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Abs t r ac t .  Various derivatives(lst to 4th order) describe different signal 
characters in scale space: the first derivative represents signal variation 
which can be used for coding; the second derivative characterizes the size 
of signal local structure and can be used for adaptive smoothing; the 
third and fourth order derivatives relate zero-crossing(or other features) 
contour in scale space to a differential equation which can be used for 
feature tracking and make quantitative measurements of zero-crossing 
properties possible. In the case that different derivatives are calculated 
by a special class of derivative filters, all the derivative signals can be 
treated in the same way. 

1 I n t r o d u c t i o n  

A common problem in early vision is to select the effective scale(s) to perform 
signal processing. Since we have no a priori knowledge about the original signal 
available, a multiscale strategy in which the signal was smoothed at many dif- 
ferent scales was used[17]. Since Witkin[19] and Koenderink[6] introduced the 
Scale Space in 1983 and 1984 respectively, the research in this field became very 
popular.  In their scale space, the signal was convoluted with Gaussian filter with 
its scale parameter  changing continuously from zero to infinite, and thus a pa- 
rameter  family of the derived signals was formed. However, since scale space 
is highly information redundant,  To find a more efficient representation, it be- 
comes impor tant  to study the relationship between signals at different scales. So 
far, the most popular  method for this topics is the coarse-to-fine tracking: the 
features at the coarsest scale, which usually represent globe information and are 
relatively easy to be detected, are first detected. And then we track along the 
feature contours down to the finest scale to obtain their precise locations. 

The idea of using multiple scales in image processing can be traced as early as 
to 1971, when l%senfeld and Thurs ton used operators of different size to perform 
edge detection. Klinger[5] introduced maybe the first multiscale representation 
of image, the quad tree. Then Burt[1] and Crowley[3] developed the low-pass 
pyramid representation. In addition to Witkin and J.J.Koenderink, Eklundh[9], 
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Florack[4], Lindeberg[9][10][ll] had also made great contributions to the field. 
The work by Mallat[14][15][16] and Meyer who considered multiscale signal pro- 
cessing by wavelets also contributed to this subject. 

Most of the further works in this field, however, were concentrated on finding 
appropriate  kernels for scale space construction[2][20][6]. There is relatively less 
work done to analyze the relationship between signals at different scales. The re- 
lationship is important ,  however, if we note that  the purpose of using scale space 
is to find better  methods to performing feature extraction in early vision sy s t ems .  
Derivatives play a dominant role in the extraction because, first, derivatives with 
respect to x are needed to extracted features at current scale; second, derivative 
with respect to cr, the scale, is essential to relate the features at different scales. 
Since scale space is the solution of the so called Heat Equation[2][6][18], the 
derivative in (r equals to the second derivative in x. Then the analysis between 
scales can be carried out by studying the higher order derivatives in current 
s c a l e .  

In this paper, we show that  different derivatives ( ls t  to 4th) represent differ- 
ent signal properties in scale space; The first derivative represents signal varia- 
tion and can be used for coding; the second derivative determines the signal local 
structure size so it is a essential descriptor for signal measurement  in adaptive 
smoothing; When the third derivative equals to zero, the zero-crossing curve 
in scale space terminates and if the fourth derivative equals to zero, the zero- 
crossing location is preserved across scale. So the third and fourth derivatives 
which describe the behaviour of the zero-crossing passing from finer to coarser 
scale give us a method to measure its properties quantitatively . And then, we 
show if the derivatives are calculated by a special class of derivative filters, the 
higher order derivative can be decompressed into the linear combination of the 
lower order derivatives at different scales and then they can be used conveniently 
in image processing. 

In this paper, following notation is used: 
x 2 

Gaussian function: g(x, ~) - 1 - - -  (IR x IR +) IR, and there is: , v / ~ -  O. e 2~r2 : ---+ 

0e = ao_~D_ 
O a  O x  2 " 

S c a l e  space: L(x, ~) = f (x)  �9 g(x, ~) : (IR • IR +) -~ IR, where f (x)  is the 
original signal, f : IR --, IR, and �9 is the convolution operator.  

The m_th derivative of one dimensional signal: f ( '~l(x)  = d"~/ d x  m 

2 T h e  f i r s t  d e r i v a t i v e :  s i g n a l  v a r i a t i o n  

The first derivative: 
L(1) dL 

= d x  (1) 

describes signal variation and is used for signal coding, e.g. DPCM, since it is 
variation, but not constant signal, that  carries information. By calculating the 
first derivative, we eliminate most of the correlation between points in the signal 
and then L (1) is much more compact than L(x) itself. In nonlinear diffusion, L (1) 
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is used for calculating diffusion coefficients due to its ability to measure signal 
local variations[18]. 

In scale space, there is: 

L(1) = f(1)  . g (x ,  or) (2) 

Just like the signal itself , L (1) also becomes smoother and smoother, which 
means less and less information is contained in the derived signal. At a certain 
point, there is: 

cOg = f(1)  cO2g = ~L (3) cOL(l) = f ( U  . . (3) 

The information is reduced at the rate of the magnitude of L (3). 

3 T h e  s e c o n d  d e r i v a t i v e ,  s i g n a l  l o c a l  s t r u c t u r e  s i z e  

In adaptive smoothing and other image processing tasks, what we are concerned 
with is how to select an appropriate scale smoothing by which we can suppress 
noise while preserve local structure. We should then define a variable, say, S, 
to describe the size of signal local structure: large structure has large S, while 
small structure has small S. The local scale is then selected according to S: for 
big S, we select large scale so to suppress noise; for tiny S, we select small scale 
so to avoid too much deformation. However, different from signal variation, this 
variable should not depend on L (1). 

Let's see a example. Considering the signal: 

f ( x )  = ax  -4- b (4) 

It is easy to show that: 
f (x )  * g(x, ~) = f (x )  (5) 

The smoothing result is independent of the smoothing scale, which means S 
should also be independent of cr a, b and it should be very large to suppress 
noise. However, L(1) is determined by a, b and the only common thing for signal 
with different a, b is L (2) = 0. 

In general, if 
L(2)(x ,  c~) -- 0 (6) 

holds at current scale~, it should hold in a certain range of scale [a - ~, ~r + ~] 
around q. We have: 

OL 
0--J = 0, c (7) 

The smoothing result is independent of the scale, so the size of the structure 
should be independent of the signal. However, in this situation, L(D can be of 
anything, the only common thing is L(2) = 0. 

In this paper, S is defined as: 

OL 
s = (8) 
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In another word, the local structure is of large size if it remains the same after 
the scale varys a little and is of smaller size if the structure changes sharply . 
This definition is obviously appropriate for adaptive smoothing and other image 
processing tasks. We have: 

cOL cOg = f *  cO2g erL (2) 
S - cO~ - f * ~ ~b-Z~ ~ = (9) 

So s is defined by L (2). 
Liking L(1), there is: 

L(2) = f(2) , g(x, ~) (10) 

so the signal local structure also becomes smoother and smoother  with the i n -  
crease of the scale. At a certain point, there is: 

cOg = f(2) 02g c~L (4) (11) cOL(S) _ f(2) , , 
2 = 

The structure is smoothed at the rate of the magnitude of L(4). 

4 T h e  t h i r d  a n d  t h e  f o u r t h  d e r i v a t i v e s ,  z e r o - c r o s s i n g  

p r o p e r t i e s  

In this section, we use ZC to indicate the zero-crossing of L (2). 
See Figure 1, ZC at different scale form many  curves in scale space. It has been 

proved [13][14] that  the ZC curves always disappear in pairs, so two ZC curves 
intersect only at the terminating scale, and the intersection point is smooth.  
The pair of curves terminating together form the so called ZC contour[2][22]. 
Different ZC contours never intersect with each other. For a certain ZC curve, 
it is a implicit function of x in c~:x = x(a) .  ZC can be formulated as (notice x is 
the ZC location at different scales): 

L(2)(x, a ) =  0 (12) 

On both sides of (10), calculate the derivative in a: 

dL(2) OL (2) OL (2) dx 
d ~  - CO~ + cOx d c~ - 0 (13) 

And then: 
dx o'L (4) 
dc~ - L(3) (14) 

We can see from (12)if  L(3)(x, c~) = 0, then dx/d(7 = c~, so the curve terminates  
at the scale. Since dx/do" is unique defined, two ZC curves intersect with each 
other only when they terminate. In another word, the ZC curves always disappear 
in pairs at the point where L(3)(x, o-) = 0. In figure 2, the ZC and the zero- 
crossing of L(3) are both curved, we can see that  the ZC curves always terminate  
where they intersect with the zero-crossing curves of L(3). 
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Fig.  1. ZC in scale space 
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Fig.  2. ZC terminates where L (3) = 0. Black curve, ZC curve; Dash curve, the curve 
zero-crossing of L (3). 

I f  L(g)(x, or) = 0, then  dx/dcr = 0, the ZC curve does not shift  across scale; 
Otherwise ,  it shifts. Figure 3 presents  the curves of  bo th  ZC and zero-crossing of 
L(4), we can see t ha t  those ZC with their  L(4) equaling to 0 (or being very small)  
go much  fur ther  to coarser scale t han  other  ZC. The  s t ra ighter  the curve is, the 
longer it lives. The  range of scale in which the ZC curve lives is called the lifetime 
of  the ZC curve. So, L (4) can be used to measure  the s t reng th  and predict  the 
l ifetime of the ZC curve. The  fact t ha t  L (4) is a very i m p o r t a n t  descriptor  of ZC 
can be unders tood  in this way: if L(4)(x, or) = 0, then  x is not  only a edge point  
in the  signal, bu t  also a edge point  in L(2), so x is a sharper  zero-crossing in L(2) 
and obviously s t ronger  than  other  ZC. 
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In general, at a edge point where L(2)(x,~r) = 0, L (3), L (4) can  be of any 
values. As we can see, the ZC with stronger L (3) and weaker L (4) is more im- 
por tan t  than the ZC with weaker L (3) but stronger L (4). Another very impor- 
tant  conclusion can be derived from the analysis above is tha t  there should not 
be L(Z)(x,a) = 0 and L(4)(x,~r) = 0 at the ZC at the same time except for 
f ( x )  = cons tan t .  

It  is useful to analyze the variation of some variables, A, e.g., the deriva- 
OA where s is the pa th  parameter  along the curve. tives, along the ZC curve: -57~, 

Calculating the directional derivative along the curve's tangent direction, we 
have: 

OA OA OA 
Os - Ox cosa + -ff-~sina (15) 

where a is the angle between the tangent and the x axis. Now, suppose tha t  at 
the edge point, L (1) > 0, then according to Perona[18] there is L (3) < 0, and 
note 0 _< c~ < 7r, therefore 

a L  (4) L (3) 
= (16) cosa -- v/L (3P q- cr2L(4) 2 , s i n ~  ~/L (3)2 -4- ~2L(4)2 

For example, if A = L(1), then(note L(~) = 0): 

Fig. 3. ZC curve and its relationship with L (4). Black curve, ZC curve; Dash curve, 
the zero-crossing of L (4). 

0L (1) OL (1) c@(4) 0L (1) L (3) 

Os Ox x/L(3P + ~2L(4)~ 0~ ~/L(aP -4- 0-2L(4) 2 

-crL(3)L (3) 
--- < 0  

x/L(3) 2 + 0"2L(4) 2 

(17) 
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We can see, as the scale increases, the magnitude of L(1) of the edge point always 
decreases along the ZC curve. 

5 H i g h e r  o r d e r  d e r i v a t i v e s  

It has been proved that  a 2k_th derivative filter can be designed as: 

k 

j=O 

where the coefficients a t satisfy the moment conditions[7][8], one of which is: 

(18) 

Define: 

k 
~ a j  = 0  (19) 
j=O 

h~(-~) = g(., r) - g(., cr) 

where r is the scale of h~ and we select: 

(20) 

Then easily we obtain: 

where 

aj+l=ca j ,  c > l  (21) 

k-1 

h2~(~) = ~ z~h~(c~o) (22) 
j=O 

f l o = ~ 0 ,  # j + l - / ? j = a j + l ,  j = l , . . . , k - 2 ,  f l k _ l = - - a k  (23) 

A 2k_th derivative filter can be decompressed into the second derivatives at 
different scales. Similarly, a (2k+l)_th derivative filter can be designed as[7][8]: 

k 
h2~+i(x) = ~ ~jg(1)(x, ~ )  (24) 

j=O 

and one of the moment conditions is: 

Define: 

~-~ ajcrj = 0  
j=O 

h3(-~) : cg(1)(x, r) - g(1)(x, oF) 

where r is the scale of h3 and we select: 

(25) 

(26) 

c~j+l = c~rj, c > 1 (27) 
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then:  

where 

k-1 
h x = (28)  

j=O 

cflo = ao,  c f l j + l - f l j  = a i + l ,  j = 1 , . . . , k - 2 ,  f l~- i  = - a k  (29) 

A (2k+l)_th  derivative filter can be decompressed into the third derivatives at 
different scales. Thus we show that the Even and Odd kernels used for derivative 
filter construction in [7][8] can be replace by even and odd derivatives as in 
(20)(24) respectively so the intergals of all the kernels are zero. 

6 C o n c l u s i o n  

To use the information obtained from scale space more efficiently, we have to find 
the relationship between the features at different scales. We show that  deriva- 
tives, with respect to both x and a, play a dominate role in finding the relation- 
ship and different derivatives in scale space represent different characters of the 
smoothed signal. 
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