
Partitioning Methods for
Satis�ability Testing on Large Formulas

(Extended Abstract)

Tai Joon Park Allen Van Gelder

Computer Science Dept., 225 AS
University of California

Santa Cruz, CA 95064 U.S.A.
E-mail: ftjpark,avgg@cse.ucsc.edu

Abstract. Methods for partitioning large propositional formulas are
investigated, with the goal of producing a set of smaller formulas whose
satis�ability can be determined within reasonable time frames by known
algorithms. CNF formula partitioning can be viewed as hypergraph par-
titioning, which has been studied extensively in VLSI design. Although
CNF formulas have been considered as hypergraphs before, we found
that this viewpoint was not productive for partitioning, and we intro-
duce a new viewpoint in the dual hypergraph. Hypergraph partitioning
technology from VLSI design is adapted to this problem. The overall goal
of satis�ability testing requires criteria di�erent from those used in VLSI
design. Several heuristics are described, and investigated experimentally.
Some formulas from circuit applications that were extremely di�cult or
impossible for existing algorithms have been solved. However, the method
is not useful on formulas with little or no \structure", such as randomly
generated formulas.

1 Introduction

The propositional satis�ability decision problem arises frequently as a subprob-
lem in other applications, such as automated veri�cation and automated theorem
proving. Such applications may generate very large formulas, some of which
are beyond the capabilities of known algorithms. Typically, these applications
incorporate a satis�ability tester, as a subroutine, that performs well for most of
the formulas generated by the application. However, for some formulas it keeps
on running beyond acceptable time limits. What can the application do? Some
applications can a�ord to \give up" and try something else. In other cases, failure
to solve this formula is critical, and the whole application fails. Our research is
directed toward providing a \satis�ability tester of last resort", to be brought in
on critical formulas where standard methods have failed.

This paper summarizes results presented at CADE-13 [PVG96]. The main
idea is to partition a large di�cult formula into smaller formulas that (in the
worst case) must each be solved. However, due to the exponential behavior of
all known satis�ability decision algorithms, the smaller formulas may be many

orders of magnitude easier for the standard satis�ability subroutine. Because
of the overhead of formula partitioning, this method would only be invoked
when the standard subroutine was unable to solve a problem within reasonable
resource limits.

The two partitioning methods (see Section 3) incorporate an existing satis-
�ability tester as a subroutine. The �rst heuristic can be combined with any
complete satis�ability algorithm. However, the second heuristic requires limited
interaction with the underlying satis�ability algorithm, and can be combined
with most model-searching algorithms, such as variants of the Davis-Putnam-
Loveland-Logemann (DPLL) scheme [DP60, DLL62]. Our study combined with
an existing tester program showed greatly increased e�ciency on several circuit
formulas that were extremely di�cult or impossible for other known methods
(see Figure 3).

Both heuristics are based on partitioning the input formula into two or more
subformulas. Partitioning an input formula naturally �ts into the hypergraph cut
problem, and it represents a process that analyzes the input formula structure.
Methods from VLSI design have been adapted to this problem e�ectively. To be
useful, the cut must achieve some degree of balance in the resulting connected
components, and must be small in some sense. Except for the hyperedges that
occur in multiple subformulas, the structural analysis of the input formula results
in subformulas that are independent of each other.

CNF formulas have been studied as hypergraphs before [GU89, GLP93]. The
normal approach is to de�ne each clause as a hyperedge connecting all the vari-
ables, or perhaps the literals, that occur in the clause. From this viewpoint the
hypergraph cut problem consists of �nding a favorable set of \cut" clauses, such
that, if these clauses are removed from the formula, the remaining variables (the
vertices of the hypergraph) fall into two or more groups (connected components)
that are not related by any remaining clause. This natural method has not proven
successful on large formulas, for reasons discussed in Section 2.

The approach introduced here considers the dual of the above hypergraph,
which is also a hypergraph. In this new viewpoint, each variable is de�ned as a
hyperedge connecting all the clauses in which it occurs. Each clause is a vertex
now. In this context the hypergraph cut problem consists of �nding a favorable
set of \cut" variables, such that, if these variables are removed from the formula,
the remaining clauses fall into two or more groups (connected components) that
are not related by any remaining variable.

2 CNF Formula Partitioning

The reason to prefer the dual view of hypergraph over the normal approach
lies in the eventual application. At a high level, the partition is used as follows:
For each partial assignment \required" by the cut set, apply the assignment to
the induced subformulas F1 and F2, making them independent. Now try to �nd
models of F1 and F2 independently. A model in this context is a partial truth
assignment that satis�es the formula. If this process ever succeeds, a model for

the entire formula has been found. However, to demonstrate unsatis�ability it is
necessary to show that the process fails for all \required" partial assignments.

The di�erence between the two hypergraph views lies in what partial as-
signments are \required". For the usual view, the cut set is a set of clauses,
and all partial assignments that satisfy this set of clauses are \required". The
number of variables in this cut set can be signi�cantly larger than the number of
clauses, and the number of satisfying partial assignments can be exponential in
the number of variables involved. The number of \required" partial assignments
is not directly related to the cardinality of the cut set.

For the new view, the cut set is a set of variables. The \required" partial
assignments are all partial assignments to these variables that satisfy the clauses
(if any) that consist entirely of variables (positive or negative) in the cut set.
While this number is exponential also, it is directly related to the cardinality
of the cut set, so an algorithm to �nd small cut sets is more likely to achieve a
useful partition.

As further motivation for the new hypergraph view, consider that a formula
typically has more clauses than variables. In VLSI design, there are many more
gates, which correspond to vertices, than wires, which correspond to hyperedges.
Thus we expected that partitioning algorithms from that domain would transfer
more e�ectively for the new hypergraph view.

Given an input formula F , all the variables in F are grouped into the
following three classes: Vc, V1, and V2. The resulting classi�cation of variables
must guarantee that there exists no clause that contains both V1 and V2 variables.

Example 1. The input formula is

F = f

C1z }| {
(v1; v2);

C2z }| {
(v1; v4);

C3z }| {
(�v1; v2; v4);

C4z }| {
(�v1; v3);

C5z }| {
(v1;�v3)g

The derived dual hypergraph from F is shown in Figure 1. One possible partition
of F is

F1 = f

C1z }| {
(v1; v2);

C2z }| {
(v1; v4);

C3z }| {
(�v1; v2; v4)g

F2 = f

C4z }| {
(�v1; v3);

C5z }| {
(v1;�v3)g

The resulting status of the variables are V1 = fv2; v4g; Vc = fv1g, and V2 = fv3g.

The partition of F into F1 and F2 can be viewed as hypergraph cut problem,
and it has been studied extensively in VLSI/PCB CAD. Among the many
available hypergraph partitioning algorithms (see [PVG96] for detail), we imple-
mented the hypergraph min-cut algorithm by Fiduccia and Mattheyses [FM82].

C 1

C 2

C 3 C 4

C 5

1v

v 2

v 3

v 4

Fig. 1. The pictorial representation of the derived hypergraph.

3 The Two Partitioning Heuristics

The motivation behind the two partitioning heuristics is presented in Section 3.1,
and we brie
y discuss how the two heuristics explore the search space imposed
by the cut set in Section 3.2. For further details, see [PVG96].

3.1 Motivation

Assume that a SAT tester S typically determines satis�ability of a formula F
after T (N) running time, where F has N variables. Assume that T (N) is given
by

T (N) = A 2�N

for some constants A and �. For convenience, the time unit is chosen to make
A = 1. The � value indicates hardness of the formula class.

Both heuristics require an input formula F to be partitioned into F1 and F2.
Let N1 and N2 be the number of variables in F1 and F2 respectively, and NC
be the size of the cut set. Then, the expected running time of the two heuristics
with S is following:

T 0(N) = 2NC (2�N1 + 2�N2)

Assuming that the size of the two subformulas is balanced, T 0(N) approaches
approximately 2NC

p
T (N), which is much smaller than T (N) when NC is small.

3.2 Exploring The Cut Set Search Space

For each assignment to the cut variables, F1 and F2 simplify into formulas that
have no variables in common. They can then be tested independently. F is
satis�able if and only if there is some compatible assignment to the cut variables
that makes the resulting simpli�cations of F1 and F2 satis�able.

The �rst heuristic exhaustively generates assignment to the cut variables
until a compatible assignment is found or no more assignment can be generated.
However, the second heuristic|the main innovation presented|begins by trying
to satisfy one of the partitioned formulas while delaying the bindings to \cut"
variables. When the formula can be satis�ed with just a few cut variables
bound, there is a potential to greatly reduce the search space for a compatible
assignment. When the subformula F1 is satis�able, the model of F1 may not
have bindings to all cut variables. Then the \don't care" variables (unassigned
cut variables) can have any binding when searching for a model of F2. No
matter what truth assignments are made to the \don't care" variables in F2,
those assignments cannot be con
ict variables between F1 and F2 since there
are no truth assignments made to \don't care" variables in F1. Thus, only the
binded cut variables in the model of F1 are forced on F2 as a set of unit clauses
constraints.

4 Experimental Results

The result of partitioning test formulas is shown in Figure 2 (see [PVG96] for
more detail). All of the test formulas are unsatis�able instances. A comparison of
the running time between 2cl (a model-searching method [VGT95]) and MSAT
(our partitioning method, built over 2cl, and using the second heuristic in
Section 3.2) is shown in Figure 3. In general, MSAT resulted in signi�cant speed
gain. For example, 2cl spent about 200 CPU hours to determine the satis�ability
of c5315-3, but for MSAT it took less than 5 CPU minutes. The extreme increase
of e�ciency for some formulaswas possible because the partitioning step extracts
the structural information of the input formulas, and MSAT avoids forcing
unnecessary combination of truth assignment of the cut set.

5 Conclusion

We have introduced two heuristics that are based on partitioning an input for-
mula. These two heuristics are control programs that can incorporate an existing
SAT tester as a subroutine. For some of the circuit formulas, the two heuristics
showed signi�cant of gain of e�ciency with little (or no) modi�cation of the
existing SAT tester. This supports our intuition that dealing with subformulas
can be within the reach of existing SAT testers although the original formula
may not be.

From the result shown in Figure 3, we observe that the partitioned subformu-
las of pret150-75 are still hard. Since the size of the cut set is only 5, we predict

Variables in
formula vars clauses cut F1 F2

c5315-1 728 2199 6 316 406
c5315-3 728 2200 6 316 406
c2670-13 606 1642 11 218 377
c2670-16 626 1642 11 400 195
c2670-18 626 1642 10 420 176
pret150-75 150 400 5 83 62
ssa2670-127 449 1246 10 301 138

Fig. 2. Test formulas and the resulting partitions.

2cl MSAT runtime
formula runtime solver partition total

c5315-1 > 86268 233 32 265
c5315-3 741187 233 31 264
c2670-13 20950 2214 183 2397
c2670-16 9547 1608 183 1791
c2670-18 19105 8105 188 8293
pret150-75 > 36000 14057 2 14059
ssa2670-127 1369 554 96 650

Fig. 3. Comparison of the run time between 2cl and MSAT program. The
\>" symbol under \2cl runtime" denotes that the program did not �nish,
and was cancelled after this amount of time. Times are CPU seconds on a Sun
SPARCsystem 10/41.

that MSAT can perform better if we decompose the subformulas further. The
further decomposition of these subformulas is feasible because of the small size
of the cut set, and its e�ciency is a future research issue.

Acknowledgments

Both of the authors were in part supported by NSF Grant CCR-9503830. We
thank Tracy Larrabee and her research group for providing test formulas, and
Yumi Tsuji for helping us in the process of modifying her 2cl program.

References

[DLL62] M. Davis, G. Logemann, and D. Loveland. \A Machine Program for
Theorem-Proving". Communications of the Association for Computing
Theroy, 5:394{397, 1962.

[DP60] M. Davis and H. Putnam. \A Computing Procedure for Quanti�cation
Theory". Journal of the Association for Computing Theroy, 7:201{215, 1960.

[FM82] C. Fiduccia and R. Mattheyses. \A linear-time heuristic for improving net-
work partition". In In ACM IEEE 19th Design and Automation Conference
Proceedings, pages 175{181, June, 1982.

[GLP93] G. Gallo, G. Longo, and S. Pallottino. \Directed Hypergraph and Applica-
tions". Discrete Applied Mathematics, 42:177{201, 1993.

[GU89] G. Gallo and G. Urbani. \Algorithms for Testing the Satis�ability of Propo-
sitional Formulae". Journal of Logic Programming, 7:45{61, 1989.

[PVG96] Tai Joon Park and Allen Van Gelder. \Partitioning Methods for Satis�ability
Testing on Large Formulas ". In Proceedings 13th International Conference on
Automated Deduction, New Brunswick(USA)., volume 1104 of Lecture Notes
in Computer Science (in Arti�cial Intelligence), pages 748{762. Springer-
Verlag, July/August 1996.

[VGT95] A. Van Gelder and Y.K. Tsuji. \Satis�ability Testing with More Reasoning
and Less Guessing". In D. S. Johnson and M. Trick, editors, Cliques, Col-
oring, and Satis�ability: Second DIMACS Implementation and Challenge.,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1995.

This article was processed using the LaTEX macro package with LLNCS style

