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A b s t r a c t .  A new hybrid approach to acoustic modeling based on the use 
of a grammatical inference technique to infer the structure of the models of 
the sublexical units and an artificial neural network as a means to estimate 
the emission probabilities of such models is presented. The chosen gram- 
matical inference technique is the so-called "morphic generator grammat- 
ical inference" methodology and the connectionist model is the multilayer 
perceptron. The results on a continuous speech recognition task are bet- 
ter than those obtained by other systems such as semi-continuous hidden 
Markov models and semi-continuous stochastic grammars. The system 
even performs slightly better than other hybrid approaches. 

1 I n t r o d u c t i o n  

In syntactic pat tern  recognition, the interpretat ion of pat terns as strings of prim- 
itives introduces a source of quantizat ion errors in the identification process of 
the pat tern  [14]. In speech recognition, particularly,  the set of primitives is ob- 
tained floln a process of vector quant izat ion (VQ). The  space of feature vectors  
(typically, a space of Cepstral  vectors) is divided into a finite set of clusters, 
and each one is represented by one codeword. An input  pattern,  represented 
as a sequence of feature vectors, is interpreted as a str ing of codewords (each 
vector is replaced by the closest codeword,  using a nearest  neighbor technique).  
Therefore,  quantizat ion errors are in t roduced for each vector of every pat tern.  

In speech recognition, discrete hidden Markov models (HMMs) are used as 
s t ructural  models for pat tern  recognition. In a first approach,  some types  of 
these models can be considered as stochastic regular g rammars  [2]. Cont inuous 
and semi-continuous HMMs [11, 12], which are extensions of the discrete models,  
have been introduced in order to use the continuous feature space directly with 
s t ructural  models. These models do not  require the codification of the input  pat-  
tern as a string of primitives. Continuous HMMs model the continuous feature 
vectors directly, using continuous probabil i ty density functions (PDFs) .  These  
models  usually require mixtures of a large number  of PDFs .  Obviously, while 
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continuous HMMs avoid the errors derived by the VQ process, the use of contin- 
uous PDFs increases the computational costs of the corresponding algorithms. 
The semi-continuous HMMs are special types of continuous HMMs, where the 
PDFs associated to every state are tied. The mixtures are linear combinations of 
a set of independent PDFs. In this approach, the general assumption is that the 
entire parametric space of representation is covered by this set of independent 
PDFs, each one corresponding to a VQ-codeword distribution. 

A more recent approach for dealing with the problem of the use of the con- 
tinuous feature space is based on hybrid systems formed by HMMs and artificial 
neural networks [1]. In this case, multilayer perceptrons (MLPs) are used to es- 
timate posterior probabilities. This proposal has the advantage that MLPs can 
better approach arbitrary density functions than linear combinations of a (small) 
number of PDFs. 

However, the main drawback of the application of the HMM approach is that 
the structural component (states and transitions) requires heuristic tailoring by 
hand, using some a priori knowledge and/or  experimentation. Actually, most of 
the usually adopted structures are very simple and the good performance of the 
models rely on the ability to estimate their parameters from training samples 
(Baum-Welch, Viterbi re-estimation, etc...). One consequence of this is that no 
standard structure has yet been commonly accepted, even for very simple speech 
recognition tasks. 

In syntactic pattern recognition, and therefore in speech recognition, formal 
language theory offers an alternative framework to hidden Markov modeling (in 
fact, these are particular cases of stochastic finite state automata). This theory 
allows for the use of powerful techniques for learning the grammar associated to 
a class of patterns. These are known as grammatical inference techniques [6, 9]. 
Nonetheless, these techniques generally do not take into account the above men- 
tioned problem of VQ errors and only deal with a symbolic (discrete) representa- 
tion of patterns. One of these grammatical inference techniques is the "morphic 
generator grammatical inference" (MGGI) methodology which was introduced 
in [8]. The former version of this methodology used a discrete representation 
of patterns, that is, strings of codewords, and a very primitive error-correcting 
procedure. 

A semi-continuous approach to the MGGI was proposed in [14] to combine 
a grammatical inference methodology with a technique to avoid the errors that 
are produced in the codification process of the input patterns. On one hand, a 
stochastic regular grammar was learned from a finite set of strings of codewords 
by using the MGGI methodology. Then, a continuous PDF substitutes the ter- 
minal symbol of each rule of the grammar in a similar, but not identical, way as 
in the semi-continuous HMM approach. These PDFs are obtained from the con- 
tinuous information of the input training patterns. And finally, the parsing with 
such grammars only needs sequences of feature vectors. This semi-continuous 
MGGI methodology has been successfully used to infer regular grammars for 
some specific tasks in speech recognition [7]. 

Here, an alternative approach is studied in the same way as hybrid HMMs 
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and artificial neural networks systems, but using stochastic regular grammars 
obtained by the MGGI methodology instead of HMMs. Comparative experiments 
have shown better results with this approach than the semi-continuous MGGI and 
the conventional semi-continuous HMM ones. Its performance is even slightly 
superior to a hybrid HMM and artificial neural networks system. 

2 T h e  M G G I  M e t h o d o l o g y  

The MGGI methodology was originally proposed as a step towards the inference 
of regular grammars [8]. This methodology is directly based on the concept of 
local language and the property which relates local languages and general regular 
languages. Let us introduce the MGGI methodology defining first local languages 
and explaining how to infer them from samples. 

Let Z be a finite alphabet; I and F be two subsets of Z (Initial and Final 
symbols, respectively); and T a subset of Z 2 (forbidden Transitions). A local 
language associated to the four-tuple Z = ( Z , I , F , T ) ,  12(Z), is a subset of w .  
defined as the set of strings x = x l x 2  . . .  xl~ I E Z* such that 

Xl E 1, 
xlx I E F, and 
XiXi+ 1 • T, l _< i < Ixl; 

(i.e., the sentences of l~ (Z) are characterized as beginning with an initial symbol, 
ending with a final symbol, and having no substring of length two belonging to 
the set of forbidden transitions). 

Given a finite set of training samples, R C Z*, the smallest local language 
containing R can be obtained by using the "local language inference" algorithm 
described in [8], which basically consists on: 

1. Given R, associate the four-tuple Z = (~,  I, F, T) as follows: 

is the set containing all the terminal symbols of strings of R; 

I = {a E ~ [ 3ax  E R and x E r * }  ; 

F = { b E Z [ ~xb E R and x E Z * }  ; and 

T = Z 2 - {ab E F 2 i 3xaby E R and x,  y E ~U*}. 

It is easily seen that, 12 (Z) is the smallest local language containing R. 

2. Then, given R and the four-tuple Z, build a regular grammar that generates 
12(R), (•, N, P, S}, where: 

N = {Xa,Va E U {S}; 

and the set of productions P is defined for all symbols a and b from 2 as: 

S -+ AXa, iff a E I,  
Xb -+ b, iff b E F, 
X~ ~ aXb, iff ab ff T,  

being A the empty string. 
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The main drawback of such local language inference algorithm is that it 
will generally lead to overgeneralized languages. The MGGI methodology is an 
inference scheme which attempts to avoid this undesirable property. 

The MGGI methodology can be formally described as follows [8]. Let Z and 
A be two finite alphabets, and ~* and A* are the free monoids over the respective 
alphabets; and R be a finite set of training samples, R C Z*. Let g be a renaming 
function, g : R --+ A*; and h be a letter-to-letter morphism, h : A* --+ Z'*. The 
regular language, L, generated by the MGGI-inferred grammar G, is related to 
the set of training samples, R, through the expression 

L = h(12(g(R))), 

where/2 (g(R)) is obtained by using the above local language inference algorithm. 
Graphically, this methodology is illustrated in Figure 1. 

g 
R c  ~*  - -~ g(R) c A* 

local language 
MGGI $ $ inference algorithm 

L c ~* ~---/2(9(R)) c ,J* 
h 

Fig. 1. Scheme of the "morphic generator grammatical inference" (MGGI) methodology. 

The most usual renaming function g consists on adding adequate subscripts 
to every symbol of a given string from R. Let us propose a simple example, given 
a training set R = {aaba, abba, abbba, aabbbbaa}. The chosen renaming function 
g is defined as: the string is divided into a fixed number of intervals, say d, and 
then a subscript i E {1 , . . . ,  d} is added to each symbol, depending on the symbol 
is in the interval i. If d is fixed to 4, the result of applying g on R is 

g( R ) = { al a2b3a4, al b2b3a4, al bl b2b3a4, al al b2b2b3b3a4 a4 }. 

The (incremental) application of the local language algorithm to g(R) conveys to 
the following grammar, 

and 

N = {S, X a l , Z a 2 , X b 3 , X a 4 , Z b 2 , X b l } ;  

S --'->Xal , 
Xa4 ~ a4 

Xal ~ alXa2, Xbl -+ blXb2~ 
Xa2 ~ a2Xb3, Xa 1 ~ alXal, 
Xba -'+ b3Xa4, Xb2 ~ b2Zb2, 
Zal --~ alXb2, Xb3 ~ b3Zb3, 
Xb2 -+ b2Xb~ Xa 4 ~ a4Xa4. 
Xal ~ al Xbl , 
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The morphism h is usually defined to be the inverse of g for R, that  is 
h(g(R)) = R. This choice allows us to guarantee that we actually embed the 
inferred MGGI-languages within suitable "extreme languages". In practice, to 
define h as the inverse of g simply means omitting the subscript of every symbol 
of every renamed string. 

Therefore, the final grammar  G of the example is 

and 

N = {S, X ~ ,  X~:, Xb~, X~ 4, Xb2, Xb I }; 

S -+ Xal, Xal -'+ aXa,,, Xb 1 ~ bXb2, 
Xa~ --+ a, Xa~ ~ aXba, Xal --~ aXal, 

Zba "-+ bXa4 ~ Xb2 ~ bXb2 
Xal -+ aXb2, Xba -+ bXba 
X b  2 --} bXba, Xa4 "4 aXa4. 
X a  1 --)" aXb~ , 

The definition of the function g allows us to specify the task dependent features 
which are desired for the inferred models. In this way, the function g becomes a 
control mechanism which prevents overgeneralization oil the basis of our a priori 
knowledge about the task. In particular, for tile task of sublexical modeling, it 
seems clear that a phone model needs to represent (at least) the three different 
intervals of a phone; i.e. left (L, on-glide phase), middle (M, central-phase) and 
right (R, off-glide phase). Therefore, we can define a function 9 which adds the 
"positional" index L, M or R to each codeword of each string in R, depending 
on its relative position in it. 

Tile estimation of the probability distributions of the stochastic extension of 
tile MGGI  methodology is performed by using the Viterbi re-estimation algo- 
ri thm [3, 7]. The initialization is based on the frequency of the use of the corre- 
sponding transitions in tile derivations of the strings of 9(R) in A* since the local 
language inference algorithm yields unambiguous regular grarnmars. In the fol- 
lowing section we describe how to estimate the emission probabilities associated 
to each state of the MGGI-inferred stochastic grammars  using an MLP. 

3 M L P s  a s  E s t i m a t o r s  o f  P o s t e r i o r  P r o b a b i l i t i e s .  H y b r i d  

S y s t e m  

The emission probabili ty associated to each state of a structural model must be 
estimated, that is, the probability of the observed acoustic vector x given the 
hypothesized state q of the model, p(x I q). Artificial neural networks can be 
trained to estimate probabilities that are related to these emission probabilities. 
In particular, an MLP can be trained to produce estimates of the posterior prob- 
ability P(q I x) (that is, the posterior probabili ty of the state q of the structural 
model given the acoustic vector x), if each MLP output is associated with a spe- 
cific state of the model and if it is trained as a classifier. In this case, it has been 
formally proved by several authors (among others, [1, 10]), that the MLP out- 
puts are estimates of the posterior probabilities of the output classes. That  is, an 
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output value of the MLP given the input (an acoustic vector x) is an estimation 
of the posterior probability P(q Ix), with q being one of the classes (states) to 
classify. This posterior probability can be converted to emission probabilities by 
applying Baye's rule to the MLP outputs: 

P(q l x) p(x I q) 
P(q) p(x) 

The posterior probability estimates from the MLP outputs, P(q I x), is divided by 
the class priors, P(q). The class priors can be estimated from the relative frequen- 
cies of each class from the information produced by a forced Viterbi alignment of 
the training data. The scaled likelihood p(x I q)/p(x) can be used as an emission 
probability in the proposed system, since, during recognition, the scaling factor 
p(x) is a constant for all classes and will not change the classification [1]. 

The advantages of this approach are the discriminate training criterion and 
the fact that it is no longer necessary to assume a priori distribution of the data. 
Furthermore, if some left and right context is used in the input of the MLP, the 
output values of the MLP are good estimates of 

P(c I X~+_~;) , 

with X t+c" 
t - - C t  z X t _ c  t . . . X t  . . . X t + c "  . 

4 Experiments 

4.1 E x p e r i m e n t a l  E n v i r o n m e n t  

The decoding experiments are performed with a Spanish continuous speech data- 
base, FRASES [4]. This database consists of 120 phonetically balanced sentences 
and 50 sentences obtained from current Spanish narrative. All the sentences were 
uttered by 10 speakers for a total of 1,700 sentences and about 50,000 phonemes. 
This database was acquired at 16 kHz and was parametrized obtaining l l-dimen- 
sional acoustic vectors (10 Cepstral coefficients and energy). A VQ process was 
followed in order to obtain a 32-sized codebook from the acoustic vectors. All 
the sentences were automatically transcribed into sequences of phones. The set 
of phones was composed by 23 units (that roughly correspond to the 24 Spanish 
phonemes) [7] plus 3 units to adequately model three types of silences (initial, 
final, and intermediate pauses). 

In order to perform different experiments, the following distribution of the 
acoustic data was done. For training purposes, 840 utterances that corresponded 
to 120 phonetically balanced sentences uttered by 7 speakers (4 females and 
3 males) were used. Out of this training set, a subset of phonetically-balanced 
utterances was randomly selected as a validation set (20% of the total training 
data). For testing purposes three different test sets were defined: 

- Speaker-dependent and vocabulary-independent (SDVI): 350 utterances that 
corresponded to 50 sentences from narrative uttered by 7 speakers (out of 
the training speakers set). 
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- Speaker-independent and vocabulary-dependent (SIVD): 360 utterances that 
corresponded to 120 phonetically balanced sentences uttered by 3 (different) 
speakers (2 males and 1 female). 

- Speaker-independent and vocabulary-independent (SIVI): 150 utterances that 
corresponded to 50 sentences from narrative uttered by 3 (different) speakers 
(2 males and 1 female). 

A segmentation of the training data (that is, an assignation of acoustic sub- 
sequences to phones) was available. A small part  (77 utterances) was manually 
segmented and the rest was automatically segmented using a classical discrete 
HMM system [15] bootstrapped with the manual segmentation. Every experiment 
was performed twice, under different conditions: without phonotactic language 
model and with a bigram matrix of phones obtained through a large Spanish text 
corpus [4]. 

4.2 A r c h i t e c t u r e  and  T r a i n i n g  o f  the  H y b r i d  S y s t e m  

The stochastic regular grammars inferred by the MGGI methodology (one gram- 
mar for each phone) were obtained from the segmented training data. Every 
phone model was inferred using a renaming function g which adds a positional 
index (Left, Middle or Right) to each codeword of every training sample, except 
for the silence models which were labeled using only one interval. The mean num- 
ber of states of the inferred models was 65, and their average branching factor 
w a s  6. 

As it is commented in Section 3, to obtain (quantities proportional to) the 
emission probabilities (tied within each inferred model), the posterior probability 
of each of the 26 phones (estimated through the MLP) 2 was divided by its prior 
probability [1]. This last probability was estimated as the relative frequency of 
the acoustic vectors corresponding to the phone, given the current segmentation. 

In the training process of the MLP, the desired outputs were 1 if the origi- 
nal acoustic vector, according to the current segmentation, corresponded to the 
phone whose posterior probability must be obtained as the output,  and it was 0, 
otherwise. The MLP input layer was formed by 99 inputs corresponding to the 
current acoustic vector (11 inputs) and four acoustic vectors of left and right con- 
text (scaled to the [0,1] interval), while the hidden layer consisted of 100 units. 
The training of the MLP was performed using the on-line scheme of the back- 
propagation algorithm [13] with a sigmoidal function, and the criterion function 
was the mean squared error. To prevent overtraining, after each epoch, the clas- 
sification performance at acoustic vector level was measured on the validation 
set and the training process of the MLP was stopped when no improvement was 
expected. 

2 In order to verify stochastic constraints, a normalization over all outputs was 
performed. 
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5 Results  and Concluding Remarks 

The results of the experiments are reported using the "percent total" assessment 
parameter, P t  = c/(e + s + i + d), where c is the number of correctly recognized 
phones, and i, s, and d are the number of insertions, substitutions, and deletions, 
respectively. This parameter was obtained by a dynamic programming algorithm 
for editing the output of the decoder and the correct phonetic transcription of 
each test utterance (without taking silences into account). 

In Table 1, the experimental results with the hybrid MGGI-MLP system 
(without phonotactic language model) along with the results obtained with other 
methodologies are shown. The same experiments with bigrams of phone units 
are reported in Table 2. The results obtained with the MGGI-MLP system are 
better than those obtained through semi-continuous HMMs and semi-continuous 
MGGI systems (these experiments were carried out by adding to the each feature 
of the acoustic vectors its respective first derivative) [7]. Even the performance of 
the presented system is slightly superior than when a hybrid HMM-MLP system 
is used [5]. Furthermore, we expect to improve the proposed hybrid system by 
estimating the emission probabilities for each model more accurately, with a less 
restrictive tying of the posterior probabilities. This can be achieved by estimat- 
ing the posterior probabilities of each state of the models taking into account not 
only the acoustic vector but also the codeword associated to the state. 

Table 1. Recognition results (in %) of the decoding experiments of the three test sets 
(SDVI, SIVD, SIVI) without phonotactic language model. 

Test set 
SDVI 
SIVD 
SIVI 

HMM MGGI HMM-MLP MGGI-MLP 
66 73 75 76 
65 65 67 69 
62 63 66 69 

Table 2. Recognition results (in %) of the decoding experiments of the three test sets 
(SDVI, SIVD, SIVI) with bigrams language model. 

Test set 
SDVI 
SIVD 
SIVI 

HMM MGGI HMM-MLP MGGLMLP 

67 73 77 76 
65 66 70 71 
64 66 70 71 
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