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Abstract. It has been suggested that long-range lateral connections in
the cortex play a contextual role in that they modulate the gain of the
response to primary receptive �eld input. In the �rst part of this paper I
show that a network with a set of such pre-wired connections has a short-
term dynamics that enhances and stabilizes coherent information de�ned
across multiple, non-overlapping receptive �elds. In the second part, I
suggest a simple Hebbian rule that can develop the required pattern
of synaptic strengths and describe two simulations where the networks
discover information that is de�ned only by its coherence across receptive
�elds.

1 A contextual role for long-range lateral connections

Neurophysiological and pharmacological experiments have indicated that long-
range lateral connections in the cortex have a modulatory e�ect on the postsy-
naptic cell [3]. Their action could be described by a mechanism that increases
or decreases the gain of the cell response to the receptive �eld input, but can-
not alter the feature that is transmitted by the receptive �eld of the cell. Since
these cortico-cortical connections extend from 200�m up to 6mm, they connect
groups of neurons with non-overlapping receptive �elds. Each group is internally
organized in a fairly similar fashion as a local circuit of neurons with largely-
overlapping receptive �elds and inhibitory interneurons, such as the orientation-
selective hypercolumns in the visual cortex. In this paper such a local circuit
will be called a processor. Modulatory long-range connections between proces-
sors could serve various purposes. For example, they could synchronize activity
of processors responding to similar features distributed across the input surface
and make them stand out from background activity. Since they a�ect postsy-
naptic activity, they could also play a role in the development of the primary
receptive �elds of the individual processors that they connect.

A continuous activation function has been proposed [5] that combines driving
signals from the primary receptive �elds with modulatory signals from lateral
processing units . The output of the processor is a bipolar value f-1, +1g whose
probability is given by �ltering the activation strength through a sigmoid func-
tion. The activation function intends to capture the main biological properties
of the interaction between the two types of signals: a) the sign of the output is
determined solely by the primary receptive �elds, b) the strength of the activa-
tion is increased when the sign of the integrated modulatory signal agrees with



the sign of the integrated driving signal, and c) it is reduced when the sign of
the integrated modulatory signal is in contrast with the sign of the integrated
driving signal; d) the activation function is equivalent to a sigmoid function when
the modulatory signal is nil.

A(di;mi) = (1=2)di(1 + exp(2dimi)) (1)

where di =
Pn

j=1 xjw
d
ij is the integrated driving signal from the receptive �eld

components xj and mi =
Pn

k=1;k 6=i ykw
m
ik is the integrated modulatory signal

from the other processors yk. The output probability P (yi = 1) is then computed
by passing A through a sigmoid function, or through a tanh function for a mean-
�eld approximation.

The modulatory connections provide contextual guidance in that they mod-
ulate the postsynaptic activity according to what is computed by the other pro-
cessors. It has also been suggested that contextual { or modulatory { connections
might be used to extract information that is coherent across the receptive �elds
of several processors. The goal of each processor is then the maximization of the
three-way mutual information between its own output, the receptive �eld input,
and the contextual �eld input. Learning rules can be derived by performing gra-
dient ascent on this objective function [5]. Similar goals have been explored also
with other learning schemes and architectures [1, 7].

Using this approach, section 2 shows that a network of such processors with
pre-wired contextual connections can dynamically enhance and stabilize a noisy
signal. Section 3 suggests a simple Hebbian rule that can provide the required
functionality.

2 Enhancement and stabilization of noisy signals

Consider a set of 100 processors organized as a square matrix (Figure 1, left).

Each processor receives a single primary receptive �eld input from a corre-
sponding element in the input surface where a subset of 4 x 4 elements have a
value of 0.6 with added random noise from a uniform distribution in the range
�0:3 and all the remaining elements have a random value in the �0:6 range.
Only the processors that receive a primary signal from the central 4 x 4 input
elements are mutually linked by contextual connections which have a synaptic
value of 1. The output of each processor is updated for several iterations: at
each iteration the values of the input elements are calculated anew. Note that
intial output activity, before contextual modulation, is less than input (Figure 1,
step 1). After a single iteration the processors within the 4 x 4 inner matrix be-
come fully active (Figure 1, step 2) and maintain the activity level despite strong

uctuations at the input level by sustaining each other through the contextual
signals (Figure 1, step 3). Similar behaviours are observed when the input surface
consists of ambiguous �gures analogous to the Necker cube or to the Rubin vase
and inhibitory contextual connections are added between processors connected
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Fig. 1. Left: Architecture of the network. Each processor receives a single primary
receptive �eld input from a corresponding element in the input surface. Processors
drawn in bold face are mutually linked by excitatory contextual connections. Right:
Input and output activity (the absolute value of tanh [A(di;mi)]) for three iterations;
at each iteration the input elements and the processor outputs are computed anew.
Step 1 shows intial output activity before the contribution of the contextual signal.
For each iteration are shown the complete matrices of input and output activity levels
(white and black meaning respectively fully active and completely inactive) and graphs
correponding to a slice through the middle row.

to di�erent input subgroups: in this case the network can shift between alterna-
tive interpretations of the image and maintain them for a number of iterations
[2, 6].

The dynamic properties of this model are potentially useful in multi-stage
levels of processing. Appropriate con�gurations of lateral connections can segre-
gate and enhance a noisy pattern from the background according to its spatial
and/or temporal coherence, thus facilitate processing at successive stages. This
functionality is also similar to the grouping properties of synchronizing connec-



tions [6].

3 Adaptation of receptive and contextual �elds

This section introduces a local Hebbian rule that develops the pattern of synaptic
con�guration assumed in the model above. Since learning is done on-line, the
output of each processor is computed using the mean �eld approximation

yi = tanh [A(di;mi)] (2)

Both the receptive �eld weights and the contextual �eld weights are simultane-
ously adapted by the same learning rule. The main idea is that synaptic weights
should be adapted when postsynaptic activity is boosted by the contextual sig-
nal, and gradually decay when postsynaptic activity is dampened by the con-
textual signal. A single binary variable Mi describes the contextual e�ect on
processor i after L iterations of activity (L = 3 in the experiments described
below)

Mi =

�
1 if jyti j � jyt�Li j � 0
0 otherwise

(3)

Synaptic modi�cation occurs on a slower time scale: all the weights in the net-
work (receptive �eld and contextual �eld weights) are simultaneously updated
after computation of short-term dynamics according to the same learning rule

wt
i;j = wt�1

i;j + � yi
�
xjyixj � yiw

t�1
i;j

�
Mi| {z }

adaptation

� (1�Mi) yixjw
t�1
i;j| {z }

decay

(4)

where � is the learning rate, xj is the preynaptic activity, and yixj is a mov-
ing average of pre - and postsynaptic activity over a restricted time window (5
learning cycles in the experiments described below). The adaptation component
of learning is similar to Oja's learning rule for extraction of the �rst principal
component [4] and makes sure that the synaptic weight vectors tend to length
1. Both the adaptation and the decay phase depend on the average correlation
between pre- and postsynaptic activity yixj : the stronger the correlation, the
faster the weights are adapted if boosting of postsynaptic activity has occurred
(Mi = 1) and the faster they decay to zero if dampening of postsynaptic activity
has occurred (Mi = 0).

Consider a network with two processors that have non-overlapping receptive
�elds and are mutually linked by contextual connections. The primary input to
each processor is a random vector of three elements that can take bipolar values
f-1, +1g with equal probability; however, the sign of the �rst input element is
correlated with the sign of the same input element in the other processor. Both
receptive �eld weights wd

ij and contextual �eld weights wm
ij are initialized to ran-

dom values in the �0:001 range, and the learning rate � is set to 0.1. Both the
processors learn to signal the sign of the �rst element in their own input. This is
re
ected by the pattern of connection strengths (Figure 2, a). Only the synap-
tic weights corresponding to the input element correlated across processors are



strengthened. The contextual connections between the two processors are also
strengthened at the same time. The small 
uctuations of the remaining connec-
tions re
ect temporary weak correlations between the other input elements and,
although they are too small to a�ect the response of the processors, they can be
easily reduced by widening the time window over which yixj is computed. If the
processors do not share correlated information in their input or such information
ceases to exist over time, the contextual connections would gradually decay to
zero and each processor would transmit the most informative component of its
own receptive �eld. The same algorithm has also been used to extract higher
order information de�ned only across processors. Each receptive �eld input can
be visualized as a 2 x 2 square matrix whose entries rij take bipolar values f-1,
+1g with equal probability (Figure 2, b, left side). Therefore, within each of the
two streams of processing all possible inputs occur with equal probability. The
higher-order input variable correlated across the two streams is the sign of the

\horizontal edge" EH =
�P

j r1j �
P

j r2j

�
which is the sign of the di�erence

between the sums of the two row components [5]. Both processors learn to signal
the sign of the horizontal edge in less than 450 training cycles (all the training
parameters are the same employed in the previous experiments). The �nal recep-
tive �eld weights re
ect the structure of the variable correlated across processors
(Figure 2, b, right side).

Summarising, the model outlined in this paper is capable of extracting co-
eherent information de�ned across non-overlapping receptive �elds, and of de-
veloping the appropriate pattern of contextual connections. Since the learning
rule includes a normalizing factor, the postsynaptic activation is never saturated
and the modulatory signals can generate the short-term dynamics described in
section 2.
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Fig. 2. Extraction of coherent information when there is no structure within the re-
ceptive �eld input of the processors. a: Each processor receives primary input from
three random bipolar units, but the sign of the �rst unit (evidentiated in bold face)
is correlated across receptive �elds. Development of synaptic strengths during learning
(data are plotted every 10 cycles): both contextual weights and receptive �eld weights
learn at the same time to signal the sign of the correlated variable. b: Architecture and
�nal receptive �eld weights of a network that has discovered the sign of the horizontal
edge variable de�ned only across processors. Black is inhibitory and white is excitatory
(the gray level stands for a small excitatory weight).


