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ON THE PARALLEL COMPLEXITY
OF THE ALTERNATING HAMILTONIAN CYCLE PROBLEM (*)

by E. BAMPIS ( ' ) , Y. MANOUSSAKIS (2) and I. MILIS (2 '**)

Communicated by Philippe CHRÉTIENNE

Abstract. - Given a graph with colored edges, a Hamiltonian cycle is called alternating if its
successive edges dijfer in color. The problem offinding such a cycle, even for 2-edge-colored graphs,
is trivially NP-complete, while it is known to be polynomial for 2-edge-colored complete graphs. In
this paper we study the parallel complexity offinding such a cycle, ifany, in 2-edge-colored complete
graphs. We give a new characterizationfor such a graph admitting an alternating Hamiltonian cycle
which allows us to dérive a parallel algorithm for the problem. Our parallel solution uses a perfect
matching algorithm putting the alternating Hamiltonian cycle problem to the RNC class. In addition,
a sequential version of our parallel algorithm improves the computation time of the fastest known
sequential algorithm for the alternating Hamiltonian cycle problem by a factor of O(^/n).

1. INTRODUCTION

Last years problems arising in molecular biology are often formulated
using colored graphs, Le. graphs with colored edges and/or vertices. Given
such a graph, original problems correspond to extracting subgraphs such
as Hamiltonian and Eulerian paths or cycles colored in a specified pattern
[11-13, 20]. The most natural pattern in such a context is that of alternating
coloring, Le. adjacent edges/vertices having different colors. This type of
problems is also encountered in VLSI for compacting a programmable
logical array [15]. Colored paths and cycles have applications in various
other fields, as in cryptography where a color represents a spécifie type
of transmission or in social sciences where a color represents a relation
between two individuals and the notion of alternating colored paths and
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cycles is related to the balance of a graph [9]. Note also that the concept
of alternating colored subgraphs is often used implicitly in graph theory;
consider for example a given instance of Edmond's maximum matching
algorithm [14]: if we consider the edges of the current matching colored
blue and any other edge colored red, then the desired augmenting path (in
Edmond's ternis) is just an alternating colored one.

On the other hand there is a great theoretical interest on problems in
colored graphs and a large body of work has been published [3, 5, 6, 8, 21]
(a brief review of these works is given in the next section). Motivated by
both the applications and the theoretical interest, we consider here complete
graphs with edges colored by two colors (2-edge-colored complete graphs)
and we search for a Hamiltonian cycle whose successive edges alternate
between the two colors. Such a cycle is known as alternating Hamiltonian
cycle (AHC). Our study is restricted to complete graphs, since the problem
is trivially NP-complete in the case of genera! 2-edge-colored graphs. The
same problem can be also stated in the following way: given a graph G and
its complement G find a Hamiltonian cycle whose edges alternate between
those of G and those of G.

In particular, in this paper we deal with the parallel complexity of the AHC
problem. We give first a new characterization for a 2-edge-colored complete
graph to admit an AHC. Instead of the up to now known conditions based
on vertices' degrees, our characterization relies on terms of connectivity of
a specified digraph implied by an alternating factor of the initial colored
graph. This new characterization allows us to design a parallel algorithm
which takes as input an alternating factor, and either finds an AHC or décides
that such an AHC does not exist. The algorithm is on the CRCW-PRAM
model where concurrent reads and concurrent writes to the same memory
location are allowed. lts parallel complexity is O(log4n) time using O(n2)
processors where n is the order of the graph. An alternating factor can
be found using a maximum matching algorithm, putting the whole AHC
problem in RNC. In addition, as a byproduct of our parallel algorithm we
obtain an-O(n2-5) sequential algorithm for the problem. This result improves
the complexity of the best known ü(n3) sequential algorithm [5].

The paper is organized as follows: in the next section we give a brief
review of previous works on the AHC problem. In Section 3, we prove a
series of non-trivial lemmas for the parallel contraction of alternating cycles.
Given these lemmas the proof of our characterization theorem follows in
Section 4 and the parallel algorithm derived is presented in Section 5.
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ALTERNATING HAMILTONIAN CYCLE PROBLEM 423

1.1. Notation

Throughout the paper, K dénotes a 2-edge-colored complete graph with
an even number of vertices. We assume that the edges of K are colored
red and blue. By r(v) and b(v) we dénote the red and the blue degree,
respectively, of a vertex v. The edge between the vertices u and v is denoted
by uv, and its color by x(uv)- If M and A2 are subsets of V, then the set
of edges between the vertices of A\ and A2 is denoted by A1A2, while the
edges among the vertices of Ai are denoted by A\A\.

The notation x{A\A2) is used if and only if all the edges A\A2 are
monochromatic and represents their common color.

An altemating factor F = {Co,Ci,..., Cm_i} of if is a set of pairwise
vertex disjoint altemating cycles covering all the vertices of the graph. It is
clear that the existence of an altemating factor is a necessary condition for
a graph K to admit an altemating Hamiltonian cycle. An altemating factor
is said minimum if there is no other one with smaller cardinality. Clearly
F becomes an AHC whenever m = 1.

It turns out to be convenient for our présentation to divide the vertices of
an altemating cycle, C, of length 2p into two classes X = {#0,^1,..., JCP_I}

and Y = {yo,yi, ..*,%>-i} such that C = xo.yo,xuyi, ...,xp-i,yp-i and
x(xiVi) / XU/à^ï+i)» f° r e a ch i = 0,1, ...,p - 1 (the indices are considered
modulo p). It is clear that classes X and Y can be interchanged w.l.o.g.

Once both classes X and Y are defined, we say that cycle C\ dominâtes
cycle C2 (Ci = > C2) if xC-^i^) # ^ 1 ^ 2 ) (recall that the notation
x{A\ A2) is used if and only if all the edges A\ A2 are monochromatic and
by convention we assume that in notation x(XiCj), Xi represents the class
X of Ci and Cj represents the vertex set of Cj).

Obviously, if Ci = > C2, then x{^i^2) implies x C ^ i ^ ) , and vice versa,
By Ci ^4> C2 we dénote the fact that neither Ci = > C2 nor C2 ==> Ci.

2. PREVIOUS RESULTS

Erdös first asked for a sufficient condition for the existence of an AHC in
a 2-edge-colored complete graph. The first answer to this problem has been
presented by Bânkfalvi and Bânkfalvi [3]. In fact, their theorem gives the
cardinality of the minimum altemating factor and it is expressed in terms of
monochromatic degrees of the vertices.

THEOREM 2.1 [3]: Let K be a 2-edge-colored complete graph with vertex
set V — {fi,t>2, ...<>vn-2p}- Assume that r(vi) < r(v2) < ... < r{vn), Then,
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the cardinality of the minimum alternating factor F of K is equal to m if
and only if there are precisely m — 1 distinct numbers ki, 2 < ki < p — 2
such that for each i, i ~ 1 , . . . , m — 1,

r(vi) + r{v2) + ... + r(vki) + b(v2p) + b(v2p-i) + ... + b(v2p-ki+i) = *£•

Next corollary proved in [5], gives a structural translation of Theorem 2.1. In
what follows, an alternating factor satisfying Corollary 2.1 and consequently
Theorem 2.1 will be referred as a Bânkfalvi structure. If F is a Bânkfalvi
structure, then K does not contain an AHC.

COROLLARY 2.1 [5]: Let F — {Cb, Ci,..., Cm_i}, m>2,be an alternating
factor ofK. îf C% => C3, x ( X ^ ) = X(XïCj) and x(Y&i) = xViCj),
0<i<j<m — 1, then F is a minimum alternating factor of K.

Later, Bollobâs and Erdös [6] considered the more gênerai case of k colors
and they gave a new sufficient condition based on the relation between
the monochromatic degrees of the vertices and the number of vertices in
the graph. Chen and Daykin [8] have improved this resuit. Hâggvist and
Manoussakis [16] have proven - in a différent phrasing - another condition
replacing the degree condition of Theorem 2.1 by a more intuitive one.

THEOREM 2.2 [16]: Let K be a 2-edge-colored complete graph. K contains
an AHC if and only if:

(i) it admits an alternating factor, and
(ii) every pair ofvertices is connected with an alternating not necessarily

simple path.

Theorems 2.1 and 2.2 answer to the décision problem, but they do not lead
directly to an algorithm for searching an AHC in a 2-edge-colored complete
graph K. Such a sequential algorithm of complexity O(n3) is presented by
Benkouar et al [5]. Furthermore, Saad have studied the longest alternating,
not necessarily Hamiltonian, cycle problem [21]. However, the algorithms
presented in these works are inherently sequential and thus, in a parallel
context, a different approach is needed.

We close this section with some known results that will be useful in
the parallel study of the problem. Next theorem gives the complexity of
an optimal parallel algorithm for finding a Hamiltonian cycle in a strongly
connected (3) semicomplete digraph [1], We recall that a semicomplete

(3) A digraph is called strongly connected or simpty strong if for every pair of vertices u and v
there is a directed path from u to v and one directed path from v to u.
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ALTERNATING HAMILTONIAN CYCLE PROBLEM 425

digraph is a digraph with no pair of non-adjacent vertices (Le. for every pair
v,u of vertices either are (v,u) or are (u, v) or both are present).

THEOREM 2.3 [1]: For any semicomplete digraph T., the strongly connected
components of T and a Hamiltonian cycle in each strongly connected
component can be found by an O(logn) time, O(n2 / log n) processors
algorithm within the CRCW-PRAM model.

Next two lemmas concern the parallel contraction of directed cycles in
bipartite tournaments and have been presented in [2].

LEMMA 2.1 [2]: Let C\ and C% be two vertex disjoint cycles of a bipartite
tournament. Ifthere exist at least one are directed from C\ to C2 eind another
one directed from C2 to C\, then C\ and C2 can be contractée to a single
cycle in O(logn) time using O(n2) processors.

LEMMA 2.2 [2]: Let Co, Ci,..., Cm_i be m pairwise vertex disjoint cycles
of a bipartite tournament such that all arcs are directed from Ci to Cj,
0<i<j<m— 1. Let also Cm be a cycle such that there exist at least two
opposite directed arcs between CQ and Cm> and also between Cm_i and Cm.
Then, Co, Ci,..., C m - i , Cm can be contracted to a single cycle in O(logn)
time using O(n2) processors,

3. PARALLEL CONTRACTION OF ALTERNATING CYCLES

Given an alternating factor, F = {Co, C\,..., C m _ i} , of a 2-edge-colored
complete graph K, our aim is to reduce it to one of minimum cardinality by
contracting its alternating cycles. Following this direction a series of lemmas
for the contraction of alternating cycles in specified cases are presented in
this section. Lemmas are stated in a parallel context for their later use in
the proposed parallel algorithm.

The proofs of lemmas are based on a transformation from a given
alternating factor F of a 2-edge-colored complete graph K to a bipartite
tournament B = (Xuy, E(B)) such that alternating cycles of K correspond
to directed cycles in B and vice versa. The bipartite tournament B
corresponding to F is obtained in the following way:

• for every alternating cycle C?; G F, either X{ C X and Y% C X or
Xi C y and Yi C X depending on the spécifie domination relations
among the cycles in F.

• For every pair, x G X, y E y of vertices of B if x(xv) — r ed in K, then
(x9y) € E(B)\ otherwise, if x(xy) =blue in K, then (y,x) e E{B).
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In such a transformation, it is clear that an alternating cycle Ci of K
corresponds to a directed cycle Ci in B and vice versa. Consequently,
a cycle obtained by contracting directed cycles in B corresponds to an
alternating one in K,

LEMMA 3.1: Let C\, C2 be two vertex disjoint alternating cycles. Then,
either C\ = > C% or C2 = > C\ or C\ and C2 can be contracted to a single
alternating cycle in ö(logn) time using O(n2) processors.

Proof: Let us first examine, whether there exist at least two edges ei, 62
such that ei,e2 € XiY2, or ei,62 G YiX2, and x(ei) # x(e2)« If this is
the case, we consider the bipartite tournament B with X = X\ U X2 and
y = Yi U Y2. Then, the edges ei, e2 are replaced by two arcs such that one
of them is oriented from Ö\ to C2 and the other one from C2 to C\. By
Lemma 2.1, C\ and C2 can be contracted to a single directed cycle that
implies an alternating one.

If there are at least two edges ei,62 such that ei5e2 E X1X2 or
ei, 62 G Y1Y2 and x( e i) 7̂  x(e2)> then we consider the bipartite tournament
B with X = Xi U y2 and 3> = Yi U X2. As bef ore Ci and C2 can be
contracted to a single alternating cycle.

Therefore, either C\ and C2 can be contracted to a single alternating cycle,
or X{XxX2), xCXilU z(FiI2), and x C ^ ) .

If there are two edges such that ei G -X"iX2, e% G Y1F2 and x( e i ) — x(e2),
then we consider the bipartite tournament B with X = Xi U Y2 and
3̂  = Yi U X2. Otherwise, if there are ei G XiY2, 62 G Y1X2 such
that x(ei) = x(e2)ï then we consider the bipartite tournament B with
X = Xi UX2 and 3̂  = Yi U Y2. In both cases, Ci and C2 can be contracted.

Therefore, either C\ and C2 can be contracted to a single alternating
cycle, or x(*iC 2 ) # x ^ i ^ ) i.e. Ci = * C72, or X(Ci%) 7̂  x(CiX2)
Le. C2 = » Ci.

Notice that in all cases where Ci and C2 can be contracted to a single
alternating cycle this can be done, by Lemma 2.1, in ö(logn) time using
O(n2) processors. D

LEMMA 3.2: Let Cb,Ci,C2 , . . . ,Cm-i be m pairwise vertex disjoint
alternating cycles. These cycles can be contracted to a single alternating
cycle C, in O(logn) time using O(n/logn) processors if for every
i = 0 , l , . . . , m — 1 one of the following holds (all indices are considered
modulo ra):

Recherche opérationnelle/Opérations Research
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(i) Ci = * Ci+1.

(ii) Either C% ==> Ci+\, or else if for some i, Ci <j=$> Cj+i, then

(iii) Either Ci =$• Cj+i aw<i x ( ^ C i + i ) = re^ (rasp.
Cj and x(Xi+iGi) —blue (resp. red).

(iv) d => Cjt Q<i<j<m—1, and there is an edge e G XQXQ (resp,
e G YoYo) such that x(e) ± x(XiCj) (resp, x(e)

(i) Assume w.l.o.g. that x(XiCi+i) =red, 0 < i < m - 1. (If for some i,
x(X?Ci4-i) = blue, then we may interchange Xi and 1̂ .)

We consider the bipartite tournament B = {X U y,JB(B)), with Af =
U^Lö1 ̂  a n d y = U S 1 -^- T h e n ' a11 a r c s between Ci and Ct+1 in B are
oriented from Ci to C2+i, for i = 0,1, ...,m — 1.

A single direeted cycle» that implies a single alternating one, can be
found by breaking each cycle in any vertex from a fixed partition class and
Connecting the resulting paths cyclically.

(ii) Assume again that x(XiCi+\) =red for every i, 0 < i < m — 1, for
which Ci = > Ci -}-i.

We consider the following bipartite tournament B:
if d = > Ci+i, then X4 is added to Af and 3^ is added to y.
If Ci 4 ^ Ct+i, then we proceed similarly with Lemma 3.1. Let ei,e2
be two edges having one endpoint in Ci and the other in Ci+i which
destroy the domination relation between d and ft+i, Le. x(ei) ^ x(e2)-
The construction of the bipartite tournament B dépends on the classes to
which the endpoints of ei and €2 belong to. We distinguish between three
main subcases:

- if ei,e2 £ XjYl+\ or ei,e2 G YiXi+i, then Xi is added to X and Y%
is added to 3̂ *

- If ei,62 G XjXi+i or ei,e2 G Yîli+i, then X? is added to y and Y%

is added to Af.

- If ei (resp. 62) G X%Xi+\ and e2 (resp. ei) G YiYi'+i, then Xj is added
to y and Yi is added to Af.

If d => Cj+i, then all arcs between Ct- and Cj+i in 5 are oriented from
(7* to Ci-j-i and the two cycles can be contracted as in Case (i).

If d ^=> Ci+i, then there exist arcs from Ci to C;+i and oppositely.
Therefore, there is at least one are (ui,Vi+i) from Ci to C Ï+I for every
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i• = 0,1, ...,m — 1. In order to construct a single cycle, we do not break
Ci and Ci+i arbitrarily, but cycle Ci in the vertex m and Ci+i in the
predecessor of t/i+i. Recall that by the hypothesis Cl+i = > Ci+2 and all
arcs between C«+i and C8-+2 in B are oriented from C*+i to Ci+2- Therefore,
the predecessor of vi+\ always dominâtes all vertices of
(iii) Let X = U S 1 *i ^ d y = \J^1 Y%.

- If Ci = > Ci+i and x(XiCi+i) = red (resp. blue), then
red (resp. blue) and xO^i^i+i) = blue (resp. red).

- If Câ+i => Ci and xiXi+iQ) = blue (resp. red), then
blue (resp. red) and xO^+i-Xg') =red (resp. blue).

Therefore, x{XiY%+i) =red (resp. blue) and x O ^ a + i ) =blue (resp. red)
for every i = 0 ,1 , . . . ,m - 1.

Thus, all arcs in S are oriented from (resp. to) C% to (resp. from) (7z+i,
for every i = 0 , l , . . . ,m— 1, and we conclude as in Case (i).
(iv) Assume w.l.o.g. that x(XiCj) = red, 0 < i < j < m — 1. Let us dénote
by XQyô^i2^i• "x*i2/*i ^ e cy c l e C* anc^ let ^i^j bs a blue XQXQ edge.

T h e n , t h e d e s i r e d c y c l e i s : y ^ l ^ \ \ l l l l \ ^

In all cases (i - iv) the desired cycle can be constructed in O(logn) time
with O(n/logn) processors using the list ranking technique [10]. D

LEMMA 3.3: Let Co, C\,..., Cm-\ be m pairwise vertex disjoint alternating
cycles forming a Bdnkfalvi structure, and Cm be another alternating cycle
such that Co <^> Cm and Cm_i <£=> Cm. Then Co>Ci, ...,Cm-i:Cm

can be contracted to a single alternating cycle in O(logn) time using 0{n2)
processors.

Proof: Let us consider the corresponding directed cycles
Co, C\i C2,..., Cm-i, Cm of a bipartite tournament B. The construction of
B is as following: since d = ^ Cy, 0 < i < j < m — 1, we can define
w.l.o.g. the classes X^ Yi of C^s, 0 < i < m — 1, such that in B all
arcs go from C% to Cj.

Note that this définition of classes does not fix the classes of Cm_i and
allows us to interchange them. We define first the classes of Cm and then
those of Cm-i.

Since Co ^ 7 ^ Cm we can define the classes Xm and Ym of Cm in order
to have in B arcs from CQ to Cm and oppositely.
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Similarly, since C m - i <=j=> Cm, we can also define the classes X m _i and
Ym-\ of Cm_i in order to have in B arcs from Cm-\ to Cm and oppositely.

We consider now the bipartite tournament, B with X = IJ"=o ^i and
3; zzz (J^.o Y{. All arcs go from Ci to Cj5 0 < i < j < m - 1, and there are
also arcs from Cm to both CQ and Cm_i, and oppositely.

Lemma 2.2 can be therefore applied to find a single directed cycle
covering the vertices of CQ,C\,C2, .*.,Cm,-\,Cm in O(logn) time using
O(n2) processors, and consequently a single altemating cycle with the same
vertex set. D

4. MAIN RESULT

Before stating our main theorem, let us introducé two définitions.

DÉFINITION 4.1: Let F = {Co,Ci,...,Gm-i} be an altemating factor of
K. The underlying digraph of F is defined as the semicomplete digraph
D with vertex set V(D) = {co,ci, ...>cm_i} corresponding to the cycle set
of F (each cycle CÏ is contracted to a single vertex a) and are set E(D)
defined as follows:

- ifd =^ Cj, then the arc (a,Cj) G E(D).

- Otherwise, ifCi <^^ Cj, then both (CÎ,CJ) G E(D) and {CJ,CJ) G E(D).
(In this case we say that ei and CJ are connected by a symmetrie arcj

In what follows, Ci G F is called the underlying cycle of vertex Ci G V(D).
We show, in Theorem 4.1, that if D is strongly connected then K admits
an AHC. If the underlying digraph D is not strongly connected, let
L>o, D\, ...,Dk-i be its strongly connected components, ordered such that
for every pair of vertices v G A , u G Dj, 0 < i < j < k — 1, no are (it, v)
exists. We focus our interest on its first strongly connected component Do-
Let us dénote by Cp0 the altemating cycle resulting from the contraction
of the cycles involved in Do, and by XcDo and YcD the obtained partition
classes. By G'[ let us dénote the underlying cycle of some vertex Ci G Dr,
0 < r < k - 1.

Remark: In the next définition, we assume, without loss of generality,
that the classes X and Y of the altemating cycles are defined such that

[ 5 ) for every cycle Cr
s in Dr, 1 < r < k - 1. (In fact, if

x(X["1CJ)=blue then it suffices to interchange the classes Xr
t~

l and Y^"1.)

DEHNITION 4.2: The first component Do of D is a nice component if one
of the following holds:
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(i) there is a cycle Cf,, 2 < r < k - 1, such that for some cycle Cff

(ii) XCDQ ^ Ud€DoXi (thatalso implies YCDO # UCieD0Yi).

(iii) There is a blue (resp. red) XCDQXCDQ (resp. YCDQYCDQ) edge.

THEOREM 4,1: A 2-edge-colored complete graph K admits an AHC if and
only if it admits an alternating factor and either (a) D is strongly connected
or (b) Do is nice.

Proof: We prove first the if direction,

(a) By induction on the number m of cycles of the factor F. For m = 2,
since D is strongly connected, CQ <=^ C\ and therefore CQ and C\ can be
contracted into a single one by Lemma 3.1. Assume therefore that m > 3.
If D contains a strongly connected proper subdigraph Df with w! < m
vertices, it can be contracted into a single cycle C', by induction. The
new digraph induced by the cycles of D — Df plus C' remains strongly
connected and contains m — m! + 1 < m cycles. Using induction once
more the proof is completed. If there is no such a subdigraph, then D is
an alrnost transitive tournament except the arc (cm_i,co). In this case the
Hamiltonian cycle co, ci, ...,cm_i,co in D implies, by Lemma 3.2(i), an
alternating Hamiltonian cycle in K.

(b) Three cases can be distinguished according to Définition 4.2. The idea
is to contract, if possible, some cycles of F in order to obtain a new
alternating factor whose underlying digraph is strongly connected. Then, we
can conclude using Case (a).

(i) There is a cycle CJ), 2 < r < fc — 1? such that for some cycle Gf,
x(XfCl) =blue.

Assume first that r = k — 1. Let C}„ be a cycle in D\. We consider the
three cycles Cf, C},, and C^~\ Clearly, Cf = > C}„ => Cf;"1 4 = Cf.
By remark preceding Définition 4.2, x(^fC/,/)=red and by the hypothesis
of this case x C ^ C f r 1 ) =blue.

If x{X}nC^rx) = red, then by Lemma 3.2(iii), we contract the three cycles
into a single one. If x(XlfC^/~

1)=bhxe, then by interchanging the classes of
Cf we obtain x(-X»pC#,) =blue and xiXfCfr1) =red, and thus again by
Lemma 3.2(iii), we contract the three cycles into a single one.

In both cases, one cycle from the first and one cycle of the last strongly
connected component of D participate in the resulting cycle. Therefore, the
new underlying digraph becomes strongly connected.
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ALTERNATING HAMILTONIAN CYCLE PROBLEM 431

Assume next that r ^ k — 1. Let now C^iT1 be a cycle in Dk~\. Clearly,
xiXfCf"1) =red, for otherwise r = k - 1. We consider the three cycles
Cf =*Cl = » C*,"1 <= Cf and we conclude as before.
(ii) XCDQ Ï UCieD0Xi.
By (a) the cycles included in the first component DQ of D can be contracted
into a single cycle CD0 . By the hypothesis of this case, the contraction leads
to a mixing of classes of the included F's cycles, and therefore the new
cycle does not dominate any cycle in each strongly connected component
Dr, 1 < r < k — 1. This yields a new strongly connected D.
(iii) There is a blue (resp. red) XCDQXCDQ (resp. YCDQYCDQ) edge.
We consider the cycle Cj)Q and one cycle from each strongly connected
component of D. This collection of cycles satisfies the hypothesis of Lemma
3.2(iv) and can be contracted to a single cycle. Since a cycle from each
strongly connected component of D participâtes in the new cycle, the new
D is strongly connected.

We complete the proof by the only if direction. Assume by contradiction
that K admits an AHC but none of the conditions of Theorem 4.1 holds. By
(a), D is not strongly connected. By (b), the first component of D is not nice
i.e. X(XCDOXCDO) = x(X?CT,) =red and X(YCDYCOO) - xÇYjCr,) =
blue, for every cycle C\, in Dr, 1 < r < k — 1. In this case» by Corollary
2.1, Cj3Q is a cycle of a Bânkfalvi structure and its vertices can not be
contained in any alternating Hamiltonian cycle of K, a contradiction. D

5. A PARALLEL ALGORÏTHM

The existence of an alternating factor is a necessary condition for a
2-edge-colored complete graph to admit an AHC by Theorem 4.1. In order
to find such an alternating factor, we have to apply two times a maximum
matching algorithm: find a red maximum matching Mr in the graph induced
by the red edges, and a blue one M& in the graph induced by the blue
edges. If either MT or M& is not perfect, it is clear that K has no alternating
factor. Otherwise, an alternating factor can be constructed by considering
the union of Mr and M&.

Next algorithm follows the cases of Définition 4.2 and according the proof
of Theorem 4.1 either décides that an AHC does not exist or reduces the
AHC problem in a 2-edge-colored complete graph K to the same problem
in the case where K has a strongly connected underlying digraph (then an
AHC exists by Case Th. 4.1 (a)). A procedure called FIND-AHC (D strong)
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is used for this latter problem. The details of this procedure are given in
the next section.

ALGORITHM HAMILTONIAN CYCLEtfO

1. Find an alternating factor F = {Co, Ci , . . . , C m _ i } of K.
2. If F does not exist then STOP {K has no AHC}.
3. If m = 1 then STOP {F is an AHC}.
4. Construct D.
5. If D is strongly connected then FIND-AHC(£> strong); STOP.
6. Find the strongly connected components Do, D2,..., Dk of D and fix the classes X and Y of

the alternating cycles such that xi^^C^) — r ec l f° r e v e i 7 cycle CJ in Dr, 2 < r < fc.
7. If Définition 4.2(i) holds, then using Theorem 4.1(b-i) construct new D and FIND-AHC

(D strong); STOP.
8. FIND-AHC(£>o strong).
9. If Définition 4.2(ii) holds, then using Theorem 4.1(b-ii) construct new D and FIND-AHC

(D strong); STOP.
10. If Définition 4.2(iii) holds, then using Theorem 4.1(b-iii) construct new D and FIND-AHC

(D strong); STOP.
11. STOP {K has no AHC}.

The eomplexity of the above algorithm is determined by the eomplexity
of finding an alternating factor in a 2-edge-colored complete graph. By
[19], a perfect matching of a graph containing n(= 2p) vertices and m
edges can be found by a randomized algorithm in O(log2n) time using
O(n^'^m) processors. Since the number of red or blue edges of a 2-edge-
colored complete graph is O(n2), an alternating factor can be found by a
randomized algorithm in O(log2n) time using O(n5 5) processors.

If an alternating factor is given, then the eomplexity of the algorithm is
determined by the eomplexity of the procedure FIND-AHC (D strong).

5.1. Procedure FIND-AHC (D strong)

Recall that the underlying digraph D is a semicomplete digraph and, by
Theorem 2.3, we can find in parallel a Hamiltonian cycle in D, since it is
strongly connected. Unfortunately, this cycle does not help us to construct in
parallel an AHC in K because of the symmetrie arcs that may ari.se in this
cycle. We can isolate these arcs as follows: Consider the undirected graph
induced by the vertices of D which are extremities of at least one symmetrie
are in D. Let M be a maximal matching in this graph (we dénote by V(M)
the set of vertices covered by edges in M). Then for every CiCj G M, we
can contract the cycles Ci and Cj using Lemma 3.1. Furthermore, no both
extremities of a symmetrie arcs belong to V(D) - V(M), for otherwise M
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is not maximal. Therefore, the directed graph induced by V(D) — V(M)
is a tournament

In next lemma, we consider an alternating factor having a tournament as
underlying digraph, and we prove that its réduction to a minimum one can
be efficiently parallelized.

LEMMA 5.1: Let Co, Ci,..., Cm-i be a collection of alternating cycles
whose underlying digraph is a tournament T. This collection can be reduced
either to a single alternating cycle or to a Bânkfalvi structure, in O(logn)
time using O(n2/logn) processors.

Proof: By Theorem 2.3, we can find a Hamiltonian cycle in each strongly
connected component of T in O(logn) time using O(n2 / logn) processors.
If T is strongly connected, then a single Hamiltonian cycle is obtained
and the alternating cycles Co, Ci,..., Cm_i can be contracted to a single
alternating cycle using Lemma 3.2(i).

If T is not strongly connected, we first find a Hamiltonian path
H = {co,ci, .. . ,cm_i} in T. This can be done in O(logn) time using O(n)
processors, by [4]. This path implies a séquence of the alternating cycles
Co, Ci,..., Cm_i, where C% dominâtes C^+i for 0 < % < m — 2. Assume
w.l.o.g. that x(Xid+i) = red and x(YiCi+i) =blue, 0 < i < m - 2. We
define now a new tournament T' with the same vertex set as T and arc
set as follows: if C% = > Cj and x(XjCj) =red (resp. blue), then there is
an arc (Q , CJ) in T1 (resp. (cJyci)). Clearly, the Hamiltonian path H of T
remains unchanged in the new tournament Tf.

By Theorem 2.3, we find a Hamiltonian cycle in each strongly connected
component of T' in O (logn) time using O(n2 / logn) processors. Then,
using Lemma 3.2(iii), we contract in parallel the alternating cycles involved
in each strongly connected component of T' into a single one.

If T1 is strongly connected, then a single alternating cycle is obtained and
the proof is completed.

If T' is not strongly connected, then we obtain a new collection of
alternating cycles C/

OjC
/
1,...,C

/
ml_1, each one corresponding to a strongly

connected component of T'. The contraction of cycles by Lemma 3.2(iii)
gives a new cycle with classes that are unions of the corresponding classes of
the cycles involved, Le. there is no mixing of classes. Taking into account the
construction of T', we conclude that x{X[Cf

3) =red and x(Yi^j) =blue,
0 < i < j < mf — 1. Finally, we find the minimum p, 0 < p < m! — 1, for
which there is at least one Xf

pX
f
p blue edge, or a Y^Y^ red edge and using
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Lemma 3.2(iv), we contract the cycles C£+i, C£+2,..., C ^ , into a single
one. By Corollary 2.1, no further réduction is possible. Therefore either a
single altemating cycle (if p — 0) or a Bânkfalvi structure (otherwise) is
obtained. D

Given Lemma 5.1, we can reduce an altemating factor with strongly
connected underlying digraph into a Bânkfalvi structure plus some altemating
cycles. Since the underlying digraph of a Bânkfalvi structure is a transitive
tournament we are in the situation of the next lemma proved in [2].

LEMMA 5.2 [2]: Let S be a strongly connected semicomplete digraph which
contains as an induced subgraph a transitive tournament T. Let t\, t%,..., tu
be the Hamiltonian path ofT and Q = {(?i, 22, •», Qm} the set of vertices in
V(S) — V(T). Then there is in S a cycle C: ti,U+\,..., t3, q\, q%,..., qi,U, such
that P — tj,qiiq2,-..,qi,U is a minimal path from tj to U in V(Q) U {U^tj},
and C covers at least \k/2) vertices ofT. Such a cycle C can be found in
O(logn) tinte using O(n2) processors.

Notice that, since path P in the above lemma is a minimal one, the
arc between any two non-consecutive vertices of this path has a backward
orientation. Notice also that if S is the underlying semicomplete digraph of
K, then Lemma 5.2 gives a method of O(logn) depth to contract a set of
altemating cycles, defined by C. The way to contract the cycles defined by
C will be explained in Step 8 of the procedure below.

PROCEDURE FIND-AHC {D strong)
1. Construct an undirected graph U, where V(U) = V(D) and E(U) = {ciCj\c{Cj is a symmetrie

arc in D } .

2. Find a maximal matching M in U.

3. In parallel, for every acj G M, contract the corresponding cycles Ci and Cj using Lemma 3.1.

4. Construct new D\ If \V(D)\ = 1 then STOP.

5. Reduce the tournament V(D) — V(M) either to a single cycle or to a Bânkfalvi structure with
at most m alternating cycles using Lemma 5.1.

6. Construct new D; If \V(D)\ = 1 then STOP.

7. Apply Lemma 5.2 in D and find the cycle C and the path P = tj,qi,q2,...,qi,U as defined
in this lemma.

8. Contract the involved in C alternating cycles as following:

8.1 if P does not contain consécutive symmetrie arcs, then apply Lemma 3.2(ü) to contract all
alternating cycles involved in C and go to Step (9);

8.2 consider each symmetrie arc of P as undirected and find ail maximal directed subpaths of
the form qr, <?r+i> ••-, qs,

 r > l , s < l m P;

8.3 in parallel, for each such maximal directed path in P:
— if s — r > 2, then contract the involved in maximal directed path alternating cycles by
using Lemma 3.2(ii) (notice that the arc (qs,qr) exists by the minimality of P and the fact
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that D is a semicomplete digraph);
- if s — r = 1 (ie. the maximal directed path is a single are (qr,qs)), then contract the
alternating cycles corresponding to the end vertices of the symmetrie are (qs,qs+x) in P ,
by using Lemma 3.1 (if g s+i = U then we contract the alternating cycles corresponding to
the end vertices of the symmetrie are (qr-i,qr));

8.4 after step 8.3 all arcs in P are symmetrie; by repeating applications of Lemma 3.1 contract P
to a path of length two (i.e. a single vertex q' connected with symmetrie arcs to both ti and tj)\

8.5 apply Lemma 3.3 to contract the alternating cycles corresponding to q' and the remaining
vertices of C into a single one.

9. Construct new D; FIND-AHC (D strong).

Given the complexity of the lemmas used in the procedure FIND-AHC,
its complexity is determined by the complexity of the required maximal
matching algorithm. The fastest known parallel algorithm for the maximal
matching problem has been proposed in [17]. On a CRCW-PRAM this
algorithm works in 0(log3n) time using O(n2) processors because the
Euler tour can be found on this model in O(logn) time.

Notice that either the maximal matching M of Step 2 or the Bankfalvi
structure of Step 5 covers at least the half of the cycles of K. However in
Step 3 the number of cycles is divided by two and in Step 8 the size of
the Bankfalvi structure is also divided by two. Consequently, after O(logm)
calls Procedure FIND-AHC is completed (m is the initial number of cycles
in K). Since m can be a function of n, then the complexity of the whole
procedure becomes O(log4n) time using O(n2) processors.

We notice that for a randomized version of procedure FIND-AHC, the
maximal matching algorithm used in Step 2 can be replaced by a randomized
maximum matching algorithm and thus, in this case, its complexity becomes
O(log3n) time using O(nb^) processors.

Therefore, we can state the next theorem.

THEOREM 5.1: An AHC in a 2-edge-colored complete graph can be found
on a CRCW-PRAM

• by a deterministic 0(log4n) time, O(n2) processors algorithm, if an
alternating factor is given, and

• by a randomized O(log3n) time, O(n?^) processors algorithm, if an
alternating factor has to be found.

Our parallel algorithm implies also a sequential algorithm for the AHC
problem. The complexity of this sequential algorithm is dominated by the
complexity of the fastest known sequential maximum matching algorithm
[18, 22].
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THEOREM 5.2: There is an ö(n2*5) sequential algorithm forfindlng anAHC
in a 2-edge-colored complete graph.
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