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Abstract. Most automated theorem provers suffer from the problem
that the resulting proofs are difficult to understand even for experienced
mathematicians. An effective communication between the system and
its users, however, is crucial for many applications, such as in a mathe-
matical assistant system. Therefore, efforts have been made to transform
machine generated proofs (e.g. resolution proofs) into natural deduction
(ND) proofs. The state-of-the-art procedure of proof transformation fol-
lows basically its completeness proof: the premises and the conclusion
are decomposed into unit literals, then the theorem is derived by mul-
tiple levels of proofs by contradiction. Indeterminism is introduced by
heuristics that aim at the production of more elegant results. This inde-
terministic character entails not only a complex search, but also leads to
unpredictable results.

In this paper we first study resolution proofs in terms of meaningful op-
erations employed by human mathematicians, and thereby establish a
correspondence between resolution proofs and ND proofs at a more ab-
stract level. Concretely, we show that if its unit initial clauses are CNF's
of literal premises of a problem, a unit resolution corresponds directly to
a well-structured ND proof segment that mathematicians intuitively un-
derstand as the application of a definition or a theorem. The consequence
is twofold: First it enhances our intuitive understanding of resolution
proofs in terms of the vocabulary with which mathematicians talk about
proofs. Second, the transformation process is now largely deterministic
and therefore efficient. This determinism also guarantees the quality of
resulting proofs.

1 Introduction

Most automated theorem provers suffer from the problem that they can produce
proofs only in formalisms difficult to understand even for experienced mathe-
maticians. In many applications, in particular if it is used as a mathematical
assistant, it is crucial that the system and a user can communicate in an effec-
tive way. Only if a system also talks his language, a user will be convinced by
machine-found proofs and feel his understanding of the topic improved. Since
no current system can solve a wide range of challenging problems efficiently and
the situation will not change in the near future, a user has to understand inter-
mediate results in order to provide further guidance. Therefore, various efforts



have been made to reconstruct natural deduction (ND) proofs [Gen35] from such
machine-generated proofs [And80, Mil83, Pfe87, Lin90, SK95].

Current procedures that transforms resolution proofs follow basically their
completeness proof. Starting from a problem in a ND framework that contains
the hypotheses and the conclusion, it first recursively decomposes the premises
and the conclusion until literals are reached. Then the conclusion is proved by
multiple levels of proofs by contradiction. To come up with more elegant proofs,
this basic procedure was enriched with heuristics. Up to now there are only
isolated heuristics that cover some specific proof structures, and they are often
formulated as vague guide lines [Lin90, PN90]. When no heuristics are applicable,
ND proofs thus constructed tend to be very awkward. Below is an artificial
example to illustrate the worst case. The proof is encoded in the linearized
version of natural deduction first used in [And80], which we will use throughout
this paper. The numbers after the line number represent the logical hypotheses
a line depends on. The inference rule that justifies a line is given after the
conclusion formula, followed by the premise lines. Considering that this problem
can be proved with one step of modus-ponens, the proof below is indeed awkward
enough.

No Hyp Formula Reason
1. 1 A (Hyp)

2. 2 F A=B (Hyp)

3. 3 F -B (Hyp)

4. 2 F -AVB (Tau 2)
5. 5 o -A (Hyp)

6. 15 oL (-E1 5)
7.7 F B (Hyp)

8. 3,7 [ (-E3 7
9. 1,23 oL (Case 4 6 8)
10. 1,2 B (Ind 9)

Not only the quality is not predicable, such heuristics introduces a complex
search space. Take the proof above again as an example, the system must choose
between modus-ponens and case analysis. While it is trivial in this case, these
kind of decision involves a complex search in general. In some sense, the pre-
vious transformation procedures involve a search anew for a proof in the ND
framework, utilizing some information of a proof found in another formalism. It
is therefore not very surprising that the transform is sometimes more expensive
than the original problem solving.

Another problem with the current approach is its target representation itself.
Although each single step in an ND proof is easy to understand, the entire
proof is usually at the level of a logic calculus and contain too many tedious
steps. The resulting proofs are composed of derivations familiar from elementary
logic, where the focus of attention is on syntactic manipulations rather than on
the underlying semantic ideas. In contrast, informal proofs found in standard
mathematical textbooks are primarily justified by applications of definitions or
theorems. For instance, the derivation of @ € F from U C F and a € U is usually



justified by applying the definition of a subset encoded as
VSl,SQ-SlC52<:>vmlx651:>x652 (1)

In [Hua94b], the author formalized the intuitive notion of the application of
a definition or a theorem (collectively called assertions), as well as a procedure
that substantially shortens ND proofs by abstracting them to the assertion level.

This paper attempts to show certain resolution proofs can be understood
intuitively in the same way. Concretely, we will consider unit resolution proofs
where the initial unit clauses are produced from literal hypotheses lines of the
problem formulated in ND. We call them SSPU-resolutions (unit resolutions for
simple-structured problems). Let us first examine the resolution proof below,
obtained by restructuring a machine-found proof (compare Section 3.3). The
numbering of the clauses are quite unnatural, but their meaning will become
clear, once we show how they are derived from the original ones.

Example 1

The set of initial clauses:
Cl={+(axa ' =e)} C2={+(exa ' =a™")}
C3={-(z€8),-(yes),—(z*xy ' =2),+(z€S)}
C4={+(a € s} Cs={—(a""€98)}

The resolution steps:

C3,1 & C4,1 :add R2: {—(y €8), —(a*xy~ ' =2),+(z € 9)}
R2',1 & C4,1 : add R3: {—(a*a™' =2),+(z € S)}

(C3,2& C4,1 :add R4: {—(z €8),—(x+a" " =2),+(z € 5)}
R3’,1 & C1,1: add R5: {+(e € S)}

R4’,2 & C2,1 : add R6’: {—(e € S),+(a"" € 9)}

R5’,1& R6’,1 : add R1: {+(a" ' € 9)}

R1’,1& C5,1 :add R7: O

Fig. 1. An SSPU-resolution Proof
Note that C'3 is the CNF of the subgroup criterion given below:

Ve.Vypzr € SAyeS=>yxates (2)

This resolution proof basically consists of two applications of (2). The first one
is the subproof rooted at R5' that derivese € S from a € S and axa~! € S. The
second one is the subproof rooted at R1’, which derives a=! € S from e € S,
a€Sandexa les.

Section 2 characterizes SSPU-resolutions, which can be understood as a se-
quence of applications of assertions. That is this class of resolution proofs can
be understood in the same way as we understand proofs in mathematical text-
books. Based on this correlation Section 3 specifies a deterministic procedure
that transforms SSPU-resolutions into neatly structured ND proofs with asser-
tion level justifications. This section also describes how SSPU-refutable proofs
can be restructured into SSPU -resolution proofs. Section 4 contains techniques
that split an arbitrary resolution into interrelated SSPU-resolution segments.



The transformation process as a whole is largely deterministic and therefore effi-
cient, reducing heuristic search only to the strategies that split nonunit-refutable
proofs to unit-refutable proofs. This determinism also guarantees the quality of
resulting proofs. Finally, we conclude this paper with a discussion of future im-
provements.

2 Application of an Assertion

To obtain proofs similar to those found in mathematical textbooks, the author
has proposed a more abstract level of justifications for ND-style proofs, called as-
sertion level [Hua92, Hua94b], where derivations are justified by the application
of definitions or theorems (collectively called assertions).

Example 2 The application of the definition of subset (1) discussed in the
introduction is logically equivalent to the compound proof segment below!:

A: VS1,52-S1C52<=>(\7’.Z'.23€S1=>.z‘€.92)\_/E
UCFeo (Vzex€eU=z€EF) o E
UCF= (Nz.zeU=z€F) UCF
Veax €U =>2x €F VE
ac€U=acF acU
a€F

=E

=FE

Fig. 2. An ND proof applying the subset definition

Actually, the notion of the application of an assertion is specified in terms of a
so-called decomposition-composition constraint imposed on such proof segments
[Hua92, Hua94b)]. The following two definitions are necessary for the discussion

of this constraint.
AFF Al—Pl, LAFP,

Definition (Decomposition Rule) An inference rule of the form

is a decomposition rule with respect to the formula schema F, if all apphcat1ons of

it, written as ARF AZ,I_DQ, AP, , satisfy the following condition: each Py, ..., P}

and Q' is

— (the negation of) a proper subformula of F’, or
— (the negation of) a specialization of F' or of one of its proper subformulas.

Intuitively, a decomposition rule derives a conclusion that is part of one of its

premises. Furthermore, other premises are also part of this special premise. Un-
: i . AFVza P
der this definition, AZ’éQB AE and its dual, %:E, as well as Av,fipwmm

are the only decomposition rules in the natural deduction calculus NK [Gen35].

To emphasize that the variable z occurs in P, we represent P by P[z]. Further-

more, we added the rule %VE and its dual to decompose disjunctions.

Definition (Composition Rule)

! Only in this example, we present an ND proof as a tree to discuss the constraints.



An inference rule of the form % is called a composition rule if all
applications of it, written as %, satisfy the following condition: each
Pl,...P} is

— (the negation of) a proper subformula of @', or
— (the negation of) a specialization of Q' or of one of its proper subformulas.

i AFA,AFB AFA .
Several examples of composition rules are =55 Al, =% 4,5 VI and its dual,

AFPa
AFTz. Pla] 1

The decomposition-composition constraint can now be stated in a fairly sim-
ple way with the help of proof tree in Fig. 2. It requires that derivation along the
branch from the assertion .4, which is always a leaf, to the root are all justified
by a decomposition rule. This branch is called the main branch, which consists
exclusively of a sequence of decompositions. In other words, the conclusion of a
step in this branch is always (the negation of) a subformula of its predecessor.
Other premises needed in the series of decompositions along the main branch
(the leaves U C F' and a € U in the proof above) can be obtained by composi-
tions. This actually guarantees that each intermediate node in such a proof tree
is (the negation of) a subformula of the assertion applied, which explains why we
call it an application of an assertion. For a formal treatment of this constraint,
the readers are referred to [Hua92, Hua94b, Hua96).

and

P,
A, —, ..., Pomg
Py
Ry
A,
A; Ri, Py ..., Pim, P,
Ryp—1, Poo1a ..., ,
An-1 Pn—l,mn_l
A, "
Fig. 3.

2.1 SSPU-Resolution

This section characterizes a class of resolution proof segments that can be seen
as a sequence of applications of certain assertions. Since this concept is first
defined in terms of ND proofs, we thereby establish a correspondence between
these seemingly very different formalisms at a more abstract level. We begin



Composition and Decomposition Constraints

A logic level proof tree is called an application of an assertion A, if it satisfies the
following constraints:

1. quasi-linearity property: At every proof step, there is at most one premise de-
pending on A.
It can easily be concluded that all proof nodes depending on A together form a
branch in the proof tree, from the assertion A to the root. The branch is called
the main branch. Nodes along this branch are now called the main intermediate
conclusions. The general structure of a proof tree is illustrated in Figure 3, where
the main branch is the branch from A to A,. The formula A, A4, ..., A, denote the
main intermediate conclusions, and P; 1, ..., P; »; are the main preconditions for
the decomposition step from A; to A;+1. In other words, the main intermediate
conclusions are the only intermediate conclusions depending on A. Furthermore,
exactly one of their premises depends on .A. We are referring to this linear order
when we later talk about the previous or subsequent main intermediate conclu-

sions.
2. decomposition property: Main intermediate conclusions are justified by decompo-
sition rules Ry, ..., R, with respect to the previous main intermediate conclusion.

The inference along the main branch is therefore a linear process of decomposition
of the assertion A.

3. composition property: Other intermediate conclusions are justified by composition
rules with respect to the corresponding intermediate conclusion.

Table 1. Composition and Decomposition Constraints

with the characterization of one step of application of an assertion in terms of
resolution.

Theorem 1 (R-Application of an assertion)

Suppose there is a resolution with one non-unit initial clause A, n unit initial
clauses Py, Ps, ..., Py, and a unit final resolvent Q). %‘“’P" can be justified as
an application of A', if P1,Ps,..., P, and Q are ground and contain no skolem
constant, and A is the CNF of A'.

We call such a resolution segment an R-application. Instead of a formal in-
ductive proof (see [HM96]), we provide an intuitive explanation. To do so, let
us reexamine the decomposition-composition constraint. Basically it says, if an
assertion is universally quantified, instantiate it only with one constant; if it is
a conjunction, use only one branch of it; if it is a disjunction, try to negate the
other branches and then use the remaining branch. ND inference rules handling
hypotheses and thereby causing branching of a proof, like the case analysis and
choice rule, are forbidden. Translated into resolution, this constraint means that
only one clause normalized from an assertion is involved (hence only one non-
unit clause, actually a condition stronger than necessary), and variables can be
instantiated only once (hence ground premises). The unit premises and the unit
conclusion condition can be understood in light of the VE rule. The restriction
on skolem constants is due to the lack of decomposition rules for instantiating



existentially quantified formulas.

Example 2 (Continued)
Let us return to the example used in the last section, and examine the cor-
responding R-application illustrated below:

The set of initial clauses:
Cl={+(aelU)} C2={+U CV)}
C3 = {—(Sl C Sz), —(.’L‘ € Sl),+($ € SQ)}
The resolution steps:
C2,1& C3,1:add R1: {—(z € U),+(z € V)}
R1,1 & C1,1: add R2: +(a € V)

Apparently different formulations of the same problem may lead to the same
clause form. Since the transformation of a resolution proof starts with a original
problem formulation, it is sensitive to the structure of such formulations. Below
we first consider an R-application with a simple problem structure, which can
be transformed into a sequence of applications of assertions in a schematic way.

Definition (Simple-Structured Problem)
To distinguish atomic and no-atomic premises, we structure our problems
into so-called simple-structured problems (SSP) using the following structure:

(Al/\"'/\Am)/\(Pl/\.../\Pn):>Q
where (A1 A...A A,,) is a conjunction of definitions or theorems, (Py A...AP,)
is a conjunction of (quantified) literals serving as the premises of the current
problem, and the (quantified) literal @ is the conclusion.

Definition (SSPU-resolution)

A unit resolution is called an SSPU-resolution (unit resolution for simple-
structured problems), if the initial unit clauses are normalized from the premises
and the conclusion of a SSP problem.

An SSPU-resolution is called ground, if all its unit clauses are ground and
contain no skolem constants. This implies that the premises and the conclusion
are all ground literals. An SSPU-resolution is called degenerated if it contains
the empty clause O as its only resolvent. This is the case when two initial unit
clauses are contradictory. Apparently SSPU-resolution covers all binary resolu-
tions without factorization, if we do not take (SSP) constraints into account.
Although it is not complete, it does cover a wide range of mathematical problem
we uncounted. We will discuss it in Section 3.4.

3 From SSPU-Resolution to Assertion Level ND-Proofs

3.1 The Basic Procedure for Ground SSPU-Resolution

This subsection first presents a deterministic algorithm that transforms SSPU-
resolution proofs into ND proofs at the assertion level. We start with a procedure
for ground SSPU-resolutions. It is based on the observation that a ground SSPU-
resolution is a sequence of R-applications according to Theorem 1. Apart from
the resolution proof (with a ground substitution for all variables in the resolution)



and the ND proof under construction, our algorithm maintains a relation ¢ that
associates (among others) every unit initial clause and unit resolvent r with an
ND proof line [, where r is the CNF of the formula in line [. This is denoted by
(r,l) € 6, and is an extension to the § relation used in [Lin89].

Basic Procedure:

1. Initialization: Introduce the assertions, the premises and the negation of the
conclusion as hypothesis lines, and initialize the § relation to establish the
correspondence between the initial clauses and the initial ND lines.

2. Translation: For every unit resolvent r do the following (suppose the subtree
in the resolution proof rooted by r has leaves (r1,...,r,), (ri,l;) € §. C is
the unique non-unit initial clause in this subtree, being the CNF of an ND
line L): add a line | to the ND proof, which derives r from lines l1,...,, by
applying the assertion L, add (r,l) to 4.

3. Derive the conclusion by contradiction.

We will illustrate algorithm using example 1 throughout the paper. The de-
velopment of the example is reverse to the order of actual processing: each time
the input proof is produced by the operation described in the next session. The
original proof found by the MKRP system [EO86] will be given in section 4.

Example 1(Continued)
The input resolution proof for this session can be found in Fig. 1. Together
with the problem formulation below, it forms an SSPU-resolution proof:

1 1 _ -1

— Premises:a € SAaxa ' =eAexa ' =a
— Assertion: Vz.Vynz € SAye S=>yxz te S
— Conclusion: ¢~ € §

Both unit resolvents R5’ and R1’ in the proof in Fig. 1 are derived by an
application of C3. First the sequence (a subtree) R2’, R3’, R5’ derives e € S
from the premises @ € S and a * a~! = e. Second the sequence R4’, R6’, R1’
derives a~! € S using as premises a € S and e xa~! = a~1. Finally, R1’ is used
to derive O. This is a ground SSPU-resolution proof that can be transformed
into an assertion level ND-proof by our basic procedure, see next page.

No Hyp Formula Reason
Initialization
1 1 F Vo,y,zax € SAyESAzxy '=2=>2€8  (Asserl)
2 2 F axa™ =e (Hyp)
3 3 F oexal=a! (Hyp)
4. 4 F a€s (Hyp)
5. 5 F - ted) (Hyp)
Translation
6. 214 F eeS (Asserl 4 4 2)
7. 2314 + aleS (Asserl 6 4 3)
8. 23145+ L (=E5 7)
Contradiction
(

9. 2314 + alesS Ind 8)



Note that the conclusion has already been derived in line 7 and that the last
two lines are superfluous. This always happens when the conclusion clause is
used only in the last step. Actually, we employ a refined version that avoids such
indirect proofs. In this example, it skips line 5, 8 and 9.

Theorem 2 (Transformation Theorem)

Let Ry, Rsy,..., R, be the sequence of unit resolvents of a ground SSPU-
resolution proof w. Our basic procedure above produces from w an ND-style proof
at the assertion level with Ry, Ra, ..., R, as its intermediate results.

This theorem follows direct from theorem 1 by induction.

3.2 Decomposing Leaves of SSPU-resolution

Viewing proofs as trees, a unit resolution is a sequence of subtrees rooted at a
unit resolvent. The basic procedure subsequently transforms such subtrees into
an assertion level step in an ND proof, if the premises (the leaves) and the
conclusion (the root) are ground literals. Otherwise, additional transformations
are needed in order either to instantiate an SSPU-resolution, or to decompose
the ND proof lines associated with the leaves of a resolution proof into literals.
Such translations are performed by applying transformations rules.

Rule IV below instantiates universal quantifiers which appear in a premise
line. See [HM96] for a complete set of rules, these rules are adapted from [And80,
Lin90]. The format of such rules is taken over from Lingenfelder [Lin90]. The
rules are to be read as sollows: the lines on the left hand side of the arrow ~»
will be replaced by those on the right hand side.

IV Rule

Ii A F Vz.Flz] Rule R
l F Va. F le R
l;j o [=] Rule ~ b A + Fla] VE L

s A FG@G !

Note that the resolution proof 7 that justifies I3 must be instantiated to ='.
The § relation must be updated so that the literals connected with [, are

connected with [, afterwards.
M-Choice Rule

h A F 3Jz. Flz] Rule R
h A F 3z.F[z] Rule R - Iy F L Hyp
l4 A + G s l3 .A,Fc F G ™
l4 A FG (Choicelllg)

Since constants are used to instantiate the premises and the conclusion are
taken from the ground substitution of the underlying resolution proof, there
are restrictions concerning the order in which the transformation rules may be
applied. Concretely, if the same constant is chosen, the M-Choice rule must
preceed the IV rule. For a detailed instantiation algorithm, see [HM96].

Below is one of the rules that split a premise.

IA Rule



Lh A
i AF FAG Rule R ~ {le
s A

3.3 Constructing SSPU-Resolutions by Permutation

Unit-refutable resolutions can be restructured into unit resolutions. If they are asso-
ciated with a SSP, we call them SSPU-refutable. This property can be easily tested
using the following property, which can be proven by induction.

Property (SSPU-refutable)

Let C, L, U be the number of non-unit initial clauses, the number of literals in
non-unit initial clauses, and the number of unit initial clause in a ground version of a
resolution proof w, w is SSPU-refutable iff 2(C — 1) + U = L.

Algorithm Permuting SSPU-Resolution Proofs

— subsequently do for every resolvent 7:
e If r does not results from a unit resolution step, then postpone r by removing
r and connecting other resolvents using r as a parent clause to a proper parent
clause of r.
e If r results from a unit resolution step, keep r.
e If a postponed resolution can be carried out as a unit resolution step, carry it
out.
— If the empty clause is derived, report success, otherwise failure.

Example 1 (Continued)

The resolution proof below is an instantiation of a proof found by the theorem
prover MKRP for the theorem stated previously. Note that the unit initial clauses are
all ground. The resolution proof used in Fig. 1 can be obtained by the algorithm above.

The set of initial clauses:

Cl={+(axa " =e)} C2={+(exa ' =a")}
C3={-(z€8),-(ye8),—(x*xy ' =2),+(z € 9)}
C4={+(a €S} Cs={—(a""' €8)}

The resolution steps:

C3,4 & C3,1: addRl: {—(z€8),—(yeS),—(z+xy~ ' =2),—(y €89),
—(zxy' 7 =2),+(z' € 9)}

R1,1 & C4,1: add R2: {—(y € S),—(axy ' =2),- (¥ €5),
—(zxy ™ =2, +(<' € 5)}

R2,1 & C4,1: add R3: {—(a*xa ' =2), (4 €8),—(zxy ' =2'),+(z € 5)}
R3,2 & C4,1: add R4: {—(a*xa"'=2),—(z2xa"' =2),+(2 € 9)}

R4,1 & C1,1: add R5: {—(e*xa™' =2'),+(' € S)}

R5,1 & C2,1: add R6: {+(a”' € S)}

R6,1 & C5,1: add R7: O

Fig. 4. Instantiated MKRP-Resolution Proof

Notice, clauses R2’ to R6’ in Fig. 1 are transformed from R2 to R6. R1’ corresponds
to R1, which is postponed. The difference between the two proofs can be intuitively
described as follows: since R1 in Fig. 4 can be viewed as an application of C3 on itself,



the two natural sequences in Fig. 1 are mixed up here. The soundness of the algorithm
is guaranteed, since at each step the resolution reapplies. For more complicated cases
where applications of several assertions are mixed together, see [HM96]. A refinement is
also made to even produce direct SSPU-resolution proofs, where the conclusion clause
is postponed until the last step.

3.4 The Basic Procedure Enriched

Based on the discussion above, we now can present the complete basic procedure that
transforms all SSPU-refutable resolutions into an ND proof at the assertion level. For
the sake of completeness, it handles the degenerated SSPU-resolution as well.

Basic Procedure (Enriched):

2. Translation:

(a) For each unit leaf r in the resolution proof such that (r,1) € §, decompose [
until it is a ground literal (see section 3.2),.

(b) Create an SSPU-resolution proof from a SSPU-refutable proof by permuta-
tion(see section 3.3).

(c) If degenerated SSPU-resolution, apply rule I.L (see below).

(d) for every unit resolvent r do the following (suppose the subtree in the resolution
proof rooted by r has leaves ri,...,7,, and (r;,1;) € §. C is the unique non-
unit initial clause in this subtree, being the CNF of an ND line L): add a line [
to the ND proof, which derives r from lines l1, ..., [, by applying the assertion
L, add {r,1) to 4.

Il Rule

LA FF Rule R
AL Mer o~ [Bdrn omew
? ls A + L (=ElL,12)

To summarize, the algorithm above creates an indirect ND-style proof at the asser-
tion level for every SSPU-refutable proof. The resulting proof is basically a sequence of
applications of assertions involved, interleaved with some instantiations and decompo-
sitions. If the conclusion clause is used only in the last step, it even produces a direct
proof.

4 Splitting an Arbitrary resolution into SSPU-Refutable
Proof Segments

Until now we have only examined operations which decompose or instantiate ND proof
lines. Although the latter also instantiate the corresponding resolution proof, none of
them change the structure of a given resolution. To become a SSPU-resolution, how-
ever, a proof needs enough unit clauses. In this section, we introduce transformation
rules which split an arbitrary resolution proof into a set of interrelated SSPU-resolution
proofs. After that, the SSPU-resolution subproofs are translated by our basic proce-
dure. The aim of such split is to decompose some non-unit clauses into unit clauses, and
thereby producing SSPU-refutable proofs. Since non-unit clauses are CNF's of disjunc-
tive premises (including negated conjunctions) or a conjunctive conclusion, we need
two dual rules to handle them. The M-Case rule below is one of them. It splits the



original problem into two. The corresponding update on the resolution side effects not
only the é-relation, but also splits resolution proof 7 into m; and w2 [HM96].

M-Case Rule

L A FFVG Rule R
I F F F Hyp
i A FFVG Rule R -~ s AF - H T
s A - H T L G F G Hyp
Is AG v H )
le A - H Case(ll,lg,ls)

Summarizing the discussion up to now, our procedure first splits an arbitrary reso-
lution proof into SSPU-refutable subproofs, and then proceeds according to the relation
between SSPU-resolution and the application of assertions. The slitting is basically the
same as the traditional procedure, only it is carried out in a controlled way: We distin-
guish between premises to be decomposed to literals, and definitions and theorems that
should act as the assertions in SSPU-resolutions. For the split of resolution proofs and
for the decomposition of ND lines connected to the leaves of SSPU-refutable proofs,
we have adapted a complete subset of the transformation rules described in [Lin90].
Below is the integrated algorithm that transforms an arbitrary resolution proof into
an ND proof with assertion level justifications. Note that since steps justified by the
application of an assertion is defined in terms of a compound ND proof segment, they
can be expanded correspondingly if required by a user.

An Integrated Algorithm:

1. If the input resolution is SSPU-refutable, then call the basic procedure.

2. Otherwise partition the premises into premises and assertions if not already spec-
ified and split one non-unit clause which is the CNF of a premise. Recursively call
this algorithm with all subproofs created by splitting.

The completeness of the algorithm is obvious. If a resolution proof has enough
unit clause, we can always decompose (if necessary) the corresponding ND lines to
make it a SSPU-resolution. Otherwise, we can alway split it to increase the number of
unit clauses. The basic procedure is very efficient, since the transformation of SSPU-
resolution and the permutation are both linear. Since the heuristic search used in
previous systems is restricted to the strategies concerning the split of resolution proofs,
which is seldom used more than one or two times in most tasks, our transformation is
usually much cheaper than the original search process. Actually, a high percentage of
real-world mathematical problems we have encountered are SSPU-resolution, including
all examples handled by Lingenfelder [Lin89, Lin90], although this is a question of
statistics.

Example 1 (Continued)

Finally, we examine the entire transformation process of example 1 already dis-
cussed in section 3.1 and 3.3. The original proof produced by the theorem prover
MKRP is given below (edited for layout and renaming):

— Premises: Vimuxu™ ' =e AVumesu=1u
— Assertion: Vz.Vyaz € SAy € S = y*x ' € S, other group definitions.
— Conclusion: Veaz € S =z~ 1 € S



The set of initial clauses:

Cl={+(uxu""=¢)} C2={+(exw=w)}
C3={—-(z€8),-(yeb8),—(z*xy ' =2),+(z€9)}
C4={+(weSs)} Cs={—(¢gt €8s}

The resolution steps:
C3,4 & C3,1: addRl: {—(z€8),—(ye8),—(xxy ' =2),—(y €89),
“(zry =), 4 € 9))
R1,1 &C4,1: add R2: {—(y € 8),—(v*xy ' =2),—(y € 9),
—(zxy" =2, +(z € 8)}
R2,1 &C4,1: add R3: {—(v*xv™ ' =2),—(y €8),—(z2xy~ ' =2,+(2' € 8)}
R3,2 &C4,1: add R4: {—(vxv ' =2),—(zxv ' =2),+(¢ €5)}
R4,1 &C1,1: add R5: {—(exv™' =2),+(2' € 9)}
R5,1 &C2,1: add R6: {+(v~! € S)}
R6,1 &Cb5,1: add R7: O

Fig. 5. Original MKRP-Resolution Proof

This proof can be transformed into an assertion level ND proof by the following
steps. The initialization creates line 1, line 2, line 3, and line 10. Decomposition of
the conclusion line 10 then adds line 9 and line 4. Simultaneously, all variables in the
unit initial clauses, namely u, w, v, q are instantiated to a,a™ ", a,a, as given in Fig. 4,
producing line 5 and line 6. The instantiated resolution proof is then permuted as
described in section 3.3. Finally, the basic procedure translates two R-applications as
described in section 3.1, and adds line 7 and line 8. Note that the two assertion level
steps in line 7 and line 8 can be expanded into calculus level ND proof segments in a
schematic way.

NNo Hyp Formula Reason

1. 1 F Ve,y,zmz€SAyESAzxy '=2=2€8 (Asserl)

2. 2 F Vue usxu"'=e (Def-Inverse)

3. 3 F Vu. exu=u (Def-Unit)

4. 4 F a€s (Hyp)

5. 2 F axa'=e (Def-Inverse)

6. 3 F oexa'=a"! (Def-Unit)

7. 214 F e€S (Asserl 4 4 5)
8 2314 F+ alesS (Asserl 7 4 6)
9. 231 F a€S=a'eSs (=18)

100 231 F+ VezeS=z'les (VI 9)

This work is implemented as part of a system called PROVERB, which transforms and
verbalizes machine-found proofs [Hua94a]. The final proof above can be verbalized by

the system PROVERB as following:
“Let a be in S. According to the definition of inverse element, a % a™' = e.

According to our hypothesis, eis in S. exa™! = a~! according to the definition
of unit. Again according to our hypothesis, ™! is in S.”

5 Discussion

There are two related yet distinct lines of research concerning different logic calculi.
On the one hand, there are traditional results showing that certain calculi can simulate
each other. More recently, results were reported comparing length of proofs in different
calculus (for example, see [Ede92] for more details). This work, however, follows the



other line of research aimed at transforming machine-found proofs into proofs more
readable for human users [And80, Mil83, Pfe87, PN90, Lin90, SK95].

Instead of formulating transformation strategies at the level of ND inference rules
as in earlier works, we try to understand resolution proofs directly in terms of the
vocabularies human mathematicians use to talk about proofs. We have shown, that
an SSPU-resolution corresponds directly to ND proof segments that mathematicians
intuitively understand as the application of an assertion. The significance of this result
is mainly twofold. First, contrary to the intuition of many, some resolution proofs, after
some restructuring, become quite readable themselves. This leads to a natural corre-
spondence between resolution proofs and ND proofs at a more abstract level. Second,
since variations at the calculus level are abstracted away, the main part of our algorithm
is deterministic. Shorter and more natural proofs can now be obtained for all examples
involving interesting definitions and theorems, as it is usually the case in mathematical
problems. For these problems the cost of transformation is linear. Nevertheless, there
are limitations to our approach. The performance does not improve much for typical
logical exercises concerning primarily manipulations of nested quantifications. A simple
example is the theorem Jz. Vya [P(z) = P(y)].

The system PROVERB as it stands is already used in various ways. Assertion level
proofs that are transformed from resolution proofs or that are abstracted from ND
proofs are used to facilitate user’s understanding, to serve as the basis to formulate
methods of proof planning, and to produce natural language proofs.

Although we replaced the basic transformation procedure used [Lin90], It is rea-
sonable to investigate how certain global strategies experimented there can be incorpo-
rated into our procedure, in particular those concerning the split of resolution proofs
and concerning the insertion of a lemma [PN90, Lin90]. We are also working to extend
the notion of SSPU-resolution to deal with factorizations and paramodulations. An-
other interesting future development is the adaptation of this technique for other proof
formalisms, for instance expansion trees and connection proofs [SK95].
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