
ar
X

iv
:1

40
1.

51
13

v1
 [

cs
.L

O
]

 2
0

Ja
n

20
14

Retracing some paths in Process Algebra

Samson Abramsky

Laboratory for the Foundations of Computer Science

University of Edinburgh

1 Introduction

The very existence of the concur conference bears witness to the fact that
“concurrency theory” has developed into a subject unto itself, with substan-
tially different emphases and techniques to those prominent elsewhere in the
semantics of computation.

Whatever the past merits of this separate development, it seems timely
to look for some convergence and unification. In addressing these issues, I
have found it instructive to trace some of the received ideas in concurrency
back to their origins in the early 1970’s. In particular, I want to focus on
a seminal paper by Robin Milner [Mil75]1, which led in a fairly direct line
to his enormously influential work on ccs [Mil80, Mil89]. I will take (to the
extreme) the liberty of of applying hindsight, and show how some different
paths could have been taken, which, it can be argued, lead to a more unified
approach to the semantics of computation, and moreover one which may
be better suited to modelling today’s concurrent, object-oriented languages,
and the type systems and logics required to support such languages.

2 The semantic universe: transducers

Milner’s starting point was the classical automata-theoretic notion of trans-
ducers, i.e. structures

(Q,X, Y, q0, δ)

where Q is a set of states, q0 ∈ Q the initial state, X the set of inputs, Y
the set of outputs, and

δ : Q×X ⇀ Y ×Q

1Similar ideas appeared independently in the work of Hans Bekić [Bek71].

1

http://arxiv.org/abs/1401.5113v1

is the transition function (here a partial function). If we supply a sequence
of inputs x0, . . . , xk to such a transducer, we obtain the orbit

q0
x0−→ y0, q1

x1−→ y1, q2
x2−→ · · ·

xk−→ yk, qk+1

if δ(qi, xi) = yi, qi+1, 0 ≤ i ≤ k. This generalizes to non-deterministic
transducers with transition function

δ : Q×X −→ P(Y ×Q)

in an evident fashion.
The key idea in [Mil75] is to give a denotational semantics for concur-

rent programs as processes, which were taken to be extensional versions of
transducers. There are two ingredients to this idea:

1. Instead of modelling programs by functions or relations, to model them
by entities with more complex behaviours, taking account of the pos-
sible interactions between a program and its environment during the
course of a computation.

“The meaning of a program should express its history of
access to resources which are not local to it.” [Mil75]

2. Instead of modelling concurrent programs by automata, with all the
intensionality this entails, to look for a more extensional description
of the behaviours of transducers.

To obtain this extensional view of transducers, consider the recursive defi-
nition

R = X ⇀ Y ×R.

This defines a mathematical space of “resumptions” in which the states of
transducers are “unfolded” into their observable behaviours. Milner solved
equations such as this over a category of domains in [Mil75], but in fact it
can be solved in a canonical fashion over Set—in modern terminology, the
functor

TX,Y : Set −→ Set

TX,Y (S) = X ⇀ Y × S

has a final coalgebra R
∼=

−→ TX,Y (R). Indeed, Milner defined a notion ∼
of behavioural equivalence between transducers, and for any transducer

(Q,X, Y, q0, δ) a map hδ : Q −→ R which is in fact the final coalgebra
homomorphism from the coalgebra

δ̂ : Q −→ TX,Y (Q)

to R (where δ̂ is the exponential transpose of δ), and proved that

(Q,X, Y, q0, δ) ∼ (Q′,X, Y, q′0, δ
′) ⇐⇒ hδ(q0) = hδ′(q

′

0).

From a modern perspective, we can also make light of a technical problem
which figured prominently in [Mil75], namely how to model non-determinism.
Historically, this called forth Plotkin’s work on powerdomains [Plo76], but
for the specific application at hand, the equation

R = X −→ P(Y ×R)

has a final coalgebra in the category of classes in Peter Aczel’s non-well-
founded set theory [Acz88], and if we are content to bound the cardinality
of subsets by an inaccessible cardinable κ, then the equation

R = X −→ P<κ(Y ×R)

has a final coalgebra in Set [Bar93b]. Moreover, the equivalence induced by
this model coincides with strong bisimulation [Acz88].

However, this is not central to our concerns here. Rather, we want to
focus on three important choices in the path followed by Milner from this
starting point:

• Type-free vs. typed

• Extrinsic vs. intrinsic interaction

• Names vs. information paths.

We want to examine the consequences of making different choices on these
issues.

2.1 Typed vs. type-free

Rather than looking at a single type-free space of resumptions as above,
and trying to invent some plausible operations on this space, we will focus
instead on the category of resumptions, and try to identify the structure
naturally present in this category.

The category R of resumptions (we will for simplicity confine ourselves
to the deterministic resumptions) has as objects sets, and as morphisms

R(X,Y) = X ⇀ Y ×R(X,Y)

i.e. the space of resumptions parameterized by the sets of “inputs” X and
“outputs” Y . The composition of resumptions f ∈ R(X,Y) and g ∈ R(Y,Z)
is defined (coinductively [Acz88]) by:

f ; g(x) =

{

(z, f ′; g′) f(x) = (y, f ′), g(y) = (z, g′)
undefined otherwise.

The identity resumption idX ∈ R(X,X) is defined by

idX(x) = (x, idX).

We can picture this composition as sequential (or “series”) composition of
transducers.

We can define a monoidal structure on R by

X ⊗ Y = X + Y (disjoint union of sets)

and if f ∈ R(X,Y), g ∈ R(X ′, Y ′), f ⊗ g ∈ R(X ⊗X ′, Y ⊗ Y ′) is defined
by:

f ⊗ g(inl(x)) =

{

(inl(y), f ′ ⊗ g), f(x) = (y, f ′)
undefined otherwise

f ⊗ g(inr(x′)) =

{

(inr(y′), f ⊗ g′), g(x′) = (y′, g′)
undefined otherwise.

This is (asynchronous) parallel composition of transducers: at each stage, we
respond to an input on the X “wire” according to f , with output appearing
on the Y wire, and to an input on the X ′ wire according to g, with output
appearing on the Y ′ wire.

The remaining definitions to make this into a symmetric monoidal struc-
ture on R are straightforward, and left to the reader. Note that the associa-
tivity and symmetry isomorphisms, like the identities, have just one state;
they are “history-free”.

Finally, there is a feedback operator: for each X, Y , U a function

TrUX,Y : R(X ⊗ U, Y ⊗ U) −→ R(X,Y)

defined by

TrUX,Y (f)(x) =

(y, f ′), ∃k. f(x) = (u0, f0),
f0(u0) = (u1, f1),
...
fk(uk) = (y, f ′)

undefined otherwise.

One should picture a token entering at the X wire, circulating k times
around the feedback loop at the U wire, and exiting at Y .

This feedback operator satisfies a number of algebraic properties (to sim-
plify the statement of these properties, we elide associativity isomorphisms,
i.e. we pretend that R is strict monoidal):

Naturality in X

TrUX,Y ((g ⊗ idU); f) = g; TrUX′,Y (f)

where f : X ′ ⊗ U −→ Y ⊗ U , g : X −→ X ′.

Naturality in Y

TrUX,Y (f ; (g ⊗ idU)) = TrUX,Y ′(f); g

where f : X ⊗ U −→ Y ′ ⊗ U , g : Y ′ −→ Y .

Naturality in U

TrUX,Y (f ; (idY ⊗ g)) = TrU
′

X,Y ((idX ⊗ g); f)

where f : X ⊗ U −→ Y ⊗ U ′, g : U ′ −→ U .

Vanishing

TrIX,Y (f) = f

where f : X −→ Y , and

TrU⊗V
X,Y (f) = TrUX,Y (Tr

V
X⊗U,Y⊗U (f))

where f : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V .

Superposing

TrUX⊗Z,Y⊗W ((idX ⊗ symZ,U); (f ⊗ g); (idY ⊗ symU,W)) = TrUX,Y (f)⊗ g

where f : X ⊗ U −→ Y ⊗ U , g : Z −→ W .

Yanking

TrXX,X(symX,X) = idX .

This says that R is a traced (symmetric) monoidal category in the sense of
[JSV95] (cf. also [Has96] for the symmetric and cartesian cases, and [BE93]
for related axioms).

2.2 Intrinsic vs. extrinsic interaction:

paths vs. names

Why this apparent digression into the structure of the category of resump-
tions? Our aim is to address the question of how to model interaction
between processes, which is surely the key notion in concurrency theory, and
arguably in the semantics of computation as a whole. Resumptions as they
stand model a single process in terms of its potential interactions with its
environment. To quote Robin Milner again:

“A crucial feature is the ability to define the operation of
binding together two processes (which may represent two coop-
erating programs, or a program and a memory, or a computer
an an input/output device) to yield another process representing
the composite of the two computing agents, with their mutual
communications internalized.” [Mil75]

The route Milner followed to define this binding was in terms of the use of
“names” or “labels”: in terms of resumptions, one modifies their defining
equation to

R(X,Y) = X ⇀ Y × L×R(X,Y)

where L is a set of labels, so that output is tagged with a label, which
can then be used by some “routing combinator” to dispatch the output to
its destination process. This led in a fairly direct line of descent to the
action names α, β, γ of ccs [Mil80, Mil89], and the names of the π-calculus
[MPW92] and action structures [MMP95]. Clearly a great deal has been
achieved with this approach. Nevertheless, we wish to lodge some criticisms
of it.

• interaction becomes extrinsic: we must add some additional structure,
typically a “synchronization algebra” on the labels [Win83], which
implicitly refers to some external agency for matching up labels and
generating communication events, rather than finding the meaning of
interaction in the structure we already have.

• interaction becomes ad hoc: because it is an “invented” additional
structure, many possibilities arise, and it is hard to identify any as
canonical.

• interaction becomes global: using names to match up communications
implies some large space in which potential communications “swim”,
just as the use of references in imperative languages implies some
global heap. Although the scope of names may be delimited, as in
the π-calculus, the local character of particular interactions is not im-
mediately apparent, and must be laboriously verified. This appears to
account for many of the complications encountered in reasoning about
concurrent object-oriented languages modelled in the π-calculus, as
reported in [Jon93, Jon96].

We will now describe a construction which appears in [JSV95], and which can
be seen as a general form of the “Geometry of Interaction” [Gir88], and also
as a general but basic form of game semantics [Abr96b]. This construction
applies to any traced monoidal category C, i.e. to any calculus of boxes and
wires closed under series and parallel composition and feedback, and builds
a compact closed category G(C), into which C fully and faithfully embeds.
(It is in fact the unit of a (bi)adjunction between the categories of traced
monoidal and compact closed categories.) Its significance in the present
context is that it gives a general way of introducing a symmetric notion of
interaction which addresses the issues raised above:

• interaction is intrinsic: it is found from the basic idea that processes
are modelled in terms of their interactions with their environment.
Building in the distinction between “process” and “environment” at
a fundamental level makes interaction inherent in the model, rather
than something that needs to be added.

• interaction is modelled as composition in the category G(C). Thus in-
teraction is aligned with the computation-as-cut-elimination paradigm,
and hence a unification of concurrency with other work in denotational
semantics, type theory, categorical logic etc. becomes possible. See
[AGN96a, Abr93, Abr95b] for a detailed discussion of this point.

• interaction is local. The dynamics of composition traces out “infor-
mation paths”, which are closely related to the types of the processes
which interact. There is no appeal to a global mechanism for match-
ing names. As we will see, this is general enough to model λ-calculus,

state and concurrency, but, we believe, carries much more structure
than the use of names to mediate interactions.

3 The G construction

Given a traced monoidal category C, we define a new category G(C) as
follows:

• The objects of G(C) are pairs (A+, A−) of objects of C. The idea is
that A+ is the type of “moves by Player (the System)”, while A− is
the type of “moves by Opponent (the Environment)”.

• A morphism f : (A+, A−) −→ (B+, B−) in G(C) is a morphism

f : A+ ⊗B− −→ A− ⊗B+

in C.

• Composition is defined by symmetric feedback (cf. [AJ94b, AJ94a]):

✲✛

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁❆

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆ ❄

❄

❄

❄

❄❄

❄❄

C+

C−

B−

B+

B+

B−

A−

A+

gf

If f : (A+, A−) −→ (B+, B−) and g : (B+, B−) −→ (C+, C−) then
f ; g : (A+, A−) −→ (C+, C−) is defined by

f ; g = TrB
−⊗B+

A+⊗C−,A−⊗C+(α; f ⊗ g; γ)

where

α : A+ ⊗ C− ⊗B− ⊗B+ ∼=
−→ A+ ⊗B− ⊗B+ ⊗ C−

and
γ : A− ⊗B+ ⊗B− ⊗ C+ ∼=

−→ A− ⊗ C+ ⊗B− ⊗B+

are the canonical isomorphisms defined using the symmetric monoidal
structure. (Again, we have elided associativity isomorphisms.)

• The identities are given by the symmetry isomorphisms in C:

id(A+,A−) = symA+,A− : A+ ⊗A−
∼=

−→ A− ⊗A+.

There is an evident involutive duality on this category, given by

(A+, A−)∗ = (A−, A+).

There is also a tensor structure, given by

(A+, A−)⊗ (B+, B−) = (A+ ⊗B+, A− ⊗B−).

G(C) is a compact-closed category [KL80], with internal homs given by

(A+, A−)−◦ (B+, B−) = (A− ⊗B+, A+ ⊗B−).

4 Examples

4.1 From resumptions to strategies

To interpret the category G(R), think of an object (X+,X−) as a rudimen-
tary two-person game, in which X+ is the set of moves for Player, and X−

the set of moves for Opponent. A resumption f : X− −→ X+ is then a
strategy for Player. Note that we can represent such a strategy by its set of
plays:

P (f) = {x1y1 · · · xkyk | f(x1) = (y1, f1), . . . , fk−1(xk) = (yk, fk)}.

One can then show that composition in G(R) is given by “parallel composi-
tion plus hiding” [Abr94, AJ94a, Abr96b]:

P (f ; g) = {s ↾ X,Z | s ∈ P (f)||P (g)}

S||T = {s ∈ L(X,Y,Z) | s ↾ X,Y ∈ S ∧ s ↾ Y,Z ∈ T}

where X = X+ +X−, Y = Y + + Y −, Z = Z+ + Z−, and

L(S1, S2, S3) = {s ∈ (S1 + S2 + S3)
∗ | si ∈ Sj ∧ si+1 ∈ Sk =⇒ |j − k| ≤ 1}.

The identities are the “copycat” strategies as in [AJ94a, Abr96b]. We can
then obtain the simple category of games described in [Abr96b] by applying
a specification structure in the sense of [AGN96b] to G(R), in which the
properties over (X+,X−) are the prefix-closed subsets of (X−X+)∗, i.e. the
“safety properties” [AP93], which in this context are the game trees.

4.2 Some geometries of interaction

Suppose we begin with the simpler category Pfn of sets and partial functions
(which is a lluf sub-category of R). This is easily seen to be a sub-traced-
monoidal category of R, with tensor as disjoint union, and the trace given
by a sum-of-paths formula (cf. [AM82]). That is, if

f : X + U ⇀ Y + U

is a partial function, then

TrUX,Y (f) =
∨

k∈ω

fk,

where fk(x) is defined and equal to y iff starting from x we perform exactly
k iterations of the feedback loop around U before exiting at Y with result
y:

fk = inlX,U ; (f ; [0, inrX,U])
k; f ; [idY , 0]

where 0 is the everywhere undefined partial function. We can think of this
sub-category of R as the “one-state resumptions”, so that, applying the G
construction to Pfn we get a category of history-free strategies [AJ94a].

As a minor variation, we could start with the category PInj of sets and
partial injective maps. Then G(PInj) is essentially the original Geometry
of Interaction construction of Girard, as explained in [AJ94a, AJM96]. In
particular, the composition in G(PInj) corresponds exactly to the Execution
Formula. This category can be lifted to the setting of Hilbert spaces by
applying the free construction described in [Bar93a], which sends a set X to
the Hilbert space l2(X) of square summable families {ax | x ∈ X}.

As a final variation, we could start with Rel, the category of sets and
relations. This yields a non-deterministic version of the Geometry of In-
teraction, which can be generalized via non-deterministic resumptions to a
category of non-deterministic strategies. G(Rel) is the example mentioned
at the end of [JSV95].

4.3 Stochastic interaction

As a more substantial variation of the above, consider the following category
of stochastic kernels [Law62, Gir81]. Objects are structures (X,M(X)),
where M(X) is a σ-algebra of subsets of X. A morphism f : X −→ Y is a
function

f : X ×M(Y) −→ [0, 1]

such that for each x ∈ X f(x, ·) : M(Y) −→ [0, 1] is a measure, and for each
M ∈ M(Y), f(·,M) : X −→ [0, 1] is a measurable function. One can think
of stochastic kernels as “probabilistic transition functions”. Note that we do
not require that each f(x, ·) is a probability measure, i.e. that f(x, Y) = 1,
since we wish to allow for “partial” transition functions.

Composition is by integration: if f : X → Y and g : Y → Z, then

f ; g(x,M) =

∫

Y

g(·,M)df(x, ·).

Identities are given by point measures:

idX(x,M) =

{

1, x ∈ M

0, x 6∈ M.

Tensor product is given by disjoint union; note that M(X + Y) ∼= M(X)×
M(Y).

Feedback is given by a sum-over-paths formula. Given f : X ⊗ U −→
Y ⊗ U , and x ∈ X, we define for each k ∈ ω a measure µk on M(U) which
gives the probability that we will end up in M starting from x after exactly
k traversals of the feedback loop:

µ0(M) = f(inl(x), (∅,M))

µk+1(M) =

∫

U

f(inr(·), (∅,M))dµk .

The probability that we will end up in M ∈ M(Y) starting from x after
exactly k iterations of the feedback loop is given by:

f0(x,M) = f(inl(x), (M,∅))

fk+1(x,M) =

∫

U

f(inr(·), (M,∅))dµk .

Finally, the trace is defined by summing over all paths:

TrUX,Y (f)(x,M) = Σk∈ωfk(x,M).

4.4 From particles to waves: the “New Foundations” version

of Geometry of Interaction

All the above models can be thought of as dynamical systems in which an
information “token” or “particle” traces some path around a network. This
particulate interpretation of diagrams of boxes and wires is supported by the
“additive” (disjoint union) interpretation of the tensor. It is also possible to
give an interpretation in which an information “wave” travels through the
network; formally, this will be supported by a “multiplicative” (cartesian
product) interpretation of the tensor.

Specifically, we can define a traced monoidal structure on the category
Cpo of cpo’s and continuous functions, in which the tensor is given by the
cartesian product, and feedback by the least fixpoint operator: that is, if
f : D ×A −→ E ×A, then

TrAD,E(f) = λd : D. f(d,Y(f(d, ·); snd)); fst.

The category G(Cpo) is then exactly the category GI(C) described in [AJ94b].
A sub-category of this category will consist of dataflow networks, built

up from objects which are domains of streams. The symmetric feedback
operator giving the composition in G(Cpo) has been used in this con-
text [SDW96, GS96], inter alia in developing assumption/commitment style
proof rules for dataflow networks.

4.5 The continuous case?

One final “example” should be mentioned, although we have not as yet
succeeded in working out the details. The operations of series and parallel
composition and feedback are standard in continuous-time control systems,
electronic circuits and analogue computation. In particular, feedback is
interpreted by solving a differential equation. There should then presumably
be a traced monoidal category C of manifolds and smooth maps, for which
G(C) would give an “infinitesimal” model of interaction. Such a category
might be relevant to the study of hybrid systems [PS95].

5 Consequences

We shall, very briefly, sketch some further developments from this point.

5.1 Correctness issues

We can associate correctness properties with the rudimentary types of G(C),
in the setting of specification structures [AGN96b]. Types can then carry
strong correctness information, and the type inference rule for composition

f : A → B g : B → C

f ; g : A → C

becomes a compositional proof rule for process interaction. See [Abr93,
Abr95b, AGN96a, AGN96b] for further discussion and applications.

We shall mention some particular cases for the examples described above.

Resumptions In this case, we can get the structure of games as safety
properties, and of winning strategies as liveness properties, as described in
[AJ94a, Abr96b]. In particular, the fact that winning strategies are closed
under composition corresponds to a guarantee that there is no “infinite
chattering” [Hoa85] in interaction.

Geometry of Interaction In this case, we can focus on nilpotency as a
semantic analogue of normalization, as in [Gir88], or instead proceed as in
the previous example, as in [AJ94a], where a Full Completeness Theorem
for Multiplicative Linear Logic is obtained.

5.2 Modelling types and functions

The divide between concurrency theory and denotational semantics, type
theory and categorical logic is bridged in our approach, since the categories
we construct, or derivatives thereof, have the right structure to model typed,
higher-order programming languages. The key point is that we are now mod-
elling functions as processes, and function application as a particular form
of process interaction, as advocated in [Mil92], but in a highly structured,
syntax-free and compositional fashion.

Moreover, the quality of these process models of functional computation
is high: the models based on games yielded the first syntax-independent
constructions of fully abstract models for PCF [AJM96, HO96], and this
has been followed by a number of further results [AM95, McC96b, McC96a].
The degree of mathematical structure in these models is also witnessed by
the axiomatic treatment of full abstraction it has been possible to extract
from them [Abr96a].

5.3 State and concurrency

It has also proved possible to give a game semantics for Idealized Algol
[Abr95a], which is a clean integration of higher-order functional program-
ming with imperative features and block structure [Rey81, Ten94]. Again,
this has led to the first syntax-independent construction of a fully abstract
model [AM96]. The treatment of local variables is process-based, following
the line of [Mil75, Mil80, Red96]; but with the the right mathematical tools
now available, a more definitive treatment can be given, as confirmed by the
results on full abstraction.

This model of Idealized Algol extends smoothly to incorporate concur-
rency [Abr95a]. It remains to be seen how accurate the model of the concur-
rent language is, but the situation looks quite promising: moreover, Idealized
Parallel Algol is rich enough to represent rather directly many of the features
of today’s concurrent object-oriented languages.

References

[Abr93] S. Abramsky. Interaction categories (extended abstract). In The-
ory and Formal Methods ‘93, Workshops in Computer Science,
pages 57–70. Springer-Verlag, 1993.

[Abr94] S. Abramsky. Proofs as processes. Theoretical Computer Science,
135:5–9, 1994.

[Abr95a] S. Abramsky. A game semantics for Idealized Parallel Algol.
Unpublished lecture, 1995.

[Abr95b] S. Abramsky. Interaction categories and communicating sequen-
tial processes. In A. W. Roscoe, editor, A Classical Mind: Essays
in Honour of C. A. R. Hoare, pages 1–15. Prentice Hall Interna-
tional, 1995.

[Abr96a] S. Abramsky. Axioms for full abstraction and full completeness.
Submitted for publication, 1996.

[Abr96b] S. Abramsky. Semantics of interaction. In Proceedings of 1995
CLiCS Summer School, Isaac Newton Institute. Cambridge Uni-
versity Press, 1996. To appear.

[Acz88] P. Aczel. Non-well-founded sets. CSLI, 1988.

[AGN96a] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories
and the foundations of typed concurrent programming. In De-
ductive program design: Proceedings of the 1994 Marktoberdorf
International Summer School. Springer-Verlag, 1996. To appear.

[AGN96b] S. Abramsky, S. Gay, and R. Nagarajan. Specification structures
and propositions-as-types for concurrency. In Logics for Con-
currency: Structure vs. Automata, Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[AJ94a] S. Abramsky and R. Jagadeesan. Games and full complete-
ness for multiplicative linear logic. Journal of Symbolic Logic,
59(2):543–574, 1994.

[AJ94b] S. Abramsky and R. Jagadeesan. New foundations for the geome-
try of interaction. Information and Computation, 111(1):53–119,
1994. Conference version appeared in LiCS ‘92.

[AJM96] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction
for PCF. Submitted for publication, 1996.

[AM82] M. A. Arbib and E. G. Manes. The pattern-of-calls expansion
is the canonical fixpoint for recursive definitions. Journal of the
ACM, 29(2):577–602, 1982.

[AM95] S. Abramsky and G. McCusker. Games and full abstraction for
the lazy λ-calculus. In Tenth Annual Symposium on Logic in
Computer Science, pages 234–243, 1995.

[AM96] S. Abramsky and G. McCusker. Full abstraction for Idealized
Algol. To appear, 1996.

[AP93] M. Abadi and G. Plotkin. A logical view of composition and
refinement. Theoretical Computer Science, 114(1):3–30, 1993.

[Bar93a] M. Barr. Algebraically compact functors. Technical report, 1993.

[Bar93b] M. Barr. Terminal coalgebras for endofunctors on sets. Technical
Report, 1993.

[BE93] S. Bloom and Z. Esik. Iteration Theories. Springer-Verlag, 1993.

[Bek71] H. Bekić. Towards a mathematical theory of processes. Technical
Report TR25.125, IBM Laboratory, Vienna, 1971.

[Gir81] M. Giry. A categorical approach to probability theory. In Cate-
gorical Aspects of Topology and Analysis, volume 915 of Lecture
Notes in Mathematics. Springer-Verlag, 1981.

[Gir88] J.-Y. Girard. Geometry of interaction I: interpretation of System
F. In R. Ferro, editor, Logic Colloquium ‘88, pages 221–260.
North Holland, 1988.

[GS96] R. Grosu and K. Stølen. A model for mobile point-to-point
dataflow networks without channel sharing. Technical report,
1996.

[Has96] M. Hasegawa. Traced computational models. Technical report,
1996.

[HO96] M. Hyland and C.H. L. Ong. On full abstraction for PCF. Sub-
mitted for publication, 1996.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall International, 1985.

[Jon93] C. B. Jones. Process-algebraic foundations for an object-based
design notation. Technical Report UMCS-93-10-1, University of
Manchester, 1993.

[Jon96] C. B. Jones. Some practical problems and their influence on se-
mantics. In Hanne Riis Nielson, editor, Programming Languages
and Systems—ESOP ‘96, volume 1058 of Lecture Notes in Com-
puter Science, pages 1–17. Springer-Verlag, 1996.

[JSV95] A. Joyal, R. Street, and D. Verity. Traced monoidal categories.
Technical report, 1995.

[KL80] G. M. Kelly and M. Laplaza. Coherence for compact closed cat-
egories. Journal of Pure and Applied Algebra, 19:193–213, 1980.

[Law62] F. W. Lawvere. The category of probabilistic mappings. Unpub-
lished manuscript, 1962.

[McC96a] G. McCusker. Games and Full Abstraction for a functional met-
alanguage with recursive types. PhD thesis, Imperial College,
University of London, 1996. to appear.

[McC96b] G. McCusker. Games and full abstraction for FPC. In Interna-
tional Symposium on Logic in Computer Science, 1996.

[Mil75] R. Milner. Processes: a mathematical model of computing
agents. In Logic Colloquium ‘73, pages 157–173. North Holland,
1975.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer-
Verlag, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall In-
ternational, 1989.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in
Computer Science, 2(2):119–142, 1992.

[MMP95] A. Mifsud, R. Milner, and J. Power. Control structures. In
Tenth Annual Symposium on Logic in Computer Science, pages
188–198, 1995.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses. Information and Computation, 100(1):1–77, 1992.

[Plo76] G. Plotkin. A powerdomain construction. SIAM Journal on
Computing, 5(3):452–487, 1976.

[PS95] A. Pnueli and J. Sifakis, editors. Special issue on hybrid systems,
1995. Theoretical Computer Science vol. 138 no. 1.

[Red96] U. Reddy. Global state considered unncessary: an object-based
semantics for Algol. Lisp and Functional Programming, 1996.

[Rey81] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and
J. C. van Vliet, editors, Algorithmic Languages, pages 345–372.
North Holland, 1981.

[SDW96] K. Stølen, F. Dederichs, and R. Weber. Assump-
tion/commitment rules for networks of asynchronously commu-
nicating agents. Formal Aspects of Computing, 1996.

[Ten94] R. D. Tennent. Denotational semantics. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 3, pages 169–322. Oxford University
Press, 1994.

[Win83] G. Winskel. Synchronization trees. In Automata, Languages
and Programming: 10th International Colloquium, pages 695–
711. Springer-Verlag, 1983.

	1 Introduction
	2 The semantic universe: transducers
	2.1 Typed vs. type-free
	2.2 Intrinsic vs. extrinsic interaction: paths vs. names

	3 The G construction
	4 Examples
	4.1 From resumptions to strategies
	4.2 Some geometries of interaction
	4.3 Stochastic interaction
	4.4 From particles to waves: the ``New Foundations'' version of Geometry of Interaction
	4.5 The continuous case?

	5 Consequences
	5.1 Correctness issues
	5.2 Modelling types and functions
	5.3 State and concurrency

