
A Multiple Polynomial
General Number Field Sieve

Marije Elkenbracht-Huizing

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. We assume that the reader is familiar with the General Num­
ber Field Sieve (GNFS). This article describes a way to use more than
two polynomials. Two, three and four polynomials are compared both for
classical and for a special form of lattice sieving (line sieving). We present
theoretical expectations and experimental results. With our present poly­
nomial search algorithm, using more than two polynomials speeds up
classical sieving considerably but not line sieving. Line sieving for two
polynomials is the fastest way of sieving we tried so far.

1 Introduction

We assume that the reader is familiar with the General Number Field Sieve
(GNFS [7) [3] [9]). We describe experiments following ideas of P.L. Montgomery
in order to speed up the sieving stage of the GNFS algorithm by using more
than two polynomials.

First, a short description of the GNFS is given and some notation is intro­
duced. Secondly, the algorithm and the implementation of the multiple polyno­
mial version of the GNFS is described, with special emphasis on the selection
of the polynomials. Finally theoretical expectations are deduced and compared
with experimental results.

2 Short Description of the GNFS

Let n be the number to be factored. We assume it is positive, odd and not a prime
(power), which can easily be checked (10, §2.5]. In the GNFS two polynomials

fi(x) = Ci,d;Xd; + Ci,d;-lXd;-l + ... + Ci,o E 7l[x] (i = 1, 2)

are selected, having an integer m as common root modulo n. Both are irreducible
over 7l, with cont(fi) = gcd(ci,d.,. .. , ci,o) = 1 and Ji ::/; ±/2.

Let ai be a root of fi(x) in <C (i = 1, 2) and let <Qn denote the ring ofrational
numbers with denominator coprime ton. Denote by 4>i : <Qn[a1] -+ 7l/n7l (i =
1, 2) two natural ring homomorphisms, determined by </>i(ai) = m mod n. Using
the G NFS we will find a nonempty set S ~ { (a, b) E '71..2 I a and b coprime} such
that both fls(a - bai) and fl8 (a - ba2) are squares - {32 and "{2 , say - in
<Qn[a1) and <Qn[a2], respectively. Application of the homomorphisms on {32 and
72 gives 4>1 (f:J2) = </>2 ("Y2) mod n. This yields (</>i(/3))2 = (4>2b))2 mod n. When

100

and eh (-y) are relatively prime to n, calculating gcd(n, c/J1 (/3) - cp2 ('f')) will
a non-trivial factor of n in at least half the cases.

After the first stage of the GNFS in which the polynomials are selected,

several stages can be distinguished during which the set S is constructed. Denote

by F; y) =yd• f;(x/y) E 7l[x, y] the homogeneous form of fi(x) (i = 1, 2).

In the second stage, the sieving, the algorithm searches for (a, b) E 7l2 with

a and b cop rime, such that both integers F; (a, b) factor completely over the

prime numbers below some user-determined factor base bound Bi, except for at

most two primes, which should be between B; and a large prime bound Li. We

call such integers Fi(a,b) smooth and such (a, b)-pairs relations. By using lattice

sieving [14], [7, §6] one of both integers Fi(a, b) is allowed to have three primes
between B; and L;. For a relation (aj,bj) we can write

F1(ai,bi) = ± II p•i(i,p)

pE/C1

and F2(aj, bi)=± IT p•2(j,p)

pEK2

where e;(j,p) E 1N and where K1 and K2 contain the prime numbers below £ 1

and L 2 , respectively.
To find the set S it is necessary to look at 'what kind of p' divides Fi (a, b).

For each prime number p we define the set

where P1 (1Fp) denotes the projective line over lFp. For a and b coprime, the

integer F; (a, b) is divisible by a prime number p if and only if (a mod p : b mod p)

E 'R;(p). Therefore the set 'R;(p) partitions all (a, b)-pairs for which p divides
F;(a, b) according to (a mod p: b mod p). With

for C E lN, we can write for a relation (ai, bj)

F1(aj,bj) = ± II p•1(j,p,r,,r2) and

(p,(r1:r2)}EF1 (L1)

F2(aj,bj) = ± II p•2(j,p,r1,r2)

(p,(r, :r2)) EF2(L2)

where e;(j,p,r1,r2) = e;(j,p) if (ai modp: bi modp) = (r1 :r2) and 0 oth­

erwise. In order for ITs(a - bai) to be a square in <Qn[a;], every exponent
L:s e;(j,p, r1 , r2) in

II F;(aj, bj) = ± II pEs e;(j,p,r1,r2)

(a;,b;)ES (p,(r1:r2)}EF;(Li}
(1)

should be even (i = 1, 2) [4, §12.7].

One can see from (1) that if we have a relation in which one of the integers
F; (a, b) is divisible by a prime p to an odd power for a certain root (a mod p ;

b mod p) = (ri :r2) E 'R;(p), and if this (p, (r1 :r2)) E :F;(L;) is not occurring

101

in any other relation to an odd power, then this relation is useless and can be
thrown away. After the sieving stage has gathered enough relations, the filtering
stage performs this kind of data reduction. Details of this stage can be found in
[7, §7].

In the next stage a matrix is built, which contains a column for every relation
(a, b) (which survives the filtering stage) and a row for every element in {.1"1 (L1)U
.1"2 (L2)}. An element of the matrix in the column of relation (a, b) and in the
row of (p, (r1:r2)) E .ri(L;) is 1 when (p!Fi(a, b) to an odd power and (a mod p:
b mod p) = (ri : r2)), and is 0 otherwise. Finding a vector in the nullspace of
this matrix over 1F2 guarantees that, for the subset T of relations formed by the
relations which correspond to a 1 in the solution vector, every exponent in (1)
is even. By adding some extra rows coming from quadratic characters [1] [4, §8,
§12.7], one is practically certain that the subset T is the wanted set S. This
linear algebra stage can be performed with the block Lanczos algorithm [12].

In the final stage of the GNFS algorithm we will know fi 5 (a - ba1) = (32

and fl 5 (a - ba2) = -y2, but we need f3 and 'Y to apply c/>; to. Therefore we have
to extract square roots in Qn[a;]. For this square root stage we refer to [11] and
[7, §9].

3 Algorithm of the Multiple Polynomial GNFS

The GNFS algorithm can be generalized to using more than two polynomials.
Suppose we have k polynomials ft (x), h(x), ... , fk(x) E 7l[x] with an integer m
as common root modulo n. Furthermore the polynomials should be irreducible
over 7l, having cont(!;) = 1 (i = 1, ... , k) and fi :f. ±fj for (i :f. j).

We call an (a, b)-pair a (j1,h)-relation (1:::; i1 < h :5 k) - and denote this
by (a, b) ii ,h - if both integers Fj1 (a, b) and Fh (a, b) are smooth. For an (a, b)­
pair with t 2: 2 smooth integers Fj1 (a, b), Fh (a, b), ... , Fit (a, b) (1 :::; i1 < h <
... <it:::; k) we can make t-1 relations (a,b);i,h,(a,b)i2,is•··.,(a,b)i,-i,ic·
After the sieving in which we find the relations, we form a set S which is a subset
of all relations such that

n (a-ba·) (a,b);,faES ' = f3i
Ilea b). ·es(a - bai)

' Jl 1•

(2)

where f3i E <Qn[ai]· On the one hand we have

II</>; (Il(a,b);,faes(a - bai)) =II cMf3?) = (II c/>;({3;))2 mod n,
i Ilca,b)h,;es(a - ba;) i i

on the other hand we have

II (Il(a,b),,faes(a - ba;)) _ Il(a,b)ii.;2es(a - br/>it (0 i1)) _ 1
</>; - - .

i Ilca,b)h,;es(a - ba;) Ilca,b);i.hes(a - br/>h(cxh))

Calculating the gcd of n and Il; c/>;((3;)-1 will split n into two non-trivial factors
in at least half of the cases.

102

4 Implementation of the Multiple Polynomial G NFS

We based our implementation on the GNFS implementation described exten­
sively in [7]. In this section we will describe the adjustments we made to let the
implementation work for the multiple polynomial version of the GNFS.

During the sieving stage we use a sieving interval which corresponds to a
range of a-values and one fixed value of b for which we want to check the smooth­
ness of the integers Fi(a, b). After the relations amongst these (a, b)-pairs have
been selected, the sieving interval will correspond with a new range of a-values
ap.d/or a new value of b. In the sieving program we distinguish two cases, namely
using two polynomials and using three or four polynomials. In the first case the
sieving interval is represented by an array of unsigned shorts (2 bytes) and in
the second case it is represented by an array of unsigned longs (4 bytes). Each
block of bytes corresponds with one a-value. In a block the first byte is used
to sum the logarithms of primes dividing F1 (a, b), the second byte to sum the
logarithms of primes dividing F2 (a, b) and so on.

As usual in the first sieve procedure we add for each polynomial for all el­
ements (p, (r1 :r2)) E :F;(B;) the logarithms of the primes p for those a-values
for which pjF;(a, b). We add the logarithms for polynomial f; to the bytes cor­
responding with F;. Afterwards we check for which a-values at least two of the
values of F; (a, b) are sufficiently smooth, i.e. where the accumulated logarithms
are at least c;(a, b) := log(F;(a, b)/T · L~). (The user-chosen constant T should
compensate for not sieving over small primes and prime powers.) Therefore we
split the sieving interval recursively in subintervals such that for each polynomial
f; the values of c;(a,b) do not vary more than a prescribed amount on the inter­
val. Then we construct a threshold being an unsigned short and an unsigned long
in the two respective cases, containing the thresholds c;(a, b) in the i-th byte.
With only few operations we check for every a-value if the accumulated loga­
rithms exceed the threshold for at least two polynomials. For these a-values, -
(a, b) is now called a candidate relation - we use its entry of the sieving interval
to store a positive integer which refers to an entry in another array. If k > 2 we
also store the indices of the polynomials which are smooth. For other a-values
we make the entry in the sieving interval zero. As opposed to our approach in [7]
and corresponding with an idea in [6], we now carry out the sieving procedure
once again. Instead of adding logarithms, we store for each candidate relation
(a, b) the primes dividing one of the potentially smooth integers F;(a, b) and ex­
ceeding some user-determined bound themselves in the other array. Afterwards
we calculate the potentially smooth integers Fi(a, b) and divide out the stored
primes. After dividing out the small primes we check if the remainders consist of
at most two primes between Bi and L;. When this is the case for t polynomials
we have found t - 1 relations.

In classical sieving, the sieving interval corresponds to a range of consecutive
a-values. We start sieving with b = 1 and augment b until we have found enough
relations.

In lattice sieving (14], we only sieve over pairs (a, b) of which we know that
one F;(a, b), say Fj(a, b), is divisible by a special large prime between user-chosen

103

bounds L(l) and L(u). The advantage is that the remaining part of Fj(a, b) is
more likely to be smooth. On the other hand we will miss the relations for which
no Fi(a, b) (1 ::; i ::; k) has a prime in the interval [L<1), L(u)]. Also the matrix
will be larger, since the relations have more large primes on average. For the
implementation of the lattice sieve we use an extra feature implemented in the
classical way of sieving. There we have a possibility of sieving over a sublattice
of the (a, b)-pairs. We can choose an integral, non-singular matrix Mand sieve
over pairs (a, b) of the form:

while the program sieves over x and y. This is done by substituting the expres­
sions of a and b in terms of x and y in Fi (a, b) resulting in new polynomials
Gi(x,y), which are now the polynomials whose values should be smooth. The
roots of the polynomials Fi have to be adapted to the roots of the polynomials
Gi. When a pair (x, y) is a (ji,j2)-relation, the corresponding pair (a, b), to­
gether with j 1 , j 2 and the primes dividing Gj, (x, y) and Gj2 (x, y) and exceeding
a user-chosen printing bound, are stored.

The lattice sieve sieves for every prime L(l) ::; q ::; L(u), for a fixed value of b

o:..er all roots (r1:r2) E U{'R;(q)} with r 2 =f. 0. When sieving over a root (r1:r2) of
'Rj (q) we sieve only over the a-values with a = br1r2 1 mod q, thus guaranteeing
that Fj (a, b) is divisible by q. This is the same as using a matrix

M = (6 r1r2\mod q)
with y fixed to b and x in an interval such that qx + b(r1r2 1 mod q) just fits
in the a-interval. (Note that, when we compare our notation with that used in
[14], we have V1 = (q,O), V2 = (r1r21 mod q, 1) and that we are applying the
'sieving by rows' strategy.) Gj(x, y)/q should be smooth over the primes below
B j, except for at most two large primes between B j and L j. The other G i (x, y)
should be smooth over the primes below Bi, except for at most two large primes
between Bi and Li. Allowing primes equal to or larger than q to divide one of the
Gi (x, y) causes duplicate relations, but prevents missing a (i, j) or (j, i)-relation
having two large primes smaller than q for G j (x, y) and a prime larger than q
for Gi(x,y). After we have sieved over all roots in U{(r1:r2) E 'Ri(q)lr2 =f. O} we
take the next value of b, and after we have sieved over all values of b we take the
next prime in the interval [£(!), L(u)]. We have implemented lattice sieving only
for the case of quadratic polynomials. In §5 and (7) we explain how we select
polynomials such that we can increase the efficiency of the sieving by taking a
huge a-interval and b = 1. Therefore we call it line sieving.

The filtering stage is essentially the same as for two polynomials [7, §7]. We
reduce the amount of data by checking which elements (p, (r1:r2)) E :Fi(Li) occur
in the collection of relations. For example, if an element (p, (r1 :r2)) E :Fi(Li)
occurs at least once, then we verify in how many relations it occurs and to which
power. As already said, if it occurs only once to an odd power, the relation is

104

useless and we throw it away. The other data reduction in the filtering stage is
also done per set :F;(L;).

In the linear algebra stage the matrix will have a column for every relation
(a, b) and a row for each element in {:F1 (Li) U ... U .Fk(Lk)}. An element of the
matrix in the column of relation (a, b)ii,h and in the row of (p, (r1 :r2)) E :F;(L;)
is 1 when (i = ji or i = h, pjF;(a, b) and (a mod p: b mod p) = (r1 :r2)) and 0
otherwise. Add some character rows and let S be the subset of relations which
corresponds to the l 's in the vector of the nullspace of the resulting matrix. Let
S; be the subset of S containing all (a, b)11 ,h relations for which j 1 = i or h::: i.
Then

IT (a - ba;) = 1?
(a,b)ES;

with /i E <Qn[a;], for i = 1, ... , k. We split S; in two subsets: sJ 1) containing all
(a, b);,h ES; and s}2) containing all (a, b)11 ,; ES;. Obviously

IT (a - ba;) = 1?.
(a,b)esj1lusi2 l

Hence

n(b)es<tJ (a - ba;)
a, i = /3l

TI(a,b)esj2l (a - ba;)
(3)

which leads to (2).
In the square root stage, we extract the square root of f3'f., /3i, ... , successively.

Therefore the only change we have to make compared to applying GNFS with two
polynomials, is not starting with IJ5 (a- ba;), but with (3). Actually, the square
root stage sometimes replaces (a,b)it,h relations where j 1 < h by (a,b)h.Ji·
This leads to more cancellation from the numerator and denominator in (3), an
improvement even when using two polynomials.

5 Choice of the Polynomials

The polynomial selection is an important part of the multiple polynomial version
of the GNFS. The polynomials Ji, fz, ... , fk should be selected in such a way
that the maximal values of F; (a, b) over all a and b-values in the sieving region
will be as small as possible, to make them more likely to be smooth. When we use
one linear polynomial f 1 and one higher degree polynomial fz as described in [3],
(4, §12.2], the i:.uaximal values of F1 (a, b) and F2(a, b) are unbalanced: the integer
F2 (a, b) will be much larger and much less likely to be smooth than F1 (a, b) for
most (a, b)-pairs. We therefore prefer to apply the multiple polynomial version
of the GNFS by taking a set of equal-degree polynomials. When d > 2, it is
an open problem to quickly construct two suitable polynomials of degree d and
coefficients O(n1f 2d).

105

When applying Montgomery's method for selecting two quadratic polyno­
mials one will find two polynomials for which F 1 (a, b) and F2 (a, b) have the
same order of magnitude. He observed that fi(x) == c1,2x2 + c1,1x + c1,0 and
h(x) = c2,2x2 + c2,1X + c2,o E ?l[x] have a common root m modulo n if and
only if the vectors a= (c1,0 ,c1,1,c1,2)T and b = (c2,0 ,c2,1 ,c2,2)T are orthogonal
to (1, m, m 2)T over 7l./n7l. using the standard inner product. Suppose Ji (x) and
h(x) are irreducible over 7l., cont(fi)=l (i = 1, 2) and that Ji 'f: ±/2. As will be
explained further on, we can find in practice a and b of which the ·coefficients are
appoximately O(n114), so the space orthogonal to a and b has rank 1 (both over
7l. and over 7l./n7l.). If c = axb (cross product), then c must be a multiple of
(1, m, m 2)T over 7l./n7l.. The fact that Ji (x) and fz(x) are not multiples of each
other ensures that c is not the zero vector. If c = (c0 , c1 , c2) T, then Co, c1 , c2 is a
geometric progression in 7l./n7l.. It is not a geometric progression over ?l, since
then Ji (x) and fz (x) would have a common factor (x - m) over 7l..

Montgomery's algorithm for finding fi(x) and h(x) reverses this construc­
tion and starts with a vector c = (Co, c1, c2) T E "ll..3 , where Co, c1 , c2 is a geometric
progression with ratio m over 7l./n7l., but not over 7l.. The vector c can be con­
structed as follows: for p prime such that p < y'n and n a quadratic residue
modulo p, choose C1 such that er= n mod p and lei -n1121 ::; p/2. The elements
of c = (p, c1, (ci - n) / p) T form a geometric progression with ratio cif p over
7l./n"ll.., not over 7l.. Furthermore Ci = O(n112) (i=0,1,2). Takes E "11../p?l. such
that c1s = 1 mod p. With c2 = (ci - n)/p, the vectors

(
c1) ((c1(c2s mod p) - c2)/p)

a'= -p and b1 = - (c2s mod p)
0 1

are both orthogonal to c. From a' x b' = -c and gcd(eo, c1, c2) = 1 we deduce
that a' and b' span the sublattice of 7l.3 orthogonal to c. Denote by (a, b) the

inner product of a and b and remember that ((a, b)) a is the projection of b a,a
on a. By reducing the basis {a', b'}, one can find 'small' vectors a and b with

{a, b} a basis of the sublattice of "11..3 orthogonal to c, such that I (~;~~ I :::; t
and I ~'b:iJ I ::; t- The angle 9 between these vectors will be betwee~ 60 and 120

degrees. Since the surface of the parallelogram spanned by a and b 1s both equal
to II a x b II and II a II· 11b11 sin9, we have

II a II . II b 11= ~:::; ~ = 0(11 c II)= O(n1l2).
sm9 v'3

In practice both II a II and II b II are O(n114). For different values of p we will
get a different pair of polynomials. ·

When using line sieving (explained in Section 4) we like to use a large range
of a-values, say lal < M and only b = 1. For stimulating Fi(a, 1) = Ci,2a2 +
c. 1 a + c. 0 to be smooth over the prime numbers below Bi, we would prefer t, i,

106

Ci,2 = O(n114 /M), Ci,l = O(n114) and Ci,o = O(n114M) rather than all of them
being O(n114). How this is achieved is described in (7, §5].

For each value of p we construct a set of k polynomials as follows. In order to
find more than two suitable polynomials we start with a pair of polynomials fi
and h as above. We look at linear combinations with small integer coefficients
of these polynomials like Ji, f2, Ji± h, 2/i ± h, 3fi ± f2. All these polynomials
have m as common root modulo n, and their coefficients all have the same order
of magnitude. Each linear combination is rated for having many roots modulo
small primes and with the integral of logjFi(x,y)j, where (x,y) runs through
the sieving region for (a, b), small. As can be read in [7, §5] one also likes the
polynomials to have two real roots. The k linear combinations with the best
rating are selected, and their individual ratings are summed to get the rating
of the set. We choose the set with the best overall rating, over all considered
primes p.

6 Free Relations

The Galois group of an irreducible polynomial fi(x) E tl[x] of degree 2 is the
symmetric group 8 2 • For approximately l/IS2I = 1/2 of the primes q < Li, the
polynomial Fi(x, y) splits into two linear factors modulo q [5, §2, Theorem 1],
[13, p. 566]. If such a prime q does not divide the discriminant of fi(x), then fi(x)
splits into two different linear factors modulo q. If t ~ 2 polynomials Fii (x, y),
... , Fj1 (x, y) (1 S ii < ... < it S k) split into two different linear factors
modulo q and if q does not divide their leading coefficients, we call q a free
prime and we have found t - 1 free relations Pii ,h, ... , Pj,_ 1,j,. This terminology
comes from the fact that we can select the ones which are smaller than min(Bi)
v..:ithout extra effort when calculating the factor bases :Fi(Bi) and the ones larger
than min(Bi) during the filtering stage [7, §7]. They are said to give rise to free
relations because we now require

(np;,;2 ET p) (fI(a.,b);,faES(a - bo:i))

(nP;i,;erP) (TI(a.,b)ji,iES(a - bo:i))

to be a square in <Qn[o:i], where r is a suitably chosen subset of the set of free
relations. It can be verified that the argumentation of §3 still holds. How these
free relations should be treated in the stages after the sieving is described in
[7]. When the extension fields of the polynomials are algebraically independent,
L = Li = ... =:= Lk and

(1)/c k (k) k t(k) = "2 {,; l (l - 1) = "2 - 1 +Tic, (4)

then there are t(k)'rr(L) free relations, where 7r(L) is the number of primes be­
low£.

107

7 Theoretical Expectations and Experimental Results

7 .1 Classical Sieving

Theoretical expectations
As described in Section 5, the F; (a, b) 's of the k polynomials are chosen to have
the same degree and same order of magnitude. Therefore it is natural to make all
factor base bounds Bi and large prime bounds L; equal, to Band L say. IF;(C)I
is approximately the number tr(C) of primes below C [8, Chapter VIII,§4], so all
IF;(B;)I are approximately equal (i = 1, ... k), which also holds for all IF;(L;)I.
We will discuss here the advantages and the disadvantages of using more than
two polynomials, compared with two polynomials:

1. In the sieve program most time is spent in the two sieve procedures. The
first is the part in which for each polynomial and for all elements (p, (r1 :

r2)) E F;(B) we add the logarithms of the primes p for those a-values where
plF;(a, b). In the second the primes themselves are stored instead of the
sum of their logarithms. When using k > 2 polynomials instead of two
polynomials, we expect that the time spent in these procedures will grow
with a factor k/2 per point (a, b) sieved.

2. As will be explained further on, when using k > 2 instead of two polynomials,
we will find more candidate relations. For each candidate relation we spend
some time with dividing stored primes and small primes from the hopefully
smooth integers Fi. (a, b) and checking if the remainders consist of at most
two primes between B and L. The time spent in this part of the program
will increase. However we expect it to remain small in comparison with the
time spent in both sieve procedures.

3. Another disadvantage is that we need more relations when using k > 2
polynomials. We need at least (IF1 (L)I + ... + IFk(L)I +!character rowsl)
relations to ensure that we find a vector in the null space of the matrix.
The number of character rows is negligible compared to the number of other
rows. When using k > 2 polynomials instead of two polynomials, the number
of relations needed therefore grows with a factor k/2.

4. Furthermore, there are three practical disadvantages. First, the program
needs to keep in memory the elements of all F;(B). Using more memory can
slow down the sieving process. Secondly, the use of 4 bytes per a-value may
hurt cache performance. Thirdly, using more than two polynomials will lead
to more relations and a larger matrix and therefore to increasing time needed
for the filtering, the block Lanczos and the square root stages. Because we
cannot handle at the moment unlimited large matrices with block Lanczos
even extra relations and filtering effort can be necessary to reduce the matrix
size.

5. The most important advantage of using k > 2 polynomials instead of two
polynomials is that the number of expected relations per (a, b)-pair will grow
with the number of polynomials. Let p be the probability that one of the
F; (a, b) is smooth. Then the number of expected relations for k polynomials

108

is about (~)p2 . Hence the expected number of relations is increasing quadrat­
ically with k, while the needed number of relations and the time spent in
both sieve procedures is only increasing linearly in k.

6. Another advantage is the increasing amount of free relations which is avail­
able when using more than two polynomials. According to 3. we need k7r(L)
relations, but (4) implies t(k)7r(L) of them are free. Hence we need we need
(2 - 1/4)7r(L), (3 - 5/8)7r(L) and (4 - 17/16)7r(L) non-free relations when
using two, three and four polynomials, respectively. Therefore, when using
four polynomials instead of two, we do not need twice as many, but only
68% more non-free relations.

7. A last advantage is that we can reduce the sieving region, leading to smaller
values of F;(a, b).On the one hand the coefficients for the k > 2 polynomials
will increase by a factor Vk, because we take linear combinations of two
polynomials. On the other hand, when finding (;) as many relations, but
only needing (k - t(k))/(2 - t(2)) as many, we can take the sieving region
a factor c(k) = 1.75(;)/(k - t(k)) smaller. Because relatively more relations
are found in the area near the origin, this factor is pessimistic. Suppose that
the maximal values of a and b both decrease by a factor JC[k}, then the

maximal value of the integers F;(a, b) will decrease by a factor c(k)/Vk.

Taking into account these advantages and disadvantages (apart from 2, 4 and 7
because they are partly machine dependent and difficult to quantify) we expect
to speed up the sieving by a factor 1.75(k - l)/(k - t(k)) (1.47 fork = 3, 1.79
for k = 4) when using k > 2 instead of two quadratic polynomials.

Experimental results
For all experiments in this article we sieved for the 96-digit number (8061 -1)/(79·
37699 · 57250710187259) [2). For the constant T - described in §4 - we took
500, and for the lower bound for the large primes in the factor base - which we
store in the second sieving procedure - 700. For classical sieving we optimized
the searching of polynomials for lal ~ 2 · 107 and 1 :$ b ~ 106 (2 polynomials),
1~b:$452,000 (3 polynomials) and 1 ~ b ~ 280,000 (4 polynomials), thereby
applying the factor 1. 75 (~) / (k - t(k)) we found in the previous section. The
polynomials are given in Table 5. The common root m can be found with the
Maple command '(Gcd(f1 , h) mod n) - n;'.

In the first experiment we sieved on a collection of 60 SGI machines at CWI.
Most machines are SGI Indy workstation's (100 MHz R4000SC processor). We
sieved with 2, 3 and 4 polynomials. For all three experiments we took the factor
base bounds B = 2.4-106 and a small large prime bound of L = 107 in an attempt
to keep the matrix small. To decrease the time needed for the experiments we
sieved over 100 intervals of 100 consecutive b-values, which were equally divided
over the b-interval. According to our experience this can be used to give a good
estimate for the sieving time needed to sieve over all values of b. For calculating
the number of needed relations we used the formula (k-t(k))7r(L) which we de­
rived in the previous section. The value of 7r(L) is approximated by L / (ln L - 1).
In Table 1 we give the results of the experiments. We see that with these bounds,

109

112 polynomials! 3 polynomials 4 polynomials I
sieving region lal ::; 2 · 10' !al ::; 2 · 10' lal :::; 2 · 10'

l ::; b ::; 106 l $ b $ 452, OOO l $ b $ 280, OOO
b-values over which was sieved 10,000 10,000 10,000
relations found 11,294 44,992 83,811
sieving time ·l,080,333 sec. 1,993,971 sec. 2,636,647 sec.
estm. # rel. over all b's 1,129,400 2,033,638 2,346,708
relations needed 1,157,553 1,570,965 1,943,036
estm. total sieving time 30, 757 hours 19 ,340 hours 16,980 hours
speedup factor 1.59 1.81
theoretical speedup factor 1.47 1.79

Table 1. Classical sieving with small L.

the number of extra relations found per b-value grows faster than with a factor
(~). First, because the sieving region is smaller, also the average value of Fi (a, b)
is smaller. Secondly, the occurrence of more than two smooth values of Fi (a, b) 's
for an (a, b)-pair was not taken into account. Therefore we could have taken the
b-interval even smaller than applying the factor 1.75(~)/(k - t(k)). Optimizing
the polynomial search program for a smaller b-interval, would have led to poly­
nomials with a smaller average value of the Fi(a, b) on that interval. This would
have favored the speedup factors, which are already above the predicted ones.

Using a larger large prime bound speeds up the sieving, but leads to a larger
matrix. However, the size of the matrix can be reduced by sieving more relations
than strictly needed. To compare the previous experiment to sieving with a larger
large prime bound, we took the factor base bounds B = 1.2 · 106 and large prime
bounds L = 2* 107 . We sieved over 100 intervals of 50 consecutive b-values, which
were again equally divided over the b-interval. In Table 2 we give the results of
the experiments. For all polynomials the estimated total sieving time is less than
in the previous experiment. Again we could have reduced the sieving region for
3 and 4 polynomials, which would have led to better results. The speedup factor
f0r using more than 2 polynomials is better than in the previous experiment.
When using smaller factor base bounds the program uses less memory, what is
especially in favor for the experiments for 3 and 4 polynomials.

7 .2 Line Sieving

Theoretical expectations
Compared with classical sieving we notice two differences. Suppose we sieve over
a root (r1 :r2) of 'Rj(q). Let p be the probability that Fi(a, b) is smooth (1 :$ i :::;
k, i f. j) and pq > p be the probability that Fj (a, b) / q is smooth. The number of
expected relations per root fork polynomials is about (k- l)ppq + (k;1)p2 which

is smaller than (;) ppq. Hence the expected number of relations is still increasing
more than linearly, but less fast than classical sieving.

On the other hand there is also a new advantage. The larger the prime q is,

110

the larger Pq, the more relations we find and the less time we spend per relation.
When using k polynomials, the number of roots of q grows with a factor k/2.
When keeping L{u) equal, we can take L(l) larger and the average time needed
per relation will decrease.

Experimental results
For line sieving we optimized the searching of polynomials for la· qi S 2.4 · 1013

and b = 1. The polynomials are given in Table 5. In the experiments we started
sieving at q = 107 and decreased q until we had found enough relations. The a
interval was adapted such that la ·qi was approximately 2.4 · 1013 and 2 · lal was
a multiple of 8 · 105 , 9 · 105 or 106 , which was taken as the sieving interval. The
factorbase bound was 2, 400, OOO.

We sieved on 1 processor of an SGI Challenge (150 MHz R4400SC processors)
for the interval [L{!), L(u)] = [9.99 · 106 , 107] for 2, 3 and 4 polynomials, and for
the second and third best of the set of 4 polynomials. This interval contains
614 primes. We give the results in Table 3. From this experiment we conclude
that the factor by which the number of relations per root increases (when we
go from 2 to k polynomials) is smaller than the expected factor k - 1. From
experiment 2b we can conclude that these polynomials were much worse than
the polynomials from experiment 2a. That we still get a factor less than k - 1
can be explained by the varying results for the four polynomials of experiment
4. The number of norms which were smooth were 8,926, 8,601, 8,209 and 6,854,
respectively. As already described we took the middle two for experiment 2b.
Apparently, when searching for a good set of four polynomials for line sieving,
the individual polynomials are much worse than for a good set of two. It is still
an open question why this is only occurring for line sieving. Because the costs
for sieving are still growing with a factor k/2, the time needed per relation is
increasing. Since we even need more relations, we can conclude that in the case
of line sieving with our present polynomial search algorithm, the use of three or
four polynomials does not give better results than two polynomials.

To compare line sieving for two polynomials to classical sieving with four
polynomials we sieved again at the collection of 60 SGI machines at CWI. We
sieved the interval [LUl,L(u)] = [7·106 ,107], after which we had found enough
relations. The results are stated in Table 4. Comparing the sieving times of Table
4 with Table 2, we conclude that line sieving is the fastest way of sieving we tried.

8 Conclusions

Using more than two polynomials in our experiments speeds up classical eving
considerably, but with our present polynomial search algorithm it is not useful
for line sieving. Line sieving with two polynomials turns out to be much faster
than classical sieving with two, three or four polynomials.

111

Acknowledgements

The author is particularly grateful to P.L. Montgomery for his suggestions and
for sharing his NFS program (partially developed by A.K. Lenstra and Oregon
State University) with her. The author thanks A.K. Lenstra, P.L. Montgomery,
H.J.J. te Riele and R. Tijdeman for reading the paper and for suggesting sev­
eral improvements. This work was sponsored by the Stichting Nationale Com­
puterfaciliteiten (National Computing Facilities Foundation, NCF) for the use
of supercomputer facilities, with financial support from the Nederlandse Organ­
isatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific
Research, NWO).

112

112 polynomials! 3 polynomials I 4 polynomials

sieving region !al :52·107 la! 5 2 · 10' la! :52·10'
1 5 b :5 106 1 :5 b 5 452, OOO 1 :5 b :5 280, OOO

b-values over which was sieved 5,000 5,000 5,000
relations found 9,974 40,412 74,441
sieving time 445,037 sec. 794,651 sec. 1.064,276 sec.
estm. # rel. over all b's 1,994,800 3,653,245 4,168,696
relations needed 2,213,614 3,004,191 ' 3,715,710
estm. total sieving time 27 ,436 hours 16,409 hours 14,756 hours
speedup factor 1.67 1.86
theoretical speedup factor 1.47 1.79

Table 2. Classical sieving with large L.

112 polynomialsl3 polynomialsl4 polynomialsl2 of 4 pol.I

number of experiment 2a 3 4 2b
roots for these primes 1,230 1,842 2,492 1,252
relations found 4,131 10,056 16,297 2,792
rel. per root 3.36 5.46 6.54 2.23
sieving time 8,903 sec. 23,986 sec. 44,290 sec. 8,909 sec.
sieving time per rel. 2.16 sec. 2.39 sec. 2.72 sec. 3.19 sec.

Table 3. Line sieving on small interval.

II 2 polynomials

sieving region 7 ' 10° $ q $ 10 {
relations found 1,255,429
duplicates found 70,605
sieving time 1,492 hours
relations needed 1,157,553
matrix size 727, 551 x 755, 014

Table 4. Line sieving.

Polynomials for classical sieving
Two polynomials:
Ji = - 13120 43224 23539 33603 04 x 2 - 36831 71061 38731 26822 0586 x - 47944 69584 67939 17526 1751

h = - 12842 68073 51211206269127 x2 - 37374 96629 28900 17466 00744 x - 50908 58246 15164 78021373044

Three polynomials:
Ji = - ·81457 47262 62603 41067 52 x 2

h = 63100 65717 54229 79090 55 x 2

'3 = 27075 94441 52529 27833 917 x2

Four polynomials:
Ji = 12390 73187 55161 44127 368 x2

h = 25404 30588 60748 46488 41 x2

h = - 47694 40109 69369 01808 45 x2

/ 4 = - 17160 17198 52098 34308 213 x 2

Polynomials for line sieving
Two polynomials:

- 21907 43902 78265 15386 61562 x - 15722 10378 07940 49403 82024 3
- 65557 80218 25966 18826 2644 x + 12421 85964 80634 29350 20870 0

+ 22400 98373 04752 97387 3630 x + 52987 68272 49843 37454 44634 3

+ 24239 10314 43974 74435 446 x + 63206 80527 88089 61740 74862 5
- 95312 13792 13776 74856 6134 x + 13329 24536 09396 75769 56883 9
- 28836 03240 78572 77201 33848 x - 23219 06919 59899 34432 04210 8
- 29078 42343 93012 51945 69294 x - 86425 87447 47988 96172 79073 3

Ji= - 61752 28709 x2 - 28439 56167 76472 53488 3012 x - 23150 753919670844709 46738 43001 01431 04

h = 36722 19603 49 x 2 - 95804 69208 15565 40216 59734 x + 55577 38537 72556 82485 08362 87488 04948 557

Three polynomials:
Ji= - 61752 28709 x 2 - 41557 09722 49053 21746 2146 x - 60322 80472 99241 35463 24848 00868 95834 81

h = 36722 19603 49 x2 - 17798 72103 80668 80253 65960 x - 47522 34791 89843 68635 47624 22338 54755 04

h = 10594 00435 59 x 2 - 17014 79960 59970 45883 54376 x - 17670 15952 52792 48411 38213 60976 34047 784

Four polynomials:
f 1 = - 64231 53716 9 x2 - 32161 96143 83407 36549 48282 x - 31858 25118 64795 48549 18090 37721 41973 945

fz = 14026 33092 71 x 2 - 31647 58500 09956 15741 82098 x + 11159 93053 42414 53761 24237 19053 94304 731

h = 63795 67362 7 x 2 - 10506 33029 72197 78513 30184 x + 73048 253214739014462 82730 27492 61248 00

/ 4 = - 13107 82555 9 x2 - 32033 36732 90044 56347 56736 x - 21103 70575 62992 979715750848527 57904 276

Table 5. Polynomials used for classical and line sieving experiments.

.....
w

114

References

1. L.M. Adleman. Factoring numbers using singular integers. In Proceedings 23rd
Annual ACM Symposium on Theory of Computing {STOC), pages 64-71, New
Orleans, 1991.

2. R.P Brent, P.L. Montgomery, and H.J.J. te Riele. Update 2 to: Factorizations of
an± 1, 13 :5 a< 100. Technical Report NM-R9609, Centrum voor Wiskunde en
Informatica, Amsterdam, 1996.

3. J. Buchmann, J. Loho, and J. Zayer. An implementation of the general number
field sieve. In D.R. Stinson, editor, Advances in Cryptology - CRYPTO '93, volume
773 of Lecture Notes in Computer Science, pages 159-165, Berlin, 1994. Springer­
Verlag.

4. J.P. Buhler, H.W. Lenstra, Jr., and C. Pomerance. Factoring integers with the
number field sieve, pages 50-94 in (9].

5. F.G. Frobenius. Uber Beziehungen zwischen den Primidealen eines algebraischen
Korpers und den Substitutionen seiner Gruppe. Sitzungsberichte der Koniglich
Preuflischen Akademie der Wissenschaften zu Berlin, pages 689-703, 1896. Also
in Ferdinand George Frobenius, Gesammelte Abhandlungen, Band II, Springer­
Verlag, Berlin, 1968.

6. R.A. Golliver, A.K. Lenstra, and K.S. McCurley. Lattice sieving and trial division.
In L.M. Adleman and M.-D. Huang, editors, Algorithmic Number Theory, volume
877 of Lecture Notes in Computer Science, pages 18-27, Berlin, 1994. Springer­
Verlag.

7. R.M. Huizing. An implementation of the number field sieve. Technical Report NM­
R9511, Centrum voor Wiskunde en Informatica, Amsterdam, 1995. To appear in
Experimental Mathematics.

8. S. Lang. Algebraic Number Theory. Addison-Wesley, Reading, MA, USA, 1970.
9. A.K. Lenstra and H.W. Lenstra, Jr. The development of the number field sieve,

volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.
10. A.K. Lenstr11-, H.W. Lenstra, Jr., M.S. Manasse, and J.M. Pollard. The factor­

ization of the ninth Fermat number. Mathematics of Computation, 61:319-349,
1993.

11. P. L. Montgomery. Square roots of products of algebraic numbers. In Walter
Gautschi, editor, Mathematics of Computation 1943-1993: a Half-Century of Com­
putational Mathematics, pages 567-571. Proceedings of Symposia in Applied Math­
ematics, American Mathematical Society, 1994. Long version to appear.

12. P. L. Montgomery. A block Lanczos algorithm for finding dependencies over GF(2).
In L.C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology - EURO­
CRYPT '95, volume 921 of Lecture Notes in Computer Science, pages 106-120,
Berlin, 1995. Springer--Verlag.

13. J. Neukirch. Algebraische Zahlentheorie. Springer-Verlag, Berlin, 1992.
14. J.M. Pollard. The lattice sieve, pages 43--49 in (9).

