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Abstract. We study the approximability of the following NP-complete
(in their feasibility recognition forms) number theoretic optimization

problems:

1. Given n numbers ai,...,a, € 2z, find a minimum gecd set for
ai,...,an, ie., asubset S C {ai,...,an} with minimum cardinality
satisfying ged(S) = ged(aq, ..., an).

2. Given n numbers a1,...,a, € Z, find a £s -minimum gcd multiplier
for ai,...,an, ie., a vector x € z™ with minimum maxi<i<n |2

satisfying 2?21 z;a; = ged(a, . . ., an).

We present a polynomial-time algorithm which approximates a minimum
ged set for aq, . .., a, within a factor 1+1Inn and prove that this algorithm
is best possible in the sense that unless NP C DTIME(nCUcglogn))
there is no polynomial-time algorithm which approximates a minimum
ged set within a factor (1 — o(1))Inn.

Concerning the second problem, we prove under the slightly stronger
complexity theory assumption, NP ¢ DTIME(nP°¥(°6™)) that there
is no polynomial-time algorithm which approximates a {o-minimum ged

multiplier within a factor glog’ 7 ™ where 7y is an arbitrary small positive

constant.
Complementary to this result, there exists a polynomial-time algorithm,
which computes a ged multiplier x € z" for a1, ..., an € Z With [|X||cc <

0.5 ||a]|oo- In this paper, we also present a simple polynomial-time algo-
rithm which computes a gcd multiplier x € z" with Euclidean length
Il < 1.5 [all/ ged(as, - an)-

Our inapproximability results rely on gap-preserving reductions from
minimization problems with equal inapproximability ratios. We implic-
itly use the close connection between the hardness of approximation
and the theory of interactive proof systems, particularly the work of
3, 9, 17, 14].
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1 Introduction

It is widely believed that NP-optimization problems cannot be solved efficiently,
i.e., in time polynomial in the input length of the problem at hand. However, in
many practical applications approximate solutions of NP-optimization problems
suffice. Thus, there has been done a lot of work in studying the complexity of
finding such approximate solutions for NP-optimization problems.

On the one hand, it is desirable to have approximation algorithms such that
the value of the returned solution is within a small factor to the optimum so-
lution of the problem. Considering minimization problems, the worst-case ratio
of the value of the solution returned by the approximation algorithm to the
optimum solution is called the approzimation factor of the approximation al-
gorithm. Considering a minimization problem II with input instance I we say
that the function opty(-) is approximable within a factor f(I) if there exists a
polynomial-time algorithm A such that A(I) < f(I) opt(I).

On the other hand, we want to guarantee that the constructed approximation
algorithms are best possible in that no substantial better approximation factors
can be achieved, unless certain complexity theoretical assumptions, e.g., NP ¢
DTIME((nP°¥(1°87)) are wrong.

In this paper we investigate the following NP-complete optimization prob-
lems:

MinimuM GCD SET (MINGCDS)

INSTANCE: n numbers a4,...,a, € Z

SOLUTION: A subset S C {a1,...,a,} such that ged(S) = ged(aq,...,an)
MEASURE: The size |S| of the subset S

MiNiMUM GCD MULTIPLIER in £s-norm (MINGCDM,)
INSTANCE: » numbers ay,...,a, € Z

SOLUTION: A vector x € Z™ such that > | z;a; = ged(a,. .., a,)
MEASURE: The £ -norm ||x||o := maxi<i<n |Z;| of the vector x

Both problems have been shown to be NP-complete by Majewski and Havas
[16].

For the MINGCDS problem we present a polynomial-time approximation al-
gorithm achieving an approximation factor 1+1Inn and prove that this algorithm
is best possible. Specifically, we prove that unless NP C DTIME(nO(IOg log ”))
the optimum solution of MINGCDS cannot be approximated in polynomial-time
within a factor (1—o0(1)) In n. Roughly speaking, the proof of both factors results
from the similiarity between the problems MINGCDS and MIN SETCOVER,
where the latter NP-complete problem (see Karp [13] and Johnson [11]) admits
the same approximability and inapproximability factor and is stated as follows:

MiniMuMm SET CovER (MINSC)

INSTANCE: Finite set U and a collection of subsets Si,...,Sn C U satisfying
Ui";1 S;=U

SOLUTION: A subcollection I C {1,...,m} satisfying U;erS; = U

MEASURE: The number |I| of sets in the subcollection



For the MINGCDM,, problem, we are only able to derive less tight results
on its approximability. From Majewski and Havas [16] we know that there ex-
ists a polynomial-time algorithm which computes a ged multiplier x € Z™ for
a1,...,0, with [|X||sc < 0.5max;<;<n |a;|. We propose an algorithm which com-
putes for a vector a = (ai1,...,a,) € Z™ in polynomial-time a vector x € Z"
satisfying (x,a) = ged(ay,...,a,) and ||x|| < 1.5"||a||/ ged(ay, . . ., an).

On the other hand, we prove that, unless NP C DTIME(nroly(logn)),
MINGCDM,, cannot be approximated within a factor glog’ " ™. where v is an
arbitrary small positive constant. For the proof of this inapproximability result
we construct a gap-preserving reduction from the MIN LABEL COVER problem in
f-norm to the MINGCDM,, problem via the problems MIN Z-SOLUTION OF
LINEAR SYSTEM in ¢..-norm and MINIMUM DIOPHANTINE EQUATION SOLU-
TION in f.-norm. The latter two minimization problems are defined as follows:

MIN Z-SOLUTION OF LINEAR SYSTEM in £o.-norm (MINLS,,)

INSTANCE: A linear system Ax = b of m equations in n variables where A is a
rational m x n matrix and b an n-dimensional rational vector

SOLUTION: A nonzero vector x € Z" satisfying Ax =b

MEASURE: The {o-norm ||x||s := maxi<;<n |z;| of the vector x

MINIMUM DIOPHANTINE EQUATION SOLUTION in £.-norm (MINDES,,)
INSTANCE: An equation ziay + -+ + Tpan, = b with ay,...,a,,b € Z
SOLUTION: A vector x € Z" such that > - | z,a;, = b

MEASURE: The £o-norm ||x||s := maxi<;<n |z;| of the vector x

The MIN LABEL COVER problem in /. -norm is defined in Section 4 and
shown to be not approximable within a factor glog’ 7 ™ where 7 is an arbi-
trary small positive constant, unless NP C DTIME(nP°¥(1°87)) From the
gap-preserving reductions we see that the same inapproximability factor holds
for the problems MINLS,, and MINDES_..

2 Preliminaries

We briefly introduce some notation (see [6]).

Definition 1. An optimization problem IT is a set 7 C {0,1}* of instances,
a set § C {0,1}* of feasible solutions on input I € 7 and a polynomial-time
computable measure m : Z x § — R, , that assigns each tuple of instance I and
solution S, a positive real number m(I, S), called the walue of the solution S.
The optimization problem is to find, for a given input I € 7 a solution S € S
such that m(I,S) is optimum over all possible S € S.

If the optimum is minges{m(I,S)} (resp. maxgses{m(I, S)}) we refer to IT
as a minimization (resp. mazimization) problem.

Definition 2. For an input I of a minimization (resp. maximization) problem IT
whose optimal solution has value opt;(I), an algorithm A is said to approzimate
opt (I) within a factor f(I) iff

opt;(I) < A(I) < f(I)opty(I)  (resp. opt(I)/f(I) < A(I) < opty (1)),



where f(I) > 1 and A(I) > 0.

For studying the hardness of approximation problems we introduce the fol-
lowing reduction due to Arora [2].

Definition 3. Let IT and II' be two minimization problems and p, p' > 1.
A gap-preserving reduction from II to II' with parameters ((c,p),(c',p')) is a
polynomial-time transformation 7 mapping every instance I of IT to an instance
I' = 7(I) of II' such that for the optima opty(I) and opt; (I') of I and I',
respectively, the following holds:

opt(I) < e = optp (I') <
optp(I) >c-p= optp:(I') > - p,

where ¢, p and ¢, p’ depend on the instance sizes |I| and |I'|, respectively.

3 Polynomial Time Approximation Algorithms for

MINGCDS and MINGCDM,

Main Theorem 4. Given a set U of n numbers aq,...,a, € Z, there ezists a
polynomial-time algorithm which computes a subset S C {a1,...,an} satisfying
ged(S) = ged(U) and |S| < (1 +1nn) optysngeps(U)-

Proof. The following algorithm working in a greedy fashion will do the work.

input {a;,...,a,} =U

S:=0

repeat
choose an z € U \ S which minimizes ged(S U {z})
S:=SU{z}

until ged(S) = ged(U)

Obviously, the above algorithm runs in polynomial-time and computes a subset
S C{ai,...,an} = U with ged(S) = ged(U). Thus, it remains to show that the
set S satisfies |S| < (1 +Inn) optynaeps(U) as claimed above.

Since optyinaeps(U) = obtyinaeps({a1/ ged(U), ..., an/ ged(U)}), we may
assume that ged(U) = 1. With the primes py,...,ps contained in the factoriza-
tion of the numbers a,,...,a, we first define the numbers 6;; € Ny, 1 <7 < m,

1<j3<s,a8
S
8ij
77 =a
j=1
and the numbers M; € N, 1 < j <'s, as M; = maxi<i<n 0;j, i-€.,

s
Hpéwj =lem(a,...,an).
j=1



Consider now the multiset MINSC instance given by the universe U, consist-
ing in M; copies of each prime p; and the subsets S;, consisting in M; —§;; copies
of each prime p; with 1 <4 < n and 1 < j < s. Since ged(U) = [[5_; p9, it is
obvious that computing a minimum gcd set for U amounts to find a minimum
set cover for U among the subsets Sy, ...,S,. Considering our algorithm we see
that it follows the straightforward heuristic

.. s 5 _
mgécg{léze {6; = 0| [I;=, py = ged(SU {z})}]-

If I denotes the current index set with U,c7S, := S, this heuristic amounts to
the heuristic
zvren{;}),c.i..I,r;i}z\eI {7 | U.eru{i}S. contains M copies of p;}|

used for the MINSC approximation algorithm from Johnson [11], adapted to
multisets. Therefore, every single selection-step of our algorithm is equivalent
to a single selection-step of the multiset MINSC approximation algorithm from
Johnson [11]. Thus, we may apply Chvatal’s [7] analysis of the MINSC approx-
imation algorithm. Chvatal [7] has shown that also the multiset version of the
MINSC approximation algorithm achieves an approximation factor of (14 1nn),
which proves the claim. O

The following Theorem was implicitly proven by Hastad, Just, Lagarias and
Schnorr [10, Sec. 6].

Main Theorem 5. Given a vector a = (a1,...,an) € Z", there exists an
algorithm which is polynomial in the bitlength of the input and computes
an integral vector x € Z™ satisfying (x,a) = gecd(ai,...,a,) and ||x]| <

1.57||a||/ ged(ay, - - -, an).

Proof. The main purpose of the algorithm presented in [10] was, in fact,
to compute n — 1 linearly independent integer relations for an input vector
a=(a1,...,an) € Z", i.e., linearly independent integral vectors my,...,m,_; €
Z"™ satisfying (m;,a) = 0, ¢ = 1,...,n — 1. The algorithm extends the
vector a/ged(ay,...,a,) € Z™ to a generating system {bg,b;,...,b,} =

{a/gcd(ay,--.,an,),e1,...,e,} of the integral lattice Z™, where e; is the ith
unit-vector in Z". While leaving the vector by fixed, the algorithm applies the
L3-lattice basis reduction algorithm to the vectors by, b1,...,b,.

The algorithm terminates with a basis bg, bsg, ..., b, of the lattice Z™ and
by = gby for some q € Z. By lattice basis reduction theory the dual lattice
vectors cs,...,c, which are the rows of the inverse matrix [ci,...,c,]" :=
[bo,ba,...,b,]~! form a basis of the lattice £a consisting of the zero vector
0 and all integer relations for a. The analysis of the algorithm shows that the
vector ¢; =: x, which is the only dual basis vector not orthogonal to a, satisfies
(x,a) = ged(ay, - . ., a,). Moreover, from a closer look to the proofs given in [10]
we infer ||x|| < 1.5%||a||/ ged(ay, - .., ay); furthermore, the algorithm performs
poly(n, [log ||al|«]) bit operations. O



4 Hardness of MIN Z-SOLUTION OF LINEAR SYSTEM

4.1 The MiIN LABEL COVER Problem

In the following G = (V4, V5, E) denotes a bipartite graph, B a set of labels
for the vertices in V; U V5, and for every e € E there exists a partial function
11, : B — B describing the admissible pairs of labels. Moreover, we assume that
G is d-regular, i.e., |E| = d|Vy| = d|Vz|. This property of G is a result of the
reduction in [2, 3] from 3-SAT to MIN LABEL COVER (see also Arora and Lund
[4]). We adapt the notation of [2, 3].

Definition 6. A labelling of G = (V1, Vs, E) is a pair (P1, Ps) of functions P; :
V; — 2B, i =1,2, assigning each vertex in V; UV, a possibly empty set of labels.

Definition 7. Let (P1,P2) a labelling of G = (V1, V3, E) and e = (v1,v2), v1 €
Vi, v2 € Va, an edge of G. We call e = (v1,v2) covered iff P1(v1) # 0, Pa(va) # 0
and for all labels be € P2(v2) there exists a label by € P;(v1) such that II.(by) =
ba. A labelling (P1,P2) of G = (V1, V2, E) is called a total-cover of G iff every
edge of G is covered by the labelling (P1,P2).

Definition 8. The {,-cost of a labelling (P;,P2) for a graph G = (V1, V2, E) is
defined as

COSt(Pl,PQ) = mea‘)/c |P1 (U1)|.

Definition9. MIN LABEL COVER in £,,-norm (MINLC,)

INSTANCE: A d-regular bipartite graph G = (V1, V5, E), a set of labels B =
{1,...,N}, N € N;, and for every edge e € E a partial function II, : B — B
such that I7;1(1) # @ for the distinguished label 1 € B

SOLUTION: A total-cover (Py,Ps) of G

MEASURE: The £.-cost cost(P1,Ps) of the total-cover (P, P2)

Remark. In the above definition we can always ensure the existence of a total-
cover with £y .-cost at most N; we simply let Po(vg) = {1} for all vy € V5 and
P1(v1) = B for all v; € V;.

A slightly weaker form of the following Lemma is implicitly proved in Arora,
Babai, Stern and Sweedyk [3].

Lemma 10. There ezists an almost-polynomial-time, i.e., DTIME(nP"ly(log ”)),
transformation T from 3-SAT to MIN LABEL COVER such that, for all instances
I:

I € 3-SAT = J total-cover (Py,P2) of 7(I) : cost(P1,Ps) =1
I ¢ 3-SAT = V total-cover (P1,P2) of 7(I) : cost(P1, Pa) > glog" ™" Ir(OF

where v is an arbitrary small positive constant.



Proof. We have to make a detour around the maximization version of the label
cover problem, which comes as follows:

MAx LABEL COVER (MAXLC)

INSTANCE: A d-regular bipartite graph G = (V1,V2, E), a set of labels B =
{1,...,N'}, N € N;, and for every edge e € E a partial function II, : B — B
such that IT;1(1) # 0 for the distinguished label 1 € B

SOLUTION: A labelling (P1,P2) of G with |P;(v;)| <1forallv;, € V;,i=1,2
MEASURE: The fraction of covered edges by (P1,P2)

Combining ideas of Arora, Babai, Stern and Sweedyk [3], Lund and Yan-
nakakis [14] and the recent result of Raz [17], Arora and Lund [4] have shown,
that there exists an almost-polynomial-time, i.e., DTIME(nP"IY(log ")), trans-
formation o : 3-SAT — MAXLC such that, for all instances I:

I € 3-SAT = optypc(ad)) =1
I ¢ 3-SAT = opty,, . c(o(I) < 278" " le(D],

where v is an arbitrary small positive constant. We will show that for any in-
stance I of the label cover problem, we have

1
OptMinLcoc (I)

; (1)

OptMaxLC (I) 2

which proves the Theorem.

Consider a solution (P1,P2) of a MINLC,, instance I, placing at most
optyinLe,, (1) labels on any vertex in V. Randomly deleting all but one label
for each vertex in V3 U V5 gives us a candidate solution (P;,P5) for the corre-
sponding MAXLC problem given by I. (P1,Ps) covers every edge e = (u,v) of
G and assigns for every label by assigned to v € V5 a label a; to u € V; such that
II.(b1) = by. Thus, the expected number of edges in the randomly constructed
labelling (P7,P;) is at least

- |E]
O
e:%:v) optytinre., (1)
Therefore, the expected fraction of covered edges by (Pj,Pi) is at
least 1/optyg,rc (1). Hence, there must exists a solution covering at least
|E|/optyiintc. (I) edges, showing equation (1).
O

4.2 MIN Z-SOLUTION OF LINEAR SYSTEM

The following result transforms the inapproximability gap from MIN LABEL
COVER to MIN Z-SOLUTION OF LINEAR SYSTEM.



Theorem 11. There exists a polynomial-time transformation T from MIN LA-
BEL COVER to MIN Z-SOLUTION OF LINEAR SYSTEM such that, for all instances
I and for all p > 1:

optyinre., (I) =1 = optyprs (T7(1)) = 1
optyinre., () > p == optyrinrs. (T(1)) > /p-

Proof. From a given MIN LABEL COVER instance I = (V1, Vs, E,II,B,N) we
construct a linear system of equations Ax = b with A an m X n matrix of entries
{-1,0,1}, b an m~-dimensional vector of entries {0,1}, m = |V1|N + |E|(N + 1)
and n = 2|Vi|N + ||V

For every pair (v,b) with v € V; UV, and b € B we define a column vector
a,p € {—1,0,1}™ of A as follows. The first |E|(N + 1) coordinates of a, , are
split into |E| blocks of e-projections u.(a,) — one (N + 1)-length block for
every edge e € E. In particular, we define for every (ve,bs) € Vo x B

W (8, b,) = ey, iff e is incident to v,
e\Svz.by 0 otherwise

and for every (vy,b1) € Vi x B

( ) = 1— e, (s, iff e is incident to vy and IT.(b1) # 0
Uel@uib) *= 1 otherwise

where e;, j = 1,...,N, denotes the 4*P-unit vector and 0, 1 the all-zero, all-one
vector in RV+1 | respectively.

The definition of the remaining |V;|N coordinates of a,  uses the properties
of Hadamard matrices. A Hadamard matriz of order £, denoted by Hy, is an £x/
matrix with +1 entries such that HZHZ = {1I,. The columns of %H{ clearly

form an orthonormal basis. Therefore ||ﬁng||2 = ||z||z for every z € Z% If

z € 7. has at least k nonzero entries we thus have | Hz|o > Vk. Hadamard
matrices can be constructed in time linear in the size of the matrix if £ is a power
of 2, cf. [15]. Otherwise we use the matrix H, consisting in the first ¢ columns
of the Hadamard matrix of order 2/'°8¢1. Clearly, || H z|s > vk remains valid
for vectors z € Z* with at least k nonzero entries.

We may assume that for £ = N there exists a Hadamard matrix H, =
[hy,...,h,] with column vectors h, of H,, each of them uniquely identified with
a label b € B. We now split the last |V;|A coordinates of a,p into |V;| blocks
of vy -projections u,, (a,,) — one N-length block for every vertex v; € V3 —
where the v;-projections for every v € V3 UV, and b € B are defined as follows

hb iff v = V1
0 otherwise

Uy, (Ayp) 1= {

and 0 denotes the all-zero vector in RV . This definition clearly implies u,, (a,,5) =
0 for all v € V5 and all b € B.
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Fig. 1. The resulting column vectors due to [ABS*93]

Moreover, the remaining [Vi|N column vectors are e gjn41)4is ¢ =
1,...,|Vi|]V, where e, denotes the j®P-unit vector in RIViIN+EIN+1),

Eventually, we define the right hand side of our linear system — the vector
b — as the vector having 1 in each of the first |E|(N + 1) coordinates and 0 in
the remaining ones.

|V1|N columns |V2|N columns [V1|N columns
BN+ rows [ [Ue(@up,), - Ue(Aupy)]eer  [ue(avy)]een 0 1
X =
|[V1|N rows [uv1 (av,bl),.. .,uvl(av’bN)]ulevl 0 I\VllN
vev; 0
Fig. 2. The linear system Ax =b
(owing lack of space we abbreviated [uc(ayp,),- .-, Ue(Aypy )] ccr =: [Uc(ayp)]cem )
vEVy (v,b)EVy XB

Given a vector y € RVIWHIEIN+D) Jot yp (y) denote the vector y restricted
to its first | E|(N + 1) coordinates. Let x = Y x, psug(a,,s) be an integral linear
combination of the ‘restricted’ column vectors ug(a, ). Then, assigning every



vertex v a label b iff z, ;, # 0 defines a labelling (P, PX) induced by the vector
x. From [3, Corollary 10] it follows that any such x with x = ug(b), induces a
total-cover of (V1, Vs, E).

Thus, any solution x € Z2ViN+IV2IN of the linear system Ax = b induces
by its first |[V1|A + |Va|A coordinates a total-cover of (V1, V3, E) (note that the
last |[V1|A column vectors of the matrix A have O-entries in its first |E|(N + 1)
coordinates).

Thus, for the induced total-cover (P¥X,PX) there exists a vertex, say v; € Vi,
with at least optyy;,p ¢ (I) labels assigned. This in turn means that x has at least
oDtyinLc.. (I) nonzero entries. By the above properties of the Hadamard matrices
we see that there exists an index i* € {|E|(N +1)+1,...,|E|\NVN +1)+ [W|N}
such that

ViV

Z i+ ,j%5| = 1/ oPtyinLe. (1)-
i=1

As x is a solution of Ax = b its remaining |V} |V coordinates are forced to cancel
out each of the sums

(Vi |N
> aijzi,  i=|E(WNW+1)+1,..,|E|(N +1)+ V|V,
j=1

Hence, any solution x of Ax = b has one entry, say =)y, xv4|vajn45%> J° €
{1,...,|V1|N} satisfying

[€lloo 2 |2y a4 v atie | 2 4/ 0PtuinLe. (1)-

Now assume optyg,rc. (I) = 1. Let (P1,P2) denote the corresponding la-
belling. Then, the (2|V1|N + |V2|N)-length vector x given by

To Py = 1 Vi €Vi, 0=1,2
Ty, p:= 0 Vv, eV, Vbe B\ Pi(vi), i=1,2
TN+ Ve N414i = —Zi  i=1,... ||V

obviously is a feasible solution of the linear system Ax = b satisfying ||x||. = 1.

The reduction from the given instance I of MIN LABEL COVER to the above
constructed linear system Ax = b is feasible in time polynomial in the dimension
of A which in turn is polynomial in |I|. Clearly, the above reduction, say T, is
gap-reserving with parameters ((1, p), (1,/p))- O

The above Theorem implies the following.
Corollary 12. Approximating MINLS, within a factor 2108 " n g glmost-NP-

hard, where v is an arbitrary small positive constant and n is the size of the
MINLS, -instance.



5 Hardness of Approximating MINGCDM,,

5.1 Aggregation — Part I

The following Lemma implicitely proven by Kannan [12] establishes a polynomial-
time reduction from a system of inhomogeneous linear equations to a single
equation with identical solution set, provided that the solutions are bounded.

Lemma 13. Let A be an integral m X n matriz, | Al the mazimum absolute
value of its entries a;;, 1 <1 <m, 1 < j <n andb be an integral m-dimensional
vector. Then

Bﬂm{er"|Ax=b}=Bﬂn{er”

i zn: kiaija:j = zm: kzb,}
=1

=1 j=1
where B,, denotes the n-dimensional ball of {.-radius p centered at the origin
and k= | Allocp + [blloo + 1.

Proof. Denote the two sets by S,, and S, respectively. Clearly, S,,, C S;. For
proving the reverse inclusion suppose, that there exists an element x € S; not
satisfying at least one equation of Ax =b. Let A =: [a,...,a,]" and let 4.y
denote the largest index for which (a;,x) # b;. As ||x||eo < g we have

[(ai, %) — bi| < n||Alleopr + [[bllc =k — 1

and since x € S; we must have
> k((ai,x) — b;) =0.
1=1

By definition of 7,5 this yields

Tmax—1

Yo K%)= i) = k" (@000 X) = biynas)
=1

with a nonzero right-hand side implying that the left-hand side is also nonzero.
Now the left-hand side is both a multiple of k=== and in absolute value bounded
by kimex — k < kP=ex — 1, a contradiction. O

5.2 Hardness of Approximating MINIMUM DIOPHANTINE EQUATION
SOLUTION

Theorem 14. There exists a polynomial-time transformation T from MIN Z-
SOLUTION OF LINEAR SYSTEM to MINIMUM DIOPHANTINE EQUATION SOLU-
TION such that the following holds:

1. for all instances I and for all p > 1:

optyiinrs.. (I) =1 = optyuprs, (T(1)) =1
oPtyins., (1) > p == obtyinprs, (T(I)) > p



2. the constructed instance ajxy + - -+ + al,x, = b of MinDES, satisfies
zaj. = b for some j* € {1,...,n} and some z € Z.

Proof. Consider the linear system Ax = b constructed in the reduction of the
proof of Theorem 11, see Figure 2. Recall that for the underlying d-regular graph
G = (W1, Va, E) with label set B, |B| = N, the matrix A is a m X n matrix of
entries {—1,0,1} with m = |Vi|N + |E|(N + 1) and n = 2|V |N + ||, and
that the vector b has only 1-entries in its first |E|(N + 1) coordinates and only
O-entries in the remaining |V3|N coordinates.

Thus, permuting the first |E|(N + 1) rows of A does not change the solution
set of the linear system Ax = b. Let a;« := a,, ;, for some vy € V3, by € B be
a non-zero column vector of A. Since the graph G is d-regular, a;- has exactly
d l-entries. Let o be the permutation shifting all 1-entries of a;+ in its first d
coordinates and note that o(b) = b.

Aggregating now the (solution equivalent) linear system o(A)x = b via
Lemma 13 yields the inhomogenous Diophantine equation

2V IN+|Va |V
Z ajx; =b'
1=1
with
ViV B|(N+1) VAN E|(N+1)
aj = > ka,;,; and b= > k'b;.
=1 =1
Particularly, we have
d |E|(N+1)
. ki1 o EIEIVHD) g
! T __ I __ T __
ap=) k=k—r and V= 3 K=k,
=1 =1

and by the regularity of G, i.e., d|Va| = |E|, it follows that
k=1 KPIVHD 1 hence  al. | V.

Thus, we have constructed a gap-preserving reduction from the linear system
Ax = b to an inhomogenous Diophantine equation instance ajz1 + - -+ alz, =
b with parameters ((1,p),(1,p)) such that there is an index j* € {1,...,n}
satisfying a’. | b'. O

Corollary 15. Approximating MINDES,, within a factor 218" n s glmost-
NP-hard, where vy is an arbitrary small positive constant and n is the size of the
MINDES  -instance.



5.3 Aggregation — Part II

The following Lemma, originally proved by Anthonisse [1], is a slight variation
of the former Lemma and crucial for our reduction; for the simple proof see also
[18, 16].

Lemma 16. Let A be an integral 2 x n matriz and b € Z. Then

Za“-l-kagj x]—b}
j=1

where B, denotes the n-dimensional ball of {-radius p centered at the origin
and k> p3 7 lag;| +b.

B,n{xez"

Ax:[g]}zB,m{er"

5.4 The Final Reduction

By piecing the above results together we now prove the following:

Main Theorem 17. Unless NP C DTIME (nPo¥(1°87))  there exists no poly-
nomial-time algorithm apprommatmg the MiNIMUM GCD MULTIPLIER problem
in Leo-norm within a factor of glog’ “"n where v is an arbitrary small positive
constant.

Proof. We start with the instance ajz1+- - -+al,z,, = b’ of MinDES, constructed
in the above Theorem 14 and consider for an arbitrary integer ¢ € Z \ {0} the
linear system
CLpy1 = C

aixy+ -+ a,xy — Ty =0
which enforces the variable z,41 to take on the value 1. Now, we fix p > 1,
choose k = pc + ¢+ 1 and apply Lemma 16 to this linear system, obtaining the
single equation

kaizy + -+ + kal,xp + (c — kb )zpny1 = c.

We observe that the right hand side ¢ in the last equation was an arbitrary
chosen integer and that b’ satisfies by Theorem 14

zg' = b for some i* € {1,...,n} and some z € Z . (%)

This will give us the desired gap-preserving reduction 7. Namely, we choose
¢ =ged(al,---,al). By (%) this implies

kay,---,ka,,(c— kb))

!
1
U
1
I

ged(
= gcd(ka ookt kal. ... kar, ged(kaj., (¢ — kb')))
= ged(kal, -, kaj._y,kai. ..., ka;,,ged(kaj., (c — kzaj.)))
=gcd(ka1,--- kaj._q,kaju ;... ka,, ged(kaj., c))
= ged(kged(ay, - -+, az_q, ajs, ;*+1a ce1Gp),C)
=c.



Since the variable z,1 is enforced to take on the value 1, it is obvious from
the above, Lemma 10, and Theorem 11 that the reduction 7 from 3-SAT to
MIN GCDM,, with 7(I) = {kd},-- -, kal,, (c — kb')} satisfies for all instances I
and all v >0

I € 3-SAT = optyinaepm, (TU)) =1

I ¢ 3-SAT = optysngepm,. (T(1)) > 28 " 17D,

Therefore, given a polynomial—tilrye algorithm approximating the MIN GCDM o,
problem within a factor of 2!°¢" "™ for some 7 > 0 would enable us to decide
3-SAT in almost-polynomial-time. O

6 Hardness of Approximating MINGCDS

The following very recent Lemma — indicating an approximation threshold of
Inn for MINIMUM SET COVER — is due to Feige [8], which in turn is based on
the work of Lund and Yannakakis [14].

Lemma 18. There exists an almost-polynomial-time, i.e., DTIME(nO(log log ”)),
transformation T : 3-SAT — MINIMUM SET COVER such that, for all instances
I:

I € 3-SAT = optyiusc(r(1)) = K(I1)
I ¢ 3-SAT = optygse(r(1) > (1 - o(1)) - In(N) - K (1)),

where K(|I|) is a polynomial-time computable function and N the size of the
ground set of the set cover instance T(I).

Theorem 19. There exists a polynomial-time transformation T from MINIMUM
SET COVER to MINIMUM GCD SET such that, for all instances I and for all
¢, p>1:

oPtyinsc(l) < ¢ = optyinaens(T(1)) < ¢
optytinsc(l) > ¢+ p = optynaeps(T(1)) > ¢ p.

Proof. We give a gap-preserving reduction with parameters ((c, p), (¢, p)) from
MinimuM GCD SET to MINIMUM SET COVER which is due to Majewski and
Havas [16]. Assume, we are given a MINIMUM SET COVER instance, i.e., a finite
set U and a collection of subsets St,...,S, CU with S; = {s;,,...,8,,},d >0,
satisfying U™, S; = U.

We select the first n := |U| primes p1, ..., p, and define with

P 0iffs; €5, ¢=1,....m,j53=1,...,n
77 1 1 otherwise



the numbers

n
5ij .
a; := Hpj”, 1=1,...,m.
=1

The greatest common divisor of a1, ..., a, is by definition
n n
ming <i<m ij __ 0 _
7 - H p] =1
j=1 j=1

Note that by the above ‘s; € S;” transforms into ‘p; is a prime factor of a;” and
vice versa. Therefore, every ged set S with ged(S) = 1 yields a solution of size | S|
for a given MINIMUM SET COVER instance. This shows that the reduction is gap-
preserving with parameters ((c, p), (¢, p)). Moreover, the reduction is polynomial
in the size of the MINIMUM SET COVER instance as the bitlength of every number
a; is bounded by n!te(), O

By Lemma 18 and Theorem 19, we have established an almost-polynomial-
time transformation from 3-SAT to MINIMUM GCD SET, which implies 3-SAT €
DTIME(nO(log log ")), if there exists a polynomial-time algorithm approximat-
ing MINGCDS within a factor (1 —o0(1)) In n. We thus conclude with the follow-
ing:

Main Theorem 20. Unless NP C DTIME(nC(0816 %)) there erists no poly-
nomial-time algorithm approximating the MINIMUM GCD SET problem within
a factor (1 —o(1))Ilnmn.
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