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A b s t r a c t .  We address the problem of recognizing 3D objects in scenes 
containing multiple objects by means of a new indexing technique called 
relational indexing. Given a database of relational models, we determine 
those models whose relational descriptions are most similar to subsets 
of the relational description of an unknown scene. The relational index- 
ing technique has worst-c~e complexity O(m(~)) for relational graphs 
of up to k nodes and a database of m models. This paper evaluates the 
performance of the technique using Monte Carlo experiments. 

1 Introduction 

In a model-based object recognition system, the task of matching image features 
to model features, in the general case, implies searching the space of all possi- 
ble correspondences. Indexing is one of the techniques that  have been largely 
utilized to reduce this search space. In recent years, several systems have made 
use of different approaches to indexing ([1], [4], [5], [8]). In this paper we de- 
scribe relational indezing: a new approach to indexing into a database  of models 
tha t  makes use of features and the spatial relationships among them. In this new 
matching technique each model in the database is described by a relational graph 
of all its features, but small relational subgraphs of the image features are uti- 
lized to index into the database and retrieve appropriate  model hypotheses. For 
a database  of m models and for relational graphs of up to k nodes the algori thm 
has worst-case complexity O(rn(~)). This paper  investigates the use of this new 
technique in a model-based 3D recognition system; Monte Carlo experiments are 
used to evaluate its performance as a hypotheses generation mechanism. 

2 Relat ional  Indexing Notation 

An attributed relational description D is a labeled graph D = (N, E) where N 
is a set of a t t r ibuted nodes and E is a set of labeled edges. For each at tr ibuted 
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node n E N, let A(n) denote the at tr ibute vector associated with node n. Each 
labeled edge e E E will be denoted as e = (ni, n j ,L i , j )  where ni and nj are 
nodes of N and Li,j is the label associated with the edge between them. Lid is 
usually a scalar, but it can also be a vector. 

A relational description D = (N, E) can be broken down into subgraphs,  
each having a small number of nodes. We will consider subgraphs of two nodes, 
called t-graph.s. All of our graphs are complete graphs, so a graph of k nodes 
has (~) 2-graphs, each consisting of a pair of a t t r ibuted nodes and the labeled 
relationship between them. The relationship between the two nodes may  be a 
meaningful spatial relationship or the null relationship r~one. We will refer to 
the set of 2-graphs of a relational description Dl as 7~. Figure 1 illustrates a 
part ial  graph representing an object and all the 2-graphs for the given relational 
graph. 
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Fig. 1. Sample graph and corresponding 2-graphs for the "hexnut" object. 

3 Relational Indexing Algorithm 

Let D B  = {Mz, M 2 , . . . , M m }  be the database of models, where each Mi = 
(Ni, Ei) is an at tr ibuted relational description. Let D = (N, E)  be a relational 
description that  has been extracted from an image and T be the set of all 2- 
graphs of D. We would like to find the closest models to D. This is accomplished 
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in two steps: an off-line preprocessing step to set up the indexing mechanism and 
an on-line hypotheses generation step. The off-line step is as follows. Let T M~ be 
the set of 2-graphs of Mi. Each element G M; in this set is encoded to produce 
an index I M~, which is used to access a hash table. The bin corresponding to 
the particular encoded 2-graph G M~ stores information about  which model M~ 
gave rise to that  particular index. This encoding and storing of information in 
the hash table is done off-line and for all models in the database DB. 

In the on-line step the relational indexing procedure keeps an accumulator 
Ai for each model Mi in the database (all the accumulators are initialized to 
zero). Each 2-graph Gz in T is encoded to produce an index Iz. The procedure 
then uses that  index to retrieve from the precomputed hash table all models 
Mi that  contain a 2-graph that is identical to Gl. Identical means that  the two 
nodes have the same attributes and the edge has the same label. For each 2- 
graph Gz of T, the accumulator A~ of every retrieved model M~ is incremented 
by one. After the entire voting process, the models whose accumulators have 
the highest votes are candidates for further consideration. Since the procedure 
goes through all (~) 2-graphs of T and for each one can retrieve a maximum 

of m models, the worst-case complexity is O(m(~)). However, the work per- 
formed on each model is very small, merely incrementing its accumulator by 
one. This is very different from methods that perform full relational matching 
on each model of the database. The relational indexing algorithm is given below. 

R E L A T I O N A L  I N D E X I N G  A L G O R I T H M  

P r e p r o c e s s i n g  (off - l ine)  P h a s e  

1. For each model M~ in the database DB do: 
- Encode each 2-graph G M~ to produce an index. 
- Store Mi and associated information in the selected bin of the hash table. 

M a t c h i n g  ( on - l i ne )  P h a s e  

1. Construct a relational description D for the scene. 
2. For each 2-graph Gz of D do: 

- Encode it, produce and index, and access the hash table. 
- Cast a vote for each Mi associated with the selected bin. 

3. Select Mi's with enough votes as possible hypotheses. 

Since some models share features and relations, it is expected that  some 
of the hypotheses produced will be incorrect. This indicates that  a subsequent 
verification phase is essential for the method to be successful. It is important  
to mention that  the information stored in the hash table is actually more than 
just  the identity of the model that gave rise to a particular 2-graph index. It 
also contains information about which specific features (and their attributes) are 
part  of the 2-graph. This information is essential for hypothesis verification and 
eventual pose estimation. 
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4 M a t c h i n g  w i t h  R e l a t i o n a l  I n d e x i n g :  an  E x a m p l e  

In this section we give an example of the experiments  we have conducted to 
demonstra te  the use of the relational indexing technique for 3D object recogni- 
tion with appearance-based features [2]. 

An appearance-based model of an object is defined as the collection of the 
features that  can be reliably detected from a training set of real images of the 
object.  We chose to use view-class models, in which an object is represented 
by a small set of characteristic views, each having its own distinct feature set 
[6]. We have created a database of appearance-based object models for a set of 
mechanical parts  that  have both flat and curved surfaces, holes, and threads. 
The relational descriptions DV, M of all the model-views were derived from a 
large set of training pairs of real images (280 image pairs of 7 models). 

In order to illustrate our recognition methodology, we matched nine test 
images of both  single and multiple object scenes to the database  of model-views. 
The nine test images used are shown in figure 2. The database  of models was 
created by encoding all 2-graphs for each of the model-views. For each test 
scene, features and relations were detected, the relational description was built, 
and all 2-graphs were encoded. Relational indexing was then performed and 
the generated hypotheses were normalized by the number  of 2-graphs in the 
original models and ranked in order of strength. Hypotheses that  exceeded a 
preset strength threshold were dubbed "strong hypotheses." These hypotheses 
are to be passed to the verification procedure for further consideration. 

In each of the nine tests, the strong hypotheses were classified as type A, 
type B, or type C. Type A hypotheses are those where the correct model and 
the correct (closest) view class were identified. Type  B hypotheses are those 
where the correct model was identified, but the chosen view class was not closest 
to the view in the image. Type B hypotheses can still be verified and used to 
determine pose if enough corresponding features are found. Type  C hypotheses 
are those where an incorrect model was selected. These incorrect hypotheses 
should be ruled out in the verification step. The results of the nine tests are as 
follows: all the objects in the scenes have been correctly recognized (18 type A 
hypotheses); there were 9 type B hypotheses, and 4 type C hypotheses. 

Figure 3(a) shows the results for test scene 9, which contains four objects: 
the "stacked cylinder," the "hexnut," the "wrench," and the "cylinder-block." 
The system produced five strong hypotheses; four were correct and are overlaid 
on the image. These hypothesized models were taken through pose computa t ion  
(affine correspondence of appearance-based model features and scene features) 
without  verification. The fifth strong hypothesis (not shown) matched the object 
"hexnut" to an incorrect view of the correct object model. The subgraph indices 
shown in Figure 1 were among those that  were used in the matching process. 

Figure 3(b) illustrates the correct ( type A) hypotheses generated for test 
scene 5. Of the three type B hypotheses generated~ one was for the "cylinder- 
block" object and two were for the "hexnut" object, both  of which are present 
in the scene. As seen, the method shows promising results. However, a more 
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Fig. 2. The nine test scenes used. 

thorough characterization of the indexing mechanism performance needs to be 
assessed. The next section addresses this issue. 

5 M o n t e  C a r l o  E x p e r i m e n t s  

We performed Monte Carlo experiments to investigate how our relational index- 
ing algorithm performs as the following factors are varied: 

1. Number of model graphs in the database. 
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Fig. 3. (a) Left image of test scene 5 overlaid with the appearance-based features of 
the hypothesized model matches. The objects in this scene are the "cylinder-block" 
and the "hexnut." (b) Right image of test scene O overlaid with the appearance-based 
features of the hypothesized model matches. The objects in this scene are the "stacked 
cylinder," the "hexnut," the "wrench," and the "cylinder-block." 

2. Average size of model graphs in the database. 
3. Size of image graph, measured in terms of the percentages of extra  and 

missing 2-graphs from a given model graph. 
4. Size of cluster of similar models in the database. 
5. The degree of similarity between models. 

In order to define similarity between model graphs, let D B  = M 1 ,  M2, ..., M,~ 
be a database of rrt model graphs. Consider the set of 2-graphs Ti of each model 
Mi. Let s(i, j )  = tTi n Tj[ be the measure of similarity between models M~ and 
Mj.  If s(i, j )  = 0, then M~ and Mj are fully discriminable by relational indexing. 

Synthetic data  was obtained by generating random databases of models 
graphs whose nodes and edges were features and relations used in our current 
system. In order to generate realistic databases, the physical constraints between 
the features and their relations were taken into account. For each test database,  
each model was transformed into an "image graph" by randomly removing 2- 
graphs and adding extra 2-graphs and was then matched against the database  
of models. A model was retrieved only if at least 50% of its 2-graphs were found 
in the image. For each such set of image graphs used, we recorded the following 
quantities: 

- P C M :  The average percentage of correct models retrieved, with respect to 
the total  number of models retrieved 

- P H V :  The average percentage of correct models retrieved wi~h the highest 
vo~e, with respect to the total number  of models retrieved 
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- P M R :  The average percentage of models retrieved, with respect to the total  
number of models in the database 

Since we were interested in investigating the effect of similar models in the 
database on the performance of the technique, the above quantities were mea- 
sured within and outside a cluster of similar models. 

For each experiment described above, 100 random replications (R = 100) 
were performed. Each database generated possessed one cluster of similar mod- 
els. All the parameters involved in this investigation are listed below, along with 
the individual values each assumed: 

- D: Number of models in the database = 50, 100, 200, 500 
- G: Average size of model graphs (measured in terms of 2-graphs) = 10, 15, 

20, 25, 30. 
- M: Percentage of missing 2-graphs = 0, 20, 50. 
- E: Percentage of extra 2-graphs = 0, 20, 50. 
- S: Similarity among the models in the cluster (measured as a percentage of 

G) = 20, 30, 40. 
- C: Cluster size (measured as a percentage of D) : 10, 20, 30 

The total number ofexperiments  performed was then: R x D x G x M x E x 
S x C -- 162,000. We generated plots of PCM, PHV, and PMR as a function 
of the average size model in the database (measured in terms of 2-graphs), for 
every combination of the following parameters; D, S, C, M, and E. Given the 
large number of plots obtained, we only illustrate those for which the trends in 
performance are most significant (for the complete set of results, please see [3]). 

PCM, the first quanti ty measured, for both within the cluster and outside 
the cluster, had value 100% irrespective of the combination of the parameters 
involved. This means that the correct model was always among the retrieved 
models. Since relational indexing is a hypotheses generation mechanism, veri- 
fication has to be performed for each model retrieved. In our current system, 
we start the verification with the models that  obtained the largest number of 
votes, therefore we are also interested in finding out how often the correct model 
received the most votes. Quanti ty PHV reflects this aspect of the performance 
of the technique. 

For PHV, measured within the cluster, the plots of Figure 4 are representative 
of the trends in performance. From 4(a), (b), and (c), it can be seen that  the 
average percentage of correct models retrieved decreases with an increase in the 
percentage of missing 2-graphs and in the size of the database. This is expected 
since the total number of models retrieved will increase with the size of the 
database. 

Figures 4(d), (e), and (f) show plots of PHV for different values of similar- 
ities within the cluster. The trend observed is that  performance only changes 
significantly for small values of the average size models and with the percentage 
of missing 2-graphs, when the similarity between models is varied. The effects of 
the size of the cluster of similar models on performance can be seen on the plots 
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of Figures 4(g), (h), and (i). Again, performance decreases with an increase in 
the cluster size and in the percentage of missing 2-graphs. 

One important thing to notice is that  regardless of the combination of pa- 
rameters used, the number of extra 2-graphs had a negligible effect on the perfor- 
mance, indicating that the indexing technique is robust with respect to clutter. 

Quantity PHV measured outside the cluster had a much more stable behavior 
than for inside the cluster. In fact, the plots obtained are essentially flat, regard- 
less of the combination of parameters used. The only parameters that  slightly 
affect the performance are again the percentage of missing 2-graphs and the size 
of the database. Since outside the cluster the models are randomly different, the 
value of PHV is always very close to 100%, except for a larger percentage of 
missing 2-graphs (50%), for which it decreases to around 85% for the largest size 
database (500 models). 

Figure 5 shows some of the results obtained when measuring quanti ty PMR, 
within the cluster. It can be seen that the average percentage of total models 
retrieved remains very low, regardless of the size of the database, according to the 
plots in Figures 5(a), (b), and (c). The effects of changes in similarities among 
models in the cluster are depicted in Figures 5(d), (e), and (f). As expected, 
with an increase in the similarity between models, there is an increase in the 
percentage of total models retrieved. The larger the cluster size, the larger the 
average percentage of models retrieved will be. This trend can be observed in 
Figures 5(g), (h), and (i). 

As for the case of PHV, the percentage of extra 2-graphs has close to no 
affect in the performance of the technique in terms of the measured quanti ty 
PMR. This also holds for outside cluster measurements. Quanti ty PMR mea- 
sured outside clusters, stays fairly constant (ranging from around 1% to 3% of 
the database size), regardless of the actual values of the parameters involved in 
the investigation. 
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Fig. 4. Sample results for quantity PHV (average percentage of correct models retrieved 
with the highest vote) measured within the cluster of models in the database. 
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Fig. 5. Sample results for quantity PMR (average percentage of total models retrieved) 
measured within the cluster of models in the database. 


