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Abstract-In this paper, neural networks based on orthonormal wavelets are constructed to 
decompose signals into full scale space. Two algorithms, the global multiscale learning (GML) 
and the pyramid multiscale learning (PML) were proposed and comparatively studied for their 
convergence speed, accuracy, and multiresolution representation property in functional 
approximation. It is shown that the GML algorithm produces larger approximation errors, falls 
to approximate a chaotic signal, and does not posses multiresolution representation property. On 
the other hand, the PML algorithm produces smaller approximation errors, can approximate a 
chaotic signal, and possesses multiresolution representation property. 

1. Introduction 

Recent works have proposed the use of  wavelet functions as activation 
functions and shown their powers in functional approximation and localization in time 
and frequency of  the signals [1-3]. However, the training of  wavelet neural networks 
using the back-propagation learning can be slow and inefficient due to the global 
interactions over every node of each scale. Moreover, most works published so far 
stressed on approximation accuracy and rarely discussed the multiresolution 
representation property. The study in this paper focuses on the question of  how to 
decompose the input signals into their multiresolution representation with fast 
convergence speed and high accuracy. In what follows, two types of  network learning 
algorithms will be studied and compared. One is the global multiscale learning (GML) 
which is stemmed from the back-propagation algorithm in the artificial neural network 
[4] and the other is the pyramid multiscale learning (PML) proposed in this paper 
which is based on the fact that functions can be represented as a weighted sum of 
orthogonal basis functions. Two example 1-D signals decomposed by the GML 
algorithm and the PML algorithm into full scale space will be illustrated. 

This paper is organized as follows. In section 2, network structures and signal 
approximations are presented. Experimental results about 1-D signals are reported and 
discussed in Section 3. Finally, Section 4 gives the conclusion. 

2. Network Structures and Signal Approximations 

Feedforward neural networks have been widely studied and demonstrated for 
their ability for fitting complicated maps very well [5-7]. On the other hand, the 
recently introduced wavelet decomposition [8-11 ] has emerged as a powerful tool for 
functional approximation and turns out to have a structure very similar to the 
feedforward neural network. Two types of network learning methods, inspired by both 
the feedforward neural networks and wavelet decomposition, are introduced in this 
section. 
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2.1 Learning Algorithms 

Let | be a set containing pairs of  sampled inputs and f ( x ) ~  L2(R) be the 
mapping to be approximated, i.e. 

|  {(x~,y~)l yk=f(xk), xk ,ykeR,  k=O,1,...,K-1, K <m} (1) 

| is called the training set and K is the number of  training patterns. Based on Eq. (1) 
and [8], a single-input-single-output (SISO) feedforward neural network with only one 
hidden layer consisting of  K-1  wavelets can be constructed as Fig. 1. The output of  
the network is given by 

- I N  m 1 

jr =)? + ~ ~ w , ,  V,,  (xk), w,, e R, m andn e Z (2) 
m = 0  n =  0 

where ~ m. (') is the wavelet family, w,,,. are linear weights, and f is introduced to deal 

with nonzero mean functions on finite domain since the wavelet function ~ m. (-) is zero 

mean. K- 1  = N.(m), m is the dilation parameter, n is the translation parameter, 
m =  0 

Nm = log2 K is the number of the total scales, and N. (m) = 2 N'-'~-~ is the number of  the 
translations at scale m. 

GML Algorithm: At each training iteration the GML algorithm updates the 
weights after the presentation of the complete set of training data and incorporates one 
sweep through all orthonormal wavelets. Furthermore, it uses a gradient search 
technique [4] to find the network weights that minimize an sum-of-squared-error 
function. All the weights of the GML algorithm are determined iteratively according to 
the following rules. 

K - I  

A w,.. Z[jr(xk)--yk ] 2 -% = W ( 2 - " x k - n )  
k = O  

where m = 0, 1,.., N ~ -  1. 

(3) 

w,,, ( z + l ) = w m ,  ( z ) - q  Aw .... (4) 

where z is the iteration index and 11 is the learning rate. 

PML Algorithm: If we rewrite the Eq. (2) as below 

n = O  

We can construct another type of network structure as shown in Fig. 2 and find a 
distinction between these two networks. The GML updates all the weights 
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simultaneously at each iteration, while the PML updates the weights by scale at each 
iteration. Hence, the algorithm of GML is an overall-scales learning and the algorithm 
of PML is a scale-by-scale learning. The approximation of the function f ( x )  at the 

(N,  - 1)th scale is then given by 

(x,) = ] + . v  N._, o(x,) (6) 

The resulting network has only one node whose activation function is the wavelet 
function at scale N , -  1. Suppose we want a more refined approximation of f ( x ) ,  that 
is, the approximation of f ( x )  at scale N , -  2. We proceed to calculate 

N.( ~.q2 )-l 

?N_2(Xk)= f N_I(Xk)+ I ~WN_2,n~J N_2gI(Xk) ( 7 )  
n= 0 

Continuing with the addition of nodes at the scales N , - 3 ,  Nm-4,.. . ,  0, we obtain a 
complete network as shown in Fig. 2. The approximation using the errors from the 
previous approximations as the training data approaches the unknown function f ( x )  
with progressively smaller global error. Finally, Eq. (5) describes what is known as the 
wavelet decomposition of a function f ( x ) ~ L 2 ( R ) . 

The GML updates all the weights simultaneously at each iteration, while the 
PML updates the weights by scale at each iteration. The weights of each scale of the 
PML algorithm are adjusted scale-by-scale iteratively according to Eqs. (4) and (8) 
given below. 

K-I 

k=O 

where m = 0, 1 .... N . -  2, when m = Nm- 1, f ~ l  (xk) is replaced with Yk. 

(8) 

2.2 Approximation Errors 

When approximating a function with the GML algorithm, the global error is 
given by 

K-I 

t; 2=Z1~2  tf(xk)--Yk] 2 
k=0 

, while the local error with the PML algorithm at resolution 2 m is 

(9) 

K-I 

ZtL(x,)-L.,(x,)l '  (10) 
k=O 

and satisfies ~2-->0 as m-->--~ by the properties of the multiresolution 
decomposition. Using Eq. (10), we can keep track the local errors of approximation as 
nodes of  each scale are added to the network. The error of approximation from the 
GML algorithm considers overall scales (global) error as given by Eq. (9) while the 
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error of approximation from the PML algorithm considers each scale (local) error as 
given by Eq. (10). This difference is the basis for the selection of appropriate learning 
methods for the wavelet network. Such a measure can provide an estimate of the 
reliability of the network prediction. 

3. Experimental Results and Discussions 

For simplicity of comparison, we conf'me our experiments on two different 
aspects based on the same learning parsimony (fixed number of nodes). The first is the 
learning accuracy and the second is the learning speed which is the amount of CPU 
time used for training. 

Signals generated by chaotic systems represent a potentially rich class of 
signals both for detecting and characterizing physical phenomena and in synthesizing 
new classes of signals for communications, remote sensing, and a variety of other 
signal processing applications. From the point of view of signal processing, the 
approximation of this class of signals present a significant challenge and an 
opportunity to explore and develop completely a new type of algorithm to match the 
special characteristics of chaotic signals [ 12].The experiments conducted in this paper 
not only aim to obtain satisfactory approximation results but also gain insight into the 
behaviors about the resolutions (scales) and strengths (wavelet coefficients) of the 
wavelet projection. The latter can provide us with far more valuable information about 
the signals than the former. 

In this section, two example signals are used to test the two learning 
algorithms. The equations of these two signals are given as below. 

t 
l! if 0 ~ x < 64 

-1 if 64 ~ x < 128 

f , (x)= if 128 ~ x < 192 

if 192 ~ x < 256 

(11) 

f 2 ( x ) : { x ( t ) l x [ t l = 4 x [ t - l l [ 1 - x ( t - 1 ) ] ,  0 < x < 2 5 6  } (12) 

The first signal f , (x)  is simply a periodic square wave and the second signal f2(x) is 
a chaotic signal. The wavelet bases adopted are the orthogonal family of Daubechies 
D., where n is 2, 4, and 20 [8]. 

3.1. Decomposition of 1-D signals using the GML Algorithm 

Experiment 1: Figs. 3(a), (b), and (c) show the original, the approximation, 
and the error signals of f~ (x) using D2 wavelet. Fig. 4 reports the wavelet projections 
over each scale. From Fig. 3 and Fig. 4, we see that the network can be trained to 
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approximate f~ (x) with convergence. However, the network can not obtain the proper 
wavelet projections of the original signal. 

Experiment 2: Figs. 5(a), (b), and (c) show the original, the approximation, 
and the error signals of f ,  (x) using D2 wavelet. In this example, we fred that the 
network can not converge to the original signal. Thus, the GML algorithm fails to 
approximate the chaotic signal. 

3.2. Decomposition of 1-D signals using the PML Algorithm 

Experiment 3: Figs. 6 (a), (b), and (c) show the original, the approximation, 
and the error signal of f~ (x) using D2 wavelet. Fig. 7 reports the wavelet projections 
over each scale. In this example, we find that the wavelet basis at scale 6 resembles 
f l ( x )  very well. Thus the projection at scale 6 generated from the network gives a 

good approximation to the original signal f~(x), while the other components are 

almost equal to zero. By retaining only projection of scale 6 of f~ (x), one can achieve 
a rate-reduction. 

Experiment 4: Figs. 8 (a), (b), and (c) show the original, the approximation, 
and the error signal of f2(x) using D2 wavelet. Fig. 9 reports the wavelet projections 

over each scale. It is shown that f2 (x) can be well approximated to the accuracy 
desired and does give the multiresolution representations of the signal. 

Experiment 5: To get more insights into the PML algorithm, the 
corresponding experimental results of the approximation of f l  (x) and f2 (x) using D4 
and D2,, wavelets were also obtained respectively. These decompositions are as good 
as expected to give the multiresolution representations of the signal [ 13]. 

3.3. Comparison of the GML algorithm and the PML algorithm 

From the results obtained from Experiments 1-5, observations about the two 
learning algorithms are made as follows. The GML algorithm fails to approximate the 
chaotic signal and takes much longer time to converge for the signals it can 
approximate. This is because that the network converges to a local minimum and thus 
fails to obtain the exact mapping. This drawback is also found in the other networks 
that use the back-propagation algorithm [14]. On the other hand, the PML algorithm 
can overcome these drawbacks. The PML algorithm is easily constructed and 
guaranteed to converge to the desired accuracy in a duration shorter than of the GML 
algorithm. In addition, multiresolution representations of a signal can be obtained from 
the wavelet neural network using the PML algorithm. Comparable to the neural 
network trainings [1,2,15], the two algorithms like back-propagation does rely on 
stochastic gradient search but have different adaptation efficiencies of wavelet neural 
network. One way to explain this sluggishness is to characterize the error surface 
which is being searched. In the case of the PML algorithm the error surface is a 
relatively agreeable surface to search (with a single global minimum), however in the 
case of the GML algorithm the error surface is quite harsh (with local minima) [14]. 
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4. Conclusion 

In this paper, a pyramid wavelet neural network inspired by the feedforward 
neural network and discrete wavelet transform was constructed to decompose 1-D 
signals. The concept of multiresolution analysis is utilized to train the network 
parameters. The training algorithm based on this idea is named the pyramid multiscale 
learning (PML) algorithm. The PML algorithm can improve the drawbacks of the 
global multiscale learning (GML) algorithm, offer a multiresolution representation of 
the original signal, and easily be implemented. 
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Fig. 1 Wavelet neural network with GML algorithm for K =256. 
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Fig 2 Wavelet neural network with PML algorithm for K =256 
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Fig. 3 Experimental results using the GML algorithm for f , (x) ,  
(a) the original f~(x), (b) the approximated signal, (c) the error 
signal (D, wavelet). 

Fig. 4 The wavelet projections of the approximated signal of f,(x) 
using the GML algorithm (D~ wavelet). 

Fig. 5 Experimental results using the GML algorithm for f:(x), 
(a) the original f2(x), (b) the approximated signal, (c) the error 
signal (D~ wavelet). 
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Fig. 6 Experimental results using the PML algorithm for f,(x) 
(a) the original f ,  (x), (b) the approximated signal, (c) the error 
signal (D2 wavelet). 

Fig. 7 The wavelet projections of the approximated signal of f,(x) 
using the PML algorithm (D2 wavelet). 



179 

0 S  , - , 

o ,' 

(1)) s~ l l t  1 

(a) s~gr~l 

(~1 aoc*mz~natecl ~:QI-~t 

�9 10" 

0 

*~ 5O IOO 150 2OO 2~  
(c) ~ z~n i t  

Fig. 8 

Q,S . , �9 

�9 (c) scale Z . 

0 . 2  , . , 

( e l  zc~ l t  3 

02  , , , 

S O  10G 150 2(:0 250 
(* )  s c ~ J *  4 

SO 100 150 2OO 
(t) s~ * *  S 

250 

,SO 100 (g) ~.,l~e 6~50 2CG 2.~0 

OO2 

o o:t I t 
GO 100 150 2OO 25O 

~ )  soJ *  7 

Fig. 9 

Fig, 8 Experimental results using the PMiL algorithm for f2(x) 
(a) the oriNnal f:(x), (b) the approximated signal, (c) the error 
signal (D~ wavelet). 

Fig. 9 The wavelet projections of the approximated signal of f2(x) 
using the PML algorithm ( ~  wavelet). 


