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Abstract. Given areal vector a:(al, .. ,ad) and a real numbere > 0 a
good Diophantine approximation to « is a number @ such that ||Qa mod
Z||oo < €, where || - [|oo denotes the foo-norm ||x||eo := maxi<i<a |zi| for
x = (Z1,...,Za)-

Lagarias [12] proved the NP-completeness of the corresponding decision
problem, i.e., given a vector a € 0%, a rational number € > 0 and a
number N € Ny, decide whether there exists a number @ with 1 < Q <
N and ||Qa mod Z||e < e.

We prove that, unless NP C DTIME(nP°¥1°¢™)) there exists no poly-
nomial-time algorithm which computes on inputs « € Q¢ and N € N, a

number Q* with 1 < Q* < 210" " T d N and

Q" mod Z||oo < glos”* 7 d H;i<nN [lge mod 7| oo,

where -y is an arbitrary small positive constant. To put it in other words,
it is almost NP-hard to approximate a minimum good Diophantine ap-
proximation to « in polynomial-time within a factor 210" d for an
arbitrary small positive constant ~y.

We also investigate the nonhomogeneous variant of the good Diophantine
approximation problem, i.e., given vectors a, 3 € %, a rational number
€ > 0 and a number N € N,, decide whether there exists a number
with 1 < Q < N and ||Qa — B mod Z|| L €.

This problem is particularly interesting since finding good nonhomo-
geneous Diophantine approximations enables us to factor integers and
compute discrete logarithms (see Schnorr [17]).

We prove that the problem Good Nonhomogeneous Diophantine Approx-
imation is NP-complete and even approximating it in polynomial-time
within a factor 28 "< for an arbitrary small positive constant -y is
almost NP-hard.

Our results follow from recent work in the theory of probabilistically
checkable proofs [4] and 2-prover 1-round interactive proof-systems [7, 14].
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1 Introduction

Since NP optimization problems are unlikely to be solved in polynomial-time,
unless P = NP, a lot of work has been done to find polynomial-time approx-
imation algorithms for these problems. An algorithm is said to epproximate a
positive real-valued function opt(-) within a factor f if on every input I its
output is within a factor f of opt(I).

Unfortunately, for many NP-hard optimization problems it is even NP-hard
or almost NP-hard to compute such approximate solutions, see, e.g., Crescenzi
and Kann [6] or Arora and Lund [3]. Therefore, it is quite important, both from
the practical point of view and from the point of view of complexity theory, to
find conditions which enable or disable us to design polynomial-time approxi-
mation algorithms for NP-hard optimization problems

In this paper we investigate the approximability of the following NP opti-
mization problems:

MINIMUM GOOD DIOPHANTINE APPROXIMATION in £o.-norm (MINGDA )
INSTANCE: A rational vector o = (a,...,0aq) € Q¢ and a number N € N
SOLUTION: A number @ € [1,N]NZ

MEASURE: The £o-norm ||Qo mod Z || := maxi<;<q Minyez |Qoy — n|.

MINIMUM GOOD NONHOMOGENEOUS DIOPHANTINE APPROXIMATION in £-
norm (MINGNDA )

INSTANCE: Rational vectors o = (a,...,2q),8 = (B1,...,84) € QF and a
number N € N

SOLUTION: A number @ € [1,N]NZ

MEASURE: The £..-norm ||Qa— 8 mod Z||« = maxi<;<q Min,ez |Qo; — B; —n|.

We refer to MINGDA,, and MINGNDA_, also as the problem Minimum
Good Simultaneous Diophantine Approximation and Minimum Good Nonho-
mogeneous Simultaneous Diophantine Approximation, respectively, and to the
solution @ € [1, N]NZ as the common denominator of the good (nonhomoge-
neous) simultaneous diophantine approximation.

In fact, good simultaneous diophantine approximations have wide practical
impact. Algorithms for finding such approximations may be used to find strongly
polynomial-time algorithms in combinatorial optimization [8], to factor univari-
ate integer polynomials [18] and to compute minimal polynomials of an algebraic
number [11].

The motivation for our first result comes from the following conjecture raised
by Lagarias [12]: If there is a polynomial-time algorithm which computes on
inputs a € Q? and N € Ny a denominator Q* € [1, f(d)N] satisfying

* < .
Q" mod Zl|oe < (), mis, |lgar mod 2,

where f(d) is some polynomial in d, then P = NP. Conversely, Lagarias gave
an algorithm which computes for inputs @ € Q and N € N; a denominator



Q* € [1,2%/2N] satisfying

1Q*a mod Z||oo < V5d 204=Y/2 min ||ga mod Z|| .
1<q9<N

We prove, that approximating MINGDA , in polynomial-time within a factor
218" d for an arbitrary small positive constant v implies NP C
DTIME(npoly<10g ")). Thus, in the sense of Lagarias’ conjecture, our result may
be regarded as a step towards narrowing the gap between approximability and
inapproximability of MINGDA o, in polynomial-time.

Our results follow by a chain of gap-preserving reductions from two well-
known lattice problems: SHORTEST VECTOR in £, -norm and NEAREST VECTOR
in £o-norm. Using previous results [7, 4] on interactive proof-systems, Arora
et al. [2] proved that, unless NP C DTIME(nP°¥(°2m)) 1o polynomial-time
algorithm can approximate the shortest non-trivial vector in the £, -norm in a
lattice within a factor 2'°¢” """ ™ for an arbitrary small positive constant . They
also showed the same inapproximability result for the nearest vector problem in
the £o-norm. By a recent result of Raz [14] the inapproximability factor in case
of approximating the nearest vector in the £,,-norm in a lattice can be amplified
to 2°8" "™ for an arbitrary small positive constant .

We transfer these inapproximability gaps to MINGDA, and MINGNDA ,,
respectively, via two intermediate problems.

Roadmap In section 2 we introduce some notation and the problem SHORTEST
INTEGER RELATION in fo-norm (SIR.) which is known to be almost NP-
hard to approximate within a factor 2log” ™" ™ for v an arbitrary small positive
constant and n the input size, see Réssner and Seifert [16]. In section 3 we give a
gap-preserving reduction from SIR. to MINGDA,, proving the first result. In
section 4 we define the problem MINIMUM DIOPHANTINE EQUATION SOLUTION
in £-norm (MINDES,,) and sketch a gap-preserving reduction from MINDES,
to MINGNDA . This implies our second result.

2 Preliminaries

2.1 Definitions
We briefly introduce some notation, see [5].

Definition 1. An optimization problem IT is a set 7 C {0,1}* of instances, a
set S C {0, 1}* of feasible solutions and a polynomial-time computable positive
measure function m : 7 x § — Ry, that assigns each tuple of an instance I and
a solution S, a positive real number m(I,S), called the value of the solution S.
The optimization problem is to find, for a given input I € 7 a solution S € §
such that m(I,S) is optimum over all possible S € S.

If the optimum is minges{m(I,S)} (resp. maxgses{m(I,S)}) we refer to IT
as a minimization (resp. mazrimization) problem.



Definition 2. For an input I of a minimization (resp. maximization) problem IT
whose optimal solution has value opt(I), an algorithm A is said to approzimate
opt(I) within a factor f(I) iff

opt(I) < A(I) < opt(I) f(I) (resp. opt(I)/f(I) < A(I) < opt(1)),
where f(I) > 1 and A(I) > 0.

For exhibiting the hardness of approximation problems we introduce the follow-
ing reduction due to Arora [1].

Definition 3. Let I and II' be two minimization problems and p, p’ > 1.
A gap-preserving reduction from II to II' with parameters ((c,p),(c',p')) is a
polynomial-time transformation 7 mapping every instance I of IT to an instance
I' = 7(I) of II' such that for the optima opt;(I) and opt (I') of I and I',
respectively, the following holds:

opt (1) < ¢ = optp(I') < ¢
optp(I)>c-p= optp(I') > -p,

where ¢, p and ¢, p’ depend on the instance sizes |I| and |I'|, respectively.

2.2 Previous Results

The proof of our first result will mainly rely on a gap-preserving reduction
to MINGDA_, from the problem SHORTEST INTEGER RELATION in £,,-norm
stated as follows:

SHORTEST INTEGER RELATION in £y-norm (SIRy)

INSTANCE: A rational vector a € Q?

SOLUTION: A nonzero vector x € Z% such that (a,x) =0
MEASURE: The £-norm ||X||eo := maxi<i<n |Z;| of the vector x

The SHORTEST INTEGER RELATION problem in /.,-norm was proven to be
NP-complete by van Emde Boas [19]. Very recently, Réssner and Seifert [16]
showed the following Theorem, stating that it is even almost NP-hard to ap-
proximate SIR., in polynomial-time within a factor glog” ™7 ™, where v is an
arbitrary small positive constant and n the size of the SIR, instance I.

Theorem 4. There exists an almost polynomial-time, i.e., DTIME(nP"b’(I"g "))
transformation T from 3-SAT to SHORTEST INTEGER RELATION in £, -norm such
that, for all instances I,

I € 3-SAT — oPtSIRm (T(I)) =1
I ¢ 3-SAT => optgp_(r(I)) > 28”7 I7(DI,
where «y is an arbitrary small positive constant.

The above Theorem, in turn, was proven by a reduction from the SHORT-
EST VECTOR problem in the £,,-norm, involving techniques from the Feige and
Lovész [7] 2-prover 1-round interactive proof-system, see [2, 16] for more details.



3 The Reduction

3.1 Reducing SIR, to MINGDA

Theorem 5. There exists a polynomial-time transformation 7 from SHORTEST
INTEGER RELATION in f.-norm to MINIMUM GoOD DIOPHANTINE APPOXI-
MATION in £y,-norm, 7 : I +— {(ag/bo,...,aq/bq), N), such that, for all instances
I and for all p > 1,

optsip, (1) =1 = 121(11i<n]\[ lga mod Z|| o < %

optsir (1) > p= 15592;;N |Q*a mod Z|| oo > pi.

Proof. Our proof follows closely [12]. Due to a few changes specific to our claim,
we include the complete proof here. Let a = (ay,...,aq) € Z? be the vector of
a given SIR,, instance I. First, we encode the task to find a non-trivial x € Z¢
with ||x]|cc < p and

d
Zac]-a]- =0 (1)
1=1

as a congruence. Let A := pzjzl |a;| and let po be the smallest prime with

Do Y H‘;:l aj. We set R := [log, A| + 1. The following steps will crucially use
the following Lemma whose proof is deferred to the Appendix.

Lemma A. There exists a polynomial-time (polynomial in |I|) computable set
of primes {Q1,...,Qa4} and an integer T' € Ny such that

(a) Q; < Qit1,9=1,...,d—1,

(b) ged(Qi,po[]i_,a;) =1,i=1,....d,
c) QT > 4p(d+1)pf and

(c) Q1 p( ) P

(d) p'T Q4 < (p+ YT Q.

By the Chinese Remainder Theorem we find for every j = 1,...,d a smallest
positive integer r; satisfying

7 =0 (mOd I Q,-T) (2a)
i#j
r; =a; (mod pd) (2b)
r; Z0 (mod Q;), (2¢)
where Q1,...,Qq are given as above. (2¢) is a consequence of (2a) and (2b), for
if 9 is the smallest positive solution satisfying (2a) and (2b), we set
o r, if 79 20 (mod Q;);
R (Hd;j QZT) , otherwise.



As ged(plt H?Zl QiT/QjT, Q@;) =1 by (b) of Lemma A, we infer that r; # 0 (mod
Qj), j=1,...,d, ie. (2c) holds for either choice of r;.
By (2b) and A < pft, we see that the systems

d d
Zm]-a]— =0, (1a) and ijrj =0 (mod pf), (3a)
7=1 J=1

1< %l <p (1b) 1< %llso < p. (3b)

have identical integral solutions sets.
For an integral vector x with 1 < ||x||c < p we define

d d d
Z = Za:]-r]-, H:= Zr]- and B := H Q]T.
=1 71=1 71=1

We clearly have |Z| < pH. Moreover, (c) of Lemma A implies

B 1
d
ry <+ pff (1% QF) < 2pf

— < ——B, thus pH < 1/2B.
QT = 2+ ) /

Lemma 3.6. Let opt 4s1r._(3a) denote the {o-norm of the {.,-shortest non-
trivial integral solution of (3a). Then, we have

0Pt moasiR., (3a) =1
= 3Z:Z#O0A|Z|<HAZ=0(modpf)A V Z=ijr; (modQ])
1<5<d
A Y z; €{0,£1}
1<j<d
0Pt rmodsir.., (30) > p

= VZ:Z#0N|Z|<pHANZ=0(modpf)A V¥ Z=2;r; (modQ7)
1<5<d

= 3 & ¢[-ppnL
1<5<d

Proof. First, assume that opt,  qsir.(3a) = 1 and let x be the corresponding
solution of (3a). For Z := E?:l x;r; we have

[e]

Z # 0 by (2a), (2c) and since there exists an index j with z; # 0,
1Z] < H as [[x[lo <1,

o Z = Z‘;:l z;r; =0 (modpf) by definition and,

V Z=g&r; (modQT)A v & €{0,£1} by (2a) and [|x[|oc < 1.
1<5<d 1<5<d

[e]

[e]

In order to show the second implication let us assume it exists Z # 0 with

|Z| <pHAZ =0 (modpf)A YV Z=2;r; (modQ])A Y &5 €[—p,p|NL.
1<5<d 1<5<d



To prove the claim we will show the existence of a solution x € Z¢ for 2?21 ;T =
0 (modpl) satisfying 1 < [|x||ce < p- For that we consider a candidate solu-
tion x = (z1,...,24) € Z% by setting Z‘;:l x;rj := Z. Then, by (2a) we have
zjr; =2 (monf), 1<7<d.

We show how to uniquely recover z; (modQ7) from the given Z. By (2c)
and ged(r;, Q7) = 1 we can find the unique r} with 1 < ¥ < QT satisfying
riry =1 (mon]T), 1 < j < d, using, e.g., the Extended Euclidean Algorithm.
Consequently, we have

YV oz =zl =2y =&t =%;  (mod Q?) with VvV & € [—p, p|NZ.
1<5<d

We now prove that even z; € [—p,p] N Z. From the Chinese Remainder
Theorem we infer that the system of congruences

Z=#&r; (modQ)), & €[-p,pNZ, 1<j<d
has exactly (2p + 1)¢ solutions in the interval
—-1/2B< Z < 1/2B

since B := H;‘lﬂ Qf. From the inequality pH < 1/2B we see that we have at
most (2p + 1)? solutions for the system

|Z] < pH,
Z=&r; (mod Q]), & €[—p,plNZ, 1<j<d.

But it is an easy task to come up with (2p+1)¢ distinct solutions, namely those
with all

z;j € [-p, | N L.

These solutions are all distinct by 2;r; = Z (modQ7), for if
x; # xf then  Z'=air; (mod Q)) # Z" =zr; (mod Q7).

This means that we have found all (2p+ 1)? solutions which, in fact, satisfy z; €

[—p, p)NZ. Also note that Z # 0 if and only if x is not the all-zero vector. Since

Z = E;l:l z;r; and Z = 0 (modp') we have shown that opt, . qsr_(3a) < p.
O

Lemma3.7. Let I be the MINIMUM GOOD DIOPHANTINE APPOXIMATION in-
stance defined by




where 77, 1 <1y < QJ-T, is the unique inverse of r; (mon]T). Then, we have

3Z:Z#O0N|Z|<HANZ=0(modpf)A V¥ Z=2;r; (modQ7)
1<5<d

A € {0,+1
ISYSdIJ { }
= 3Z:Z#0A|Z|<HA V min|Zaj;—n|< 2
0<j<d n€Z @
VZ:Z #£0A|Z| < pHAZ=0(modpf)A vV szcjrj(monjT)
1<5<d
= 3 & ¢[-ppnL
1<5<d
=VZ:Z+0A|Z|<pH= 3 m1n|Z0¢]—n|>—L
0<j<d n€Z

Proof. First, assume there exists a Z # 0, such that:
|Z|<HAZ=0(modpf)A V Z=ar; (modQ])A ¥V &;€{0,%1}.
1<5<d 1<5<d

Obviously, we have Z # 0 A |Z| < H and also by Z = 0 (modpf)
min ‘ZLR — n‘ =0.
neZ | Po

Moreover, by (2c¢) and (a) of Lemma A we infer for 1 < j <d

. T . Tiriry
mln‘Z—’T—n = min |22
neZ Qj neZ

1 1
—n| = min ——n < = < —=&.
| nez QT ‘_Q]T_Qf

J

Thus, there exists a denominator Z with the required properties.

In order to prove the second implication let us now assume

3Z:Z #0N|Z|<pHA Y min|Za; —n| < gr
0<j<d n€z

Obviously, again we have Z # 0 A |Z| < pH and by (c) of Lemma A we have
1 p

JR— > —_
R T
Do 1
which together with min,cz |Zp —n| < < - forces min, ¢z |Z —n| = 0. Thus,

Z =0 (modpf). By (a) and (d) of Lemma A it follows that

p+1 _p
> ==,
Q7 ~ Qf

which together with min,ez |ZC; —n| < - enforces min,cz |Z —n| < L=
J

But this is only possible if
Z =i;r; (mod Q?—’)/\ij €[-p,pNZ, 1<j<d.

This of course proves the lemma. O



Combining the solution equivalence of the systems (1a, 1b) and (3a, 3b) with
Lemma 3.6 and Lemma 3.7 yields the desired polynomial-time transformation 7,
since all operations of our reduction can clearly be carried out in time polynomial
in |I]. O

3.2 Hardness of Approximating Diophantine Approximations

By piecing together the results of Theorem 4 and Theorem 5, we obtain the
following;:

Main Theorem 8 Unless NP C DTIME(np"lya"g ")), there exists no polyno-
mial-time algorithm which on input o« € Q and N € Ny computes a denomi-
nator Q* with 1 < Q* < 292" ° 74N guch that

0.5— .
|Q*a mod 7|, < 28 " 4 oy llgax mod Z|| o,

where «y is an arbitrary small positive constant.

Cm(;(gllary 9. Approximating MINGDA ., in polynomial-time within a factor
208" ™" d for an arbitrary small positive constant ~ is almost NP-hard.

4 The Nonhomogeneous Case

To capture the nonhomogeneous case, i.e., the problem MINGNDA ,, we will
reduce from a well-suited problem, namely:

MINIMUM DIOPHANTINE EQUATION SOLUTION in £.-norm (MINDES,)
INSTANCE: An equation zia; + -+ + Zpan, = b with a1,...,a,,b € Z
SOLUTION: A vector x € Z" such that >, z;a; = b

MEASURE: The £o-norm ||x||oo := maxi<;<n |2;| of the vector x

Majewski and Havas [13] proved the NP-completeness of MINDES,, in its
feasibility recognition form. Using the Parallel Repetition Theorem of Raz [14]
and the techniques of Arora et al. [2] it is not difficult to modify the proof of
Theorem 4 from [16] such that even the following holds, see [15] for a detailed
proof.

Theorem 10. There exists an almost polynomial-time, i.e., DTIME (nP°¥(log))
transformation T from 3-SAT to MINIMUM DIOPHANTINE EQUATION SOLUTION
in {..-norm such that, for all instances I,

I ¢ 3-SAT = optypps.. (T(1)) > 28" 7D,

where 7y is an arbitrary small positive constant.



Adapting the reduction in the proof of Theorem 5 to the nonhomogeneous
case, the following can be shown:

Theorem 11. There exists a polynomial-time transformation T from SHORT-
EST INTEGER RELATION in £, -norm to MINIMUM G0oOD NONHOMOGENEOUS
DIOPHANTINE APPOXIMATION in fo,-norm, 7 : I +— {(ag/bo,...,aq/ba),3,N),
such that, for all instances I and for all p > 1,

optyinpes.. () =1 = 1glli<nN llgar — B mod Z|| oo < %

optyinpes, (1) > p = 1<gl*i<p1v Q" — B mod Z|e > Pﬁ-

(For the reduction from the MINDES_ —instance {(a1,...,an,b)) we have
to ensure that po J b. Then, defining the vector B of the instance of MINI-
MUM GOOD NONHOMOGENEOUS DIOPHANTINE APPROXIMATION in £,.-norm
by Bo=b/pf, Bi=0,i=1,...,d, admits a straightforward adaption of the
proof of Theorem 5.)

By the last Theorem and the NP-completeness of MINDES, we infer:

Main Theorem 12 MINGNDA,, is NP-complete (in its feasibility recogni-
tion form).

Moreover, Theorem 10 and Theorem 11 imply:

Main Theorem 13 Unless NP C DTIME(nP°¥(1°6%)) " there exists no po-
Iynomial-time algorithm which on input o, 3 € Q! and N € Ny computes a
denominator Q* with 1 < Q* < 21°¢" 4N guch that

* d7z < 210g1_'Y d : _ d7Z
Q% = B 10d 7l < 2% i flgx B 100 7|,

where v is an arbitrary small positive constant.

Coxl'ollary 14. Approximating MINGNDA , in polynomial-time within a factor
2log ™" 4 for an arbitrary small positive constant ~ is almost NP-hard.
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Appendix

We will prove that for suitable choices of T we can find in O(n°°) bit operations
an interval containing d prime numbers Q1, . .., Q4 satisfying the conditions (a)-



(d) of Lemma A.

Proof. (of Lemma A) Let n := |I| denote the length of the given SIR, instance
I, i.e., the vector a = (ai,...,aq) € Z% Obviously, n > d.

As the binary length of H;i:1 a; is bounded by dn, this product has at most
dn < n? distinct prime factors. Therefore, py will be one of the first (n? + 1)
primes which can be found by a brute force trial division in O(n*) bit operations.
Using p < n and the specific choice of py and R we have

d
2 2 2
23n 2 on +12logp2nlogd Z on +1p§ :|Uzj| 2 p(l)i‘
Jj=1

Hence, setting 7' := 4n2, guarantees QT > 4p(d + 1)p¥, i.e., condition (c) holds.
In order to find a set of primes {Q1,...,Qq4} satisfying the remaining condi-
tions of Lemma A we invoke the following primitive search routine:

for every x =1,2,---
if [p'/ Tz, (p +1)/Tx] =: I, contains > d + n? + 1 distinct primes then stop;

If this search stops with x, we are guaranteed that for this choice of x at least
d primes in I, satisfy the condition (b) since pg H?Zl a; has at most n2+1 distinct
prime factors. Moreover, the conditions (a) and (d) are satisfied by selecting the
suited primes in the interval I,.

The main difficulty is now to prove that the above search routine performs
at most n* bit operations for some k € N. Thus, we must give an upper bound
for the value of z for which the search algorithm stops. We use the following
number-theoretic result on the number of primes in a short interval.

Theorem [10, 9]. For each § > L there exists a constant s such that the

interval [z, z + °] contains for all z > x5 a prime.
From p < n, we derive

(VT > 1+ () 5 > 1+ oo gk > 1+ g

2p

. 20 .
Setting z := ;77 we infer

I, = [pl/TiL‘, (p+ 1)1/T1_] — [n20,(%)1/Tn20] ) [n207n20 + %’I’L”].

For the choice of § := £ the above Theorem guarantees that we can find in the
interval [n2°,n29 + n'2] a prime, if n is sufficiently large. Since we can locate in
the interval [n29, n20 + nl7] all the intervals of the form

—ow

220 +in'? 0 + (i + 1) n'?], i=0,...,n%—1,

we will be able to find at least n® distinct primes.
As the primality of each number z in I, can be tested in O((2/?+zn?)(log z)?)
bit operations, the above search routine uses at most O(n®?) bit operations. 0O

This article was processed using the IATRX macro package with LLNCS style



