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Abstract. While CNF propositional satisfiability (SAT) is a sub-class of the
more general constraint satisfaction problem (CSP), conventional wisdom has it
that some well-known CSP look-back techniques -- including backjumping and
learning -- are of little use for SAT. We enhance the Tableau SAT algorithm of
Crawford and Auton with look-back techniques and evaluate its performance on
problems specifically designed to challenge it.

The Random 3-SAT problem space has commonly been used to benchmark
SAT algorithms because consistently difficult instances can be found near a
region known as the phase transition. We modify Random 3-SAT in two ways
which make instances even harder. First, we evaluate problems with structural
regularities and find that CSP look-back techniques offer little advantage.
Second, we evaluate problems in which a hard unsatisfiable instance of medium
size is embedded in a larger instance, and we find the look-back enhancements
to be indispensable. Without them, most instances are “exceptionally hard” --
orders of magnitude harder than typical Random 3-SAT instances with the same
surface characteristics.

1 Introduction

Given the usual framework of backtrack search for systematic solution of the
finite-domained constraint satisfaction problem (CSP), techniques intended to improve
efficiency can be divided into two classes: look-ahead techniques, which exploit infor-
mation about the remaining search space, and look-back techniques, which exploit
information about search which has already taken place. The former class includes
variable ordering heuristics, value ordering heuristics, and dynamic consistency
enforcement schemes such as forward checking. The latter class includes schemes for
backjumping (also known as intelligent backtracking) and learning (also known as
nogood or constraint recording). In CSP algorithms, techniques from both classes are
popular; for instance, one common combination of techniques (e.g. [1, 12, 28]) is for-
ward checking, conflict-directed backjumping [23], and an ordering heuristic prefer-
ring variables with the smallest domains.

CNF propositional satisfiability (SAT) is a specific kind of CSP in which every
variable ranges over the values . For SAT, the most popular systematic
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algorithms are variants of the Davis-Logemann-Loveland modification [8] to the pro-
cedure originally defined by Davis and Putnam [7]; hereafter we refer to this procedure
as “DP”. In CSP terms, the procedure is equivalent to backtrack search with for
checking and an ordering heuristic favoring unit-domained variables. Two effec
modern variants of this algorithm are Tableau [5] and POSIT [11], both amountin
DP with highly optimized variable ordering heuristics. Are these SAT algorithms m
ing anything by not incorporating conflict-directed backjumping or another look-b
technique? The standard Random 3-SAT problem space commonly used to benc
SAT algorithms may not be a good place to look for the answer: Tableau is ab
solve millions of instances from Random 3-SAT without any apparent trouble.

Here we challenge Tableau with modifications to Random 3-SAT to m
instances more difficult. Random 3-SAT is already a source of consistently hard 
lem instances -- those in the region of the phase transition occurring when the ratio of
constraints to variables increases through a critical value [27]. The phase tran
separates an under-constrained region, where almost all instances are satisfiable a
easy, from an over-constrained region, where almost all instances are unsatisfiable a
relatively easy. We modify Random 3-SAT in two ways: first, we force problems
have structural regularities intended to confuse variable selection heuristics; se
we embed hard unsatisfiable instances into larger instances, making the unsatisfi
of the resulting instances difficult to identify. We also modify Tableau to incorpo
some popular look-back techniques, and we evaluate the enhanced algorithm w
new problem spaces. In the case of highly regular problems, we find that look-
techniques offer little or no advantage; for solving our embedded problems, we
them indispensable.

Researchers working with random spaces for other CSPs [1, 17], with other
problem spaces [14, 15], or with Random 3-SAT but an algorithm other than Tab
[14, 15], have found rare instances in the under-constrained region so difficult 
render the mean difficulty higher there than in the transition region. Crawford 
Auton [5] using Tableau and Random 3-SAT find no such “exceptionally ha
instances (EHIs). Compared to a reference problem space harder than Random
(“Variable Regular 3-SAT” -- see Section 4), our embedding procedure gene
instances that are “exceptionally hard” for Tableau -- orders of magnitude harder
other instances with the same surface characteristics. Our EHIs could as well 
from Random 3-SAT, albeit with low probability. These instances have a claus
variable ratio that places them in the under-constrained region of the reference
lem space. Given the difficulty and consistency with which they are generated
believe they are useful as benchmarks for SAT algorithms.1

We find that look-back techniques greatly reduce the incidence of EHIs prod
by our embedding procedure. The result is similar to that of Baker [1] who, usi
random graph-coloring CSP space, finds no EHIs with respect to a conflict-dire
backjumping and learning algorithm. In contrast, some instances produced b
embedding procedure remain difficult even for Tableau with conflict-directed ba

1 Implementations of the problem generators and algorithms defined in this paper are available 
through the Web page of the first author: http://www.cs.utexas.edu/users/bayardo/.



jumping and learning enhancements. Related work has identified other 3-SAT
instances that are difficult for Tableau or other DP variants [16, 22]. The instances
among these which we have tested are trivial for Tableau enhanced with CSP look-
back techniques (see Section 6).

2 Definitions

SAT involves determining whether a given Boolean expression has a satisfying
truth assignment. Any Boolean expression can be transformed to conjunctive-normal
form (CNF) which allows a conjunction of clauses  where each
clause  is a disjunction of literals . A literal is either a variable 
or its negation , . Expressions in conjunctive normal form are easily seen
to be instances of the CSP: each variable in the Boolean expression corresponds to a
variable in the CSP with a Boolean domain, and each clause of  literals is a constraint
disallowing exactly one truth assignment to the  variables mentioned. SAT restricted
to conjunctive normal form with exactly  literals per clause is known as -SAT. A
common restriction of SAT that retains its NP-completeness is 3-SAT.

 By problem, we mean an abstract description such as the definition for CSP, SAT,
or 3-SAT which can be instantiated in different concrete ways -- e.g., by enumerating
specific variables and constraints. By instance, we mean one of these particular instan-
tiations. By problem space, we mean a parameterized set of problems, where each
parameter represents a dimension of the space. Thus, one point in the larger space of 3-
SAT is 3-SAT with exactly 75 variables and 325 clauses. In a random problem space,
the probability distribution for the occurrence of a particular instance at any point
depends on the operation of a non-deterministic procedure given the parameter values
for that point as inputs. The procedure for the Random 3-SAT problem space is given
below.

RANDOM 3-SAT: Inputs are the number of variables  and the number of 
clauses . Three distinct variables are randomly selected out of the 
pool of  possible variables. Each variable is negated with probabil-
ity . These literals are combined to form a clause.  clauses are 
created in this manner and conjoined to form the 3-CNF Boolean 
expression.

For scaling across different problem sizes (different values of ), we use the con-
straint ratio  which is expressed in units of clauses per variable. Instances with
high median difficulty can be found at the crossover point, occurring where half the
generated instances are satisfiable. The crossover point may be thought of as the mid-
point of the phase transition region. It turns out that the location of the crossover point
is fairly stable in constraint ratio terms -- around 4.26 for Random 3-SAT [5].

3 Tableau and Look-Back Enhancements

We use Tableau [5] as our baseline SAT algorithm. Crawford and Auton show Tab-
leau to be very effective at solving instances from Random 3-SAT and at overcoming
the incidence of EHIs in the under-constrained region. For a full discussion of the heu-
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ristics which lead to its success, please see [5]. We create three look-back-enhanced
versions of Tableau: one applying conflict-directed backjumping (CBJ) [23], another
CBJ with third-order learning [12], and the last CBJ with unrestricted learning (some-
times referred to as “dependency-directed backtracking” [30]).

As look-back techniques, backjumping and learning are invoked when the a
rithm reaches a failure point where at least one variable assignment must be u
before search can progress. Both exploit a set of “culprit” variables whose assign
are determined to be responsible for the failure. The method used to identify the 
culprits is critical in the effectiveness of the techniques. The culprit identifica
scheme used by Prosser’s conflict directed backjumping is widely used [1, 12,
requires little overhead [28], and is provably more effective than some of its pred
sors [20]. Given a culprit identification scheme, the next issue to be decided is h
exploit the culprits. Pure CBJ simply backs up to the most recent culprit to have 
assigned a value without recording the culprit assignments. At the other extre
unrestricted learning which records every assignment of culprit variables (call
nogood). A useful middle-ground is to apply CBJ and to record nogoods only if t
are below a certain size. For instance, third-order learning [12] records only t
nogoods mentioning three or fewer variables. In the SAT context, this correspon
recording derived clauses of three or fewer literals.

In the experiments that follow, we concentrate on CBJ and bounded lea
enhancements of Tableau. We experiment briefly with unrestricted learning, but f
too expensive on the more difficult instances.

4 Regularity-Inducing 3-SAT Generators

Tableau and other modern SAT algorithms exploit irregularities within the se
space to realize inevitable dead-ends as quickly as possible. We were interes
identifying the effects of highly regular instances on Tableau and its enhancem
Various other studies [6, 13, 29, 31] have investigated the effects of increased re
ity on SAT and CSP solving, finding that higher regularity increases mean diffic
While look-back techniques do not significantly improve Tableau’s mean performa
on the instances below, we discover interesting phase transition properties whic
exploit to develop a harder problem generator in the following section.

We first define two new generation procedures based on Random 3-SAT tha
gressively eliminate certain sources of irregularity. An obvious potential irregula
within a Random 3-SAT instance is that some variables may appear more often
others. The following generation procedure removes this irregularity nearly c
pletely:

VARIABLE-REGULAR 3-SAT: Inputs are the number of variables ( ) and the 
number of clauses ( ). The instance is constructed by putting 

 occurrences of each variable in a “bag”. A random set of 
unique variables is then added to the bag so that there are exactly 

 variables in it. To construct each clause, three distinct variables 
are removed from the bag. Each variable is negated with probability 

 to form a clause, and clauses are conjoined to form the 3-CNF 
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expression. If there are only one or two distinct variables remaining 
within the bag, additional distinct variables are selected randomly 
from the set of all variables.

Since variables are negated at random in Variable-Regular 3-SAT, a given variable
may appear negated more often than not (or vice versa). The next generation procedure
removes this source of irregularity nearly completely. This problem space is equivalent
to the “doubly balanced” SAT space investigated independently by Dubois 
Boufkhad [10], and similar to those defined by Genisson and Sais [13].

LITERAL-REGULAR 3-SAT: Inputs are the number of variables ( ) and the 
number of clauses ( ). There are  possible literals given  vari-
ables, so  occurrences of each literal are placed in a bag. 
A random set of unique literals is then added to the bag so that there 
are exactly  literals in it. To construct each clause, three literals 
on distinct variables are removed from the bag. If there are only 1 or 
2 distinct variables mentioned in literals remaining the bag, addi-
tional distinct variables are randomly selected from the set of all 
variables and negated with probability .

Data on the location of the phase transition and mean problem difficulty 
respect to Tableau for instances generated by the regularity-inducing generators 
in Figure 1. Each point plotted in both graphs results from 500 instances solved b
implementation of Tableau.

While both generators increase regularity, one exhibits a phase transition t
right of Random 3-SAT’s, and the other to the left. The first graph in the figure 
plays the phase transition properties for each procedure when  is fixed at 140. 
and Dyer [29] find a similar rightward shift with CSPs when decreasing constra
graph regularity. They point out that it is more difficult to assign a value to a hig
constrained variable than to a less constrained one; thus, greater variability in
straint graph degree should lead on average to greater frequency of unsatisfiabil
given  and . This helps to explain why variable-regularity shifts the phase tra
tion to the right from Random 3-SAT. Genisson and Sais [13] reported a similar
ward shift with their literal-regular 3-SAT generator. We believe that literal-regu
instances typically require fewer clauses for unsatisfiability because the balan
positive and negative variable occurrences provides more opportunities for resol
leading to a greater probability of ultimately deriving the empty clause.

Also displayed in Figure 1 are mean problem difficulty at various values of in
parameters. Difficulty is represented by the number of branch points encounter
Tableau. Branch points are defined as search tree nodes where Tableau does a si
cant amount of work (i.e. more than just unit propagation) in branching on both p
ble truth values [5]. As expected, mean difficulty at crossover increased 
regularity. Literal-Regular 3-SAT exhibits the highest mean difficulty; at this relativ
low value of , its peak is almost an order of magnitude higher than that of Rando
SAT.

We repeated the experiments at larger and smaller values of  in order to se
the phase transition and mean difficulty changed, this time averaging over 
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instances per data point. Recall that for Random 3-SAT the location of the crossover
point is fairly stable at a constraint ratio near 4.26. The graphs in Figure 2 illustrate the
crossover points for the other problem spaces, and the respective difficulty at the cross-
over point. Crossover point locations for these new generators are also stable in con-
straint ratio terms. We derived a crossover point constraint ratio of 4.41 for Variable-
Regular 3-SAT and 3.54 for Literal-Regular 3-SAT.

Measuring difficulty in branch points explored by Tableau, it is known that diffi-
culty of crossover point problems from Random 3-SAT approximately doubles every
time the number of variables is increased by 20 (at least up to ) [5]. For Vari-
able-Regular 3-SAT, we see that difficulty increases by a factor of 2.4 with an incre-
ment of 20 variables (within the range explored). For Literal-Regular 3-SAT, the
difficulty increases with a factor of approximately 2.9.

We added conflict-directed backjumping and third-order learning to Tableau, antic-
ipating that learning (which derives new clauses during search) could create irregulari-
ties for the variable ordering heuristics to exploit. We found that neither scheme
improved runtime nor reduced search space explored beyond a few percentage points.
Tableau, while performing worse on these instances than typical Random 3-SAT
instances, has a respectable growth rate when compared to naive DP variants. For
instance, Crawford and Auton [4] find that DP using a most-constrained-first variable
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selection heuristic requires over 10,000 branch points for Random 3-SAT problems
with as few as 100 variables. After assigning a few variables, we suspect enough irreg-
ularities appear in the resulting sub-problems to make Tableau’s look-ahead heu
effective. The irregularities created by learning were not significant in comparison

5 Manufacturing and Solving Exceptionally Hard Problems

Several researchers [1, 14, 15, 17] have found rare instances in the unde
strained region of various problem spaces so difficult as to render the mean diffi
higher than that of instances from the crossover point. Some of these instance
been found to contain small unsatisfiable sub-problems [15]. In this section, inste
randomly generating instances from the under-constrained region of a particular 
lem space in search of exceptionally hard instances, we actively generate them b
ating under-constrained instances with small unsatisfiable sub-problems.

A simple approach for generating an under-constrained instance containin
unsatisfiable sub-problem is to take the union of the clauses from an under-const
instance and an unsatisfiable one. However, most instances created using this ap
have surface characteristics that render them easy. For example, if the two com
instances consist of disjoint variables, a simple connected components algorithm
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be used to identify each sub-problem for their independent solution. Without such a
preprocessing phase, we have found that Tableau can perform poorly on such instances
if the variable occurring most frequently appears in the under-constrained instance:
Tableau will initially attempt to solve the under-constrained instance, and for each
solution, it attempts (and fails) to solve the unsatisfiable one. The addition of conflict-
directed backjumping completely remedies this behavior, since it allows each sub-
problem to be effectively solved independently in conjunction with the most-con-
strained first variable ordering heuristic. If the variable names of the combined
instances are overlapping, then variables shared between the instances almost always
occur most frequently (unless additional steps are taken to prevent this). This causes
Tableau to branch initially on those variables, allowing it to determine unsatisfiability
without exceptional difficulty.

In this section, we show how the phase transition characteristics of the regular
problem spaces can be exploited to conveniently generate under-constrained instances
containing well-concealed small unsatisfiable sub-problems. The procedure is used to
generate instances whose constraint ratios suggest they should be easily satisfiable
with reference to another problem space. Instead, they frequently turn out to be excep-
tionally hard. We find that look-back enhancements provide a substantial degree of
insurance against poor performance, though they fail to eliminate it completely.

In principle, an instance can be “exceptionally hard” only with reference to a g
algorithm and a particular problem space. For example, looking at Figure 2b, c
over instances from Literal-Regular 3-SAT would be considered hard with referen
Random 3-SAT. As a convention, we take an EHI to be any instance which requi
least an order of magnitude more work than the mean difficulty of crossover insta
in the reference problem space. Here, we use Variable-Regular 3-SAT as our refe
space since the generator produces only variable regular instances. In our exper
with Variable-Regular 3-SAT and those with Random 3-SAT, we found no instanc
crossover requiring more than 5 times the mean number of branch points, so our
are much harder than any of the observed crossover instances.

The procedure below conceals a problem instance within a larger one. It use
Variable-Regular 3-SAT procedure to embed the input instance  with  varia
and  clauses within a larger randomly generated instance of size .

EMBEDDING PROCEDURE: Inputs are an instance  of size , , and 
parameters  specifying the size of the instance to be generated. 
The number of occurrences of any variable in  is required to be no 
more than . The variables of  are first renamed ran-
domly to variables within the set of  variables to appear in the gen-
erated instance. Next, a bag is filled with variable occurrences 
exactly as is done by Variable-Regular 3-SAT with parameters . 
Then, for every occurrence of a variable appearing in the renamed 

 clauses, an occurrence of that variable is removed from the bag. 
Afterwards, the remaining  clauses are generated as defined 
by the Variable-Regular instance generator.
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If  is unsatisfiable, then the resulting problem will also be unsatisfiable since it
contains the (renamed) clauses of . The procedure below uses the technique to cre-
ate unsatisfiable variable-regular instances.

EXCEPTIONALLY HARD 3-SAT: Inputs are four parameters, . We 
begin by using the Literal-Regular 3-SAT procedure to generate an 
instance  of size . The procedure is invoked until an unsatis-
fiable instance is produced. Then, clauses are greedily removed at 
random from  until there is no single clause that can be removed 
without rendering the instance satisfiable. At this point, the reduced 

 is checked to ensure no variable appears more than  
times. If a variable appears too often, then we start over. Otherwise, 
we embed  into a size  instance using the previously-
described embedding procedure.

The above procedure must find an unsatisfiable instance that can be effectively
concealed by way of low variable occurrences. Its strategy for maximizing the proba-
bility of concealment is as follows. First, it selects an unsatisfiable instance from Lit-
eral-Regular 3-SAT. On average, these require fewer clauses for unsatisfiability than
instances from Random 3-SAT and Variable-Regular 3-SAT due to the left-shifted
phase transition. The procedure then applies the greedy reduction phase to make the
instance even easier to hide (we find that reduction typically removes 20-40% of the
clauses from unsatisfiable crossover instances).1 In the embedding phase, the reduced
instance is padded with clauses that suffice to make the result a possible output of Vari-
able-Regular 3-SAT. The right-shifted phase transition of Variable-Regular 3-SAT
allows padding with more clauses than Literal-Regular or Random 3-SAT for produc-
ing what superficially appear to be under-constrained instances.

The following tables report the performance of Tableau and its enhancements
on instances from Exceptionally Hard 3-SAT. Tableau is denoted by “Tab”, Tab
with conflict-directed backjumping “Tab+CBJ” and Tableau with conflict-direct
backjumping and third-order learning “Tab+CBJ+lrn”. We continue to report prob
difficulty in terms of branch points because overhead of these additional enhance
was small. The overhead of conflict-directed backjumping alone was negligible 
than 3%) since Tableau expends most of its effort selecting branch variables. Le
derives new clauses which had to be tested even by the branch-variable selectio
cedure. Third-order learning, however, typically recorded only a few clauses, kee
overhead well within 20% even on the hardest problems. At the end of this sectio
discuss preliminary experiments with unrestricted learning.

We used a constraint ratio of  or less for determining  for the vari
values of  since it is well within the under-constrained region of Variable-Regula

1 This phase is NP-hard, though it presents no practical problem as long as we choose to 
embed small instances. For greater efficiency, we could embed an instance selected from a 
set of pre-reduced instances instead of generating and reducing a new instance for embedding 
with each invocation of the Exceptionally Hard 3-SAT procedure.
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SAT. For , we used the formula  to produce hard Literal-Regular
3-SAT instances for embedding.

To facilitate experiments with large numbers of instances (10,000 per value of
), we had the algorithm halt and report failure beyond a threshold of branch points an

order of magnitude or more than the mean required for Variable-Regular crossover
instances with the same number of variables (10,000 branch points for  and

, 50,000 branch points for ). We also report the mean difficulty of a
smaller number (200) of problems on which the failure mechanism was turned off.

Table 1 shows that unenhanced Tableau performs poorly even on very small
instances from Exceptionally Hard 3-SAT. For Variable -Regular crossover instances
with , Tableau requires a mere 20 branch points on average. Performance on
75 variable Exceptionally Hard 3-SAT instances is over 3 orders of magnitude worse.
While Tableau with backjumping is effective at solving these problems, the addition of
learning makes them trivial. For problems barely beyond , we found that Tab-
leau’s failure rate rapidly approached 100%.

The next data point (Table 2) illustrates that Tableau with conflict-direc
backjumping alone begins to go awry at large enough problems. Others [15, 28]
also found that backjumping alone fails to eliminate occurrence of exceptionally 
instances, though in the context of sparse CSP or much larger SAT instances.

Table 1. Exceptionally hard problem statistics for n=75, m=225, n’=10, m’=40

Algorithm

Mean Difficulty of 
Solved Instances 
(branch points)

Failure Rate (%) 
[> 10000]

Mean Difficulty of 
200 instances 
(branch points)

Tableau 2,672 66.5 87,993

Tab + CBJ 113 0 113

Tab + CBJ + lrn 3 0 3

Table 2. Exceptionally hard problem statistics for n=140, m=490, n’=20, m’=75

Algorithm

Mean Difficulty of 
Solved Instances 
(branch points)

Failure Rate (%) 
[> 10000]

Mean Difficulty of 
200 instances
(branch points)

Tab + CBJ 1,904 57.2 55,122

Tab + CBJ + lrn 12 0 12

n’ m’, n 3.5m 5+=

n

n 75=
n 140= n 200=

n 75=

n 75=
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Table 3 shows that the learning algorithm remains completely effective even
at larger problem sizes when the embedded instance is small. The failure cutoff is
increased to 50,000 branch points for these larger problems since the average Variable-
Regular crossover instance of 200 variables requires approximately 5000 branch
points. It appears, however, that if the embedded and actual instances are large enough,
we can elicit failure even in the learning algorithm (Table 4 below). The failure rate
remains relatively low at the data points we investigated. Further experimentation is
required in order to determine if the failure rate approaches 100% with larger problems
(as is clearly the case with the other two algorithms).

We have performed some experiments with unrestricted learning, but have
been unable to draw any solid conclusions about its effects other than that its overhead
becomes unacceptably high on sufficiently large and dense SAT instances. For exam-
ple, on difficult instances from Exceptionally Hard 3-SAT, the third-order learning
algorithm was 30 times faster in terms of branch points searched per second. On 50
instances from the <200, 700, 50, 180> point, the hardest instance found for the unre-
stricted learning algorithm required 22,405 branch points. This translates to well over
10 times the CPU time that the third-order learning algorithm required to reach failure.
To account for this overhead, we feel the definition of an exceptionally hard instance
for unrestricted learning algorithms should take CPU time into account. By such a def-
inition, our implementation of unrestricted learning fails to eliminate them completely.

Baker [1] and Frost and Dechter [12] found that the overhead of their unre-
stricted learning algorithms was not excessive. We believe the our different findings
are primarily due to the constraint density of SAT compared to binary CSP. 3-SAT
instances require many constraints (clauses), since each excludes only a small fraction
of potential truth assignments. Further, each constraint is defined on three variables
instead of two. As a result, the set of variables responsible for each failure when solv-
ing a SAT instance is often large. Another potential cause for our different findings is
that some instances produced by Exceptionally Hard 3-SAT required extensive search
even of the unrestricted learning algorithm. Baker’s instances were easy for his 
stricted learning algorithm, so it never had the opportunity to derive an excessive 
ber of constraints. We believe that any SAT algorithm applying learning on insta
like ours will require either limited order learning as employed here, time or releva

Table 3. Exceptionally hard problem statistics for n=200, m=700, n’=30, m’=110

Algorithm
Mean Difficulty of Solved 
Instances (branch points)

Failure Rate (%)
[> 50000]

Tab + CBJ + lrn 78 0

Table 4. Exceptionally hard problem statistics for n=200, m=700, n’=50, m’=180

Algorithm
Mean Difficulty of Solved 
Instances (branch points)

Failure Rate (%)
[> 50000]

Tab + CBJ + lrn 3,702 3.4945
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limits on derived clauses [2,16], or some method for efficiently producing smaller cul-
prit sets than conflict-directed backjumping (e.g. possibly along the lines of Dech
deep learning schemes [9]).

6 Related and Future Work

Ginsberg & McAllester [16] evaluate a CSP algorithm they call “partial-ord
dynamic backtracking” on a 3-SAT problem space with restricted structure. This p
lem space creates an instance by arranging the variables on a two-dimensional g
creating clauses that contain variables forming a triangle with two sides of unit Eu
ean length. The algorithm incorporates look-ahead techniques not specifically g
for SAT and look-back techniques similar to CBJ and learning. They find it immun
pathologies encountered by Tableau on these instances. The hardest problems 
their evaluation were crossover instances from their new SAT problem space with
variables. We found these instances trivial for Tableau with CBJ and third-order le
ing, requiring on average 6 and at maximum 28 branch points on the 10,000 inst
we attempted. We found that CBJ-enhanced Tableau has occasional difficultie
these same instances, requiring less than 22 branches on over half the instanc
over 50,000 branches on 2.51% of them. This suggests these instances may hav
erties similar to (though not as pronounced as) those from Exceptionally-Hard 3-S

Mazure et al. [22] recently developed a look-ahead technique for DP base
GSAT [26]. The technique selects branch variables by counting the number of tim
variable occurs in clauses falsified by assignments made during a GSAT search 
current sub-problem. The intent is to focus search on variables that may be part
inconsistent kernel. They evaluate their technique on several DIMACS bench
instances1 which were infeasible for DP. Some of the “AIM” instances from this suite
that are difficult for DP are trivial for their algorithm. We found that all of the larg
(200 variable) “AIM” instances were trivial for Tableau with CBJ and learning, t
most difficult requiring 27 branch points. Some of these instances were difficul
Tableau without learning but with CBJ. We have not yet explored the effect of 
technique on our problem spaces.

Lee and Plaisted [21] enhance DP with a backjumping scheme similar to (bu
as powerful as) CBJ which they use as a subroutine in a first-order theorem pr
system. Gent and Walsh [15] experiment with an implementation of this algorithm2 on
a SAT problem space they call “Constant Probability” and find that the backjum
scheme reduces the incidence of EHIs in the under-constrained region, but fa
eliminate them at large enough problem sizes. Chvatal [3] also applies look-ba
SAT through “resolution search” -- a DP variant with what appears to be a novel le
ing scheme. 

1 These instances are available through anonymous FTP at ftp:dimacs.rutgers.edu within direc-
tory pub/challenge/sat/benchmarks/cnf.

2 This is the “intelligent backtracking” algorithm whose implementation they credit to Mar
Stickel.
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Others have developed procedures intended to generate hard random problems.
Iwama et al. [19] and Rauzy [24] independently generate 3-SAT instances which are
known in advance to be satisfiable or unsatisfiable. The authors do not directly com-
pare the difficulty of these problems to problems from Random 3-SAT. Genisson and
Sais [13] investigate 3-SAT generators with controlled distributions of literals -- much
like our Literal-Regular 3-SAT -- and also find a left-shifted phase transition and
increased difficulty. Dubois and Boufkhad also investigate literal-regular instances
they call “doubly balanced” in a forthcoming paper [10]. Culberson et al. [6] 
Vlasie [31] describe generators for graph coloring CSPs in which graphs are end
with a variety of structural properties intended to make coloring difficult. Their em
ical results cannot be compared to ours directly, but they also find that increased
larity increases mean problem difficulty. Whether look-back techniques are impo
for these problem spaces remains to be evaluated empirically.

 Crawford and Auton [5] were unable to find any EHIs for Tableau in the und
constrained region of Random 3-SAT. Our results with Exceptionally Hard 3-S
show that they do exist, albeit in Random 3-SAT with low probability. Gent and W
report that an improved DVO heuristic [14] and improved constraint propaga
method [15] (both look-ahead techniques) fail to eliminate EHIs for their 3-SAT ge
ators and DP implementation. Baker [1], working with graph coloring CSPs, find
problems to be extremely hard for a conflict-directed backjumping and unrestr
learning algorithm. Selman and Kirkpatrick [25], using an earlier version of Tab
[4] and Random 3-SAT, investigate the incidence of EHIs when a given instan
subject to an equivalence-preserving random renaming of its variables. They r
observing the same incidence of EHIs whether running Tableau on 5000 differen
mutations of the same 20 source instances, or whether sampling 5000 instance
pendently. This suggests these EHIs arise on account of unfortunate variable ord
We have not yet investigated the effects of random renamings on our instances
fact that they occur with near certainty for unenhanced Tableau when generating
ciently large problems suggests that the source of their difficulty may be qualitat
different.

The fact that our generated EHIs are unsatisfiable means that sound but incom
algorithms such as GSAT [26] cannot be used to address them. We are conside
related problem generator of satisfiable instances for the purpose of benchma
sound-and-incomplete SAT algorithms. We embed hard satisfiable instances inste
unsatisfiable ones by removing one additional clause immediately following the re
tion phase of Exceptionally Hard 3-SAT. Limited experimentation has shown sim
(though not as pronounced) difficulties result for unenhanced Tableau, even thoug
resulting instances are almost always satisfiable.

7 Conclusions

We have shown that, contrary to the conventional wisdom, CSP look-back 
niques are useful for SAT. We were able to significantly reduce the incidence of ex
tionally hard instances (EHIs) encountered by the Tableau SAT algorithm 
enhancing it with look-back techniques. We devised a new generator which us



 com-
any

erally
 that
 some

repli-
avid
sis-
succeeds in producing instances which are exceptionally hard for unenhanced Tableau
when compared to the difficulty of other common benchmark instances. Relatively
few of these instances remained exceptionally hard for the look-back-enhanced ver-
sions of Tableau. 

It may be that look-back techniques are essential to solving these instances effi-
ciently, though we encourage experimentation with non-look-back algorithms which
might refute this hypothesis. At the same time, we do not wish to minimize the signifi-
cance of look-ahead techniques. Tableau’s variable selection heuristics make it
petitive with the best current SAT algorithms, and we would expect to encounter m
more exceptionally hard instances without them. We do not believe that any gen
effective SAT algorithm can totally eradicate the incidence of EHIs. We do believe
selected look-ahead and look-back techniques with modest overhead can provide
valuable insurance against them.
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