instance, from link bending and encoder wear.
As a consequence, the initial mean average position and orientation error, when
executing (1), was 8.3 cm and 4.7 degrees, respectively.

Figure 1 shows the results of performing 200 iterations with our learning
system, where supernets and subnets had 3× 3× 3 neurons each. Every 4 itera-
tions, learning was interrupted, and the average position and orientation errors
over 200 random poses of the workspace were measured using (1). We must re-
mark that these results were obtained with two hierarchical networks which, as
a whole, had the same number of neurons as the Ritter et al.’s model we used
for comparison. The parameters were selected after a very rough search, using
the same initial σ for all neighborhoods and applying a slow linear decrease to α.
The original Ritter et al.’s algorithm with optimized parameters required more
than 10,000 iterations to get the same combination of orientation and position
errors, as reported in [4].



iterations

er
ro

r

0 50 100 150 200

2
4

6
8

position error
orientation error

Fig. 1. Evolution of the error along the first 200 iterations. Position and orientation
errors are measured in centimeters and degrees, respectively.

8 Conclusions

We have presented a neural network system to recalibrate robots, inspired in
Ritter et al.’s work, which can be applied in more practical settings that the
original algorithm because of two reasons. First, the system can work without
substituting the original controller in commercial robots. And second, the learn-
ing is much faster due to the improved cooperation among the learning units.
We think that other neural network algorithms based on local units can also
benefit from these improvements.

References

1. Martinetz T. and Schulten K.J., ‘Hierarchical neural net for learning control of a
robot’s arm and gripper’, Proc. Intl. Joint Conf. on Neural Networks (IJCNN’90),
Vol. II, 747–752, San Diego, 1990.

2. Ritter H., Martinetz T. and Schulten K.J., Neural Computation and Self-
Organizing Maps, New York: Addison Wesley, 1992.

3. Ruiz de Angulo V. and Torras C., ‘Automatic recalibration of a space robot: an in-
dustrial prototype’, Technical Report IC-DT-03.96, Institut de Cibernètica (CSIC-
UPC).

4. Torras C., Cembrano G., Millán J. del R. andWells G., ‘Neural approaches to robot
control: Four representative applications’, Proc. 3rd Intl. Workshop on Artificial
Neural Networks (IWANN’95), Málaga, June, 1016–1035 (1995).

5. Walter J.A. and Schulten K.J., ‘Implementation of self-organizing neural networks
for visuo-motor control of an industrial arm’, IEEE Trans. on Neural Networks,
Vol. 4, No. 1, January 1993.


