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Abstract. Transition systems with independence and asynchronous transi-
tion systems are noninterleaving models for concurrency arising from the
same simple idea of decorating transitions with events. They differ for
the choice of a derived versus a primitive notion of event which induces
considerable differences and makes the two models suitable for different
purposes. This opens the problem of investigating their mutual relation-
ships, to which this paper gives a fully comprehensive answer.

In details, we characterise the category of extensional asynchronous tran-
sitions systems as the largest full subcategory of the category of (labelled)
asynchronous transition systems which admits TSI, the category of tran-
sition systems with independence, as a coreflective subcategory. In addi-
tion, we introduce event-maximal asynchronous transitions systems and
we show that their category is equivalent to TSI, so providing an exhaus-
tive characterisation of transition systems with independence in terms of
asynchronous transition systems.

Introduction

Following the leading idea of CCS [11] and related process calculi [10, 2, 12, 9],
the behaviour of concurrent systems is often specified extensionally by describ-
ing their ‘state-transitions’ and the observable behaviours that such transitions
produce. The simplest formal model of computation able to express naturally
this idea is that of labelled transition systems, where the labels on the transi-
tions are thought of as the actions of the system at its ‘external ports’, or, more
generally, the observable part of its behaviour.

Transition systems are an interleaving model of concurrency, which means
that they do not allow to draw a natural distinction between interleaved and
concurrent execution of actions. More precisely, transition systems do not model
the fact that concurrent actions can overlap in time and reduce concurrency to
a nondeterministic choice of action interleavings, so loosing track of the casual
dependencies between actions and, consequently, of the fact that computations
that differ only for the order of independent actions represent, actually, the same
behaviour. In other words, interleaving models abstract away from the difference
between the factual temporal occurrence order and the more conceptual causal
ordering of actions. The simplest exemplification of this situation is provided
by the CCS terms a | b and a.b + b.a, both described by the following transition
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system.

•

•

??b ~~~~
•

__ a@@@@

•

__

a

@@@@
??

b

~~~~

(1)

Although for many applications this level of abstraction is appropriate, for sev-
eral other kinds of analysis a model may be desirable that takes full account
of concurrency. For instance, apart from any philosophical consideration about
the semantic relevance of cause/effect relationships, knowing that different inter-
leavings represent the same behaviour can reduce considerably the state-space
explosion problem when checking system properties such as safety properties
and fairness [8, 20, 16].

Several efforts have been devoted to the search of transition-based noninter-
leaving models, e.g., transition systems enriched with additional features that
make expressing concurrency explicitly possible (cf., e.g., [17, 4, 6, 7, 5, 3]).
The present paper focuses on two such models, namely asynchronous transition
systems, introduced independently by Bednarczyk [1] and Shields [19], and tran-
sitions systems with independence, proposed by Winskel and Nielsen [21]. These
two competing approaches are, among the others, those building on the sim-
plest idea: endow transition systems with some formal notion of ‘similarity’ of
transitions that enables to distinguish whether or not the opposite edges in dia-
grams such as (1) represent the same action. Intuitively, this is achieved in both
approaches by thinking of transitions as occurrences of events, two transitions
representing the same event if they correspond to the same action. However,
the differences induced on the models by the different choices of how to assign
events to transitions are definitely not trivial. And so are the relationships that
these models bear to each other.

Getting to the details, asynchronous transition systems assign events to tran-
sitions explicitly and enrich the structure further by adding an independence
relation on the events which describes their causal relationships. This clearly
makes distinguishing nondeterminism and concurrency possible; a.b+b.a and a|b
can be represented respectively by, e.g., the following labelled asynchronous tran-
sition systems, where ∼ indicates whether or not the events e and e′ (labelled
by a and b) are independent.

•

•

??be′ ~~~~
•

__ ea@@@@

•

__

ae

@@@@
??

e′b

~~~~

•

•

??be′ ~~~~
∼ •

__ ea@@@@

•

__

ae

@@@@
??

e′b

~~~~

Observe that here and in the rest of the paper we consider labelled asynchronous
transition systems [1, 21], i.e., asynchronous transition systems with a further
labelling of events, as the proper extension of labelled transition systems.



The expressive power of asynchronous transition systems is clearly not limited
to the example above; for instance, Bednarczyk [1] and Mukund and Nielsen [14]
have shown that noninterleaving related issues for CCS processes—such as locali-
ties—can be modelled faithfully using this model. However, it can be argued that
assigning both the independence relation and the decoration of transitions with
events explicitly means assigning too much. In fact, this obviously introduces
some redundancies in the model: there are, for instance, many non-isomorphic
variations of the asynchronous transitions systems above which can still be rea-
sonably thought as models of a|b and a.b + b.a. Moreover, although it is usually
easy to tell about independence of transitions, in many important cases it is at
least not immediate to assign events to transitions: it might very well be the
goal of the entire semantic analysis to understand what the events of the system
and their mutual relationships are. This consideration seems to indicate that
asynchronous transitions systems cannot have a significant impact in Plotkin’s
SOS style semantics, unless the independence relation is promoted to a greater
role.

Transition systems with independence are an attempt to answer to the pre-
vious observation. Here events are not introduced explicitly. They are rather
derived from the structure of the ‘simply-labelled’ transitions, upon which the
independence relation is directly layered. In such a model, each of the CCS
terms discussed above admits only one transition system which can faithfully
represent it, viz., respectively,

•

•

??b ~~~~
•

__ a@@@@

•

__

a

@@@@
??

b

~~~~

•

•

??b ~~~~
∼ •

__ a@@@@

•

__

a

@@@@
??

b

~~~~

The implicit information about events can be easily deduced from the presence
(or the absence) of ∼, making the achieved expressive power comparable to
that of asynchronous transition systems. Moreover, avoiding a primitive notion
of event makes providing a ‘noninterleaving’ operational semantics in the SOS
style a relatively simple task (cf. [21]).

However, in order to be consistent with the computational intuition, the
axiomatics of transition systems with independence involves (apparently nec-
essarily [18]) one condition expressed ‘globally’ in terms of all the transitions
representing occurrences of the same event. This contrasts with the ‘local’ con-
ditions defining asynchronous transition systems and can make hard checking
that a given structure is a transitions system with independence. Thus, the
differences induced on the two models by the choice of a primitive versus a
derived notion of event are far-reaching and seem to make them suitable for dif-
ferent applications. This indicates that it is not wise to choose once and for all
between asynchronous transition systems and transition systems with indepen-
dence, which, in turn, opens the issue of investigating formally their analogies
and differences. The contribution of this paper is to answer exhaustively such



a question, which, actually, escaped the thorough analysis of models for concur-
rency carried out in [21, 15, 18]. Precisely, we prove that transition systems with
independence besides being nicely related to a class of asynchronous transition
systems that we call extensional, are equivalent to the so-called event-maximal
asynchronous transition systems. These latter can be seen at the same time as
those transition systems that make as few identifications of transitions as possi-
ble, i.e., contain no confusion about event identities, and as those in which such
identities are derivable from the independence relation, i.e., reduce the redun-
dancy. It is worth mentioning that the converse does not hold: the asynchronous
transitions systems for which the independence relation is in turn derivable from
the structure of events, and therefore redundant, are slightly less general. They
correspond to the transitions systems with independence for which ‘indepen-
dence is concurrency’ considered in [15, 18].

Concerning the organization of the paper and its technical contributions,
after recalling in Section 1 the definitions of LATS and TSI, respectively the cat-
egories of labelled asynchronous transitions systems and of transitions systems
with independence, in Section 2 we look for a functor adjoint to the obvious
embedding TSI →֒ LATS. In particular, we identify the category of extensional
asynchronous transitions systems, eLATS, as the largest subcategory of LATS

which admits TSI as a coreflective subcategory. It is worth noticing here that
at : eLATS → TSI, the right adjoint of the coreflection, complements and corrects
a non-well-defined construction sketched in [21]: as a matter of fact, due to the
greater generality of asynchronous transition systems, eLATS happens to be the
largest subcategory of LATS on which such a construction makes sense. Finally,
Section 3 introduces event-maximal asynchronous transitions systems and their
category meLATS, providing the proof of the equivalence TSI ∼= meLATS. This
yields a complete description of TSI in terms of LATS which can be useful in prac-
tise to translate back and forth between the two models when the application
one has in mind requires it.

Summing up our results, this paper presents the following commutative di-
agram, which makes completely formal and precise the relationships between
transition systems with independence and asynchronous transition systems.

TSI
� � //� v

))RRRRRRRRRRRR
� _

��

∼=

LATS

meLATS

?�

OO

� � // eLATS

?�

OOii

at

⊥

RRRRRRRRRRRR

1 Preliminaries

In this section we recall briefly the definitions of asynchronous transition systems,
transition systems with independence, and their respective categories [1, 21].

As discussed in the introduction, asynchronous transition systems are sim-
ply transition systems whose transitions are decorated by events equipped with
an independence relation. Four axioms (A1–A4) are needed to guarantee the
intended meaning for the events and the independence relation.



Definition 1.1 (Labelled Asynchronous Transition Systems)
A labelled asynchronous transition system (lats for short) is a structure

A = (SA, iA, EA,TranA, IA, LA, ℓA),

where (SA, iA, EA,TranA) is a transition system with set of states SA, initial
state iA ∈ SA, and transitions TranA ⊆ SA ×EA ×SA, and where EA is a set of
events, LA a set of labels, ℓA : EA → LA a labelling function, and IA ⊆ EA×EA,
the independence relation, is an irreflexive, symmetric relation such that

A1. e ∈ EA ⇒ ∃s1, s2 ∈ SA. (s1, e, s2) ∈ TranA;

A2. (s, e, s1), (s, e, s2) ∈ TranA ⇒ s1 = s2;

A3. e1 IA e2 & (s, e1, s1), (s, e2, s2) ∈ TranA ⇒

∃u. (s1, e2, u), (s2, e1, u) ∈ TranA;

s

s1
��
�

e1

��
s2

??
? e2

��

u
e2

�� e1
��

IA

A4. e1 IA e2 & (s, e1, s1), (s1, e2, u) ∈ TranA ⇒

∃s2. (s, e2, s2), (s2, e1, u) ∈ TranA.

s

s1
��
�e1

��
s2

e2

��

u

???
e2

�� e1
��

IA

In the rest of the paper we shall let I(e) denote the set {e′ | e IA e′} and, for
convenience, use (s, ea, s′) as a shorthand for a transition (s, e, s′) with ℓA(e) = a.

The following is the standard definition of morphisms for lats, which essen-
tially captures the idea of simulation (cf. [1, 21]).

Definition 1.2 (Asynchronous Transition System Morphisms)
For A and A′

lats, a morphism from A to A′ is a triple of (partial) functions1

(σ : SA → SA′ , η : EA ⇀ EA′ , λ : LA ⇀ LA′), where (σ, η) is a morphism of
labelled transition systems, i.e.,

⊲ σ(iA) = iA′ ;

⊲ (s1, e, s2) ∈ TranA & η(e)↓ ⇒
(

σ(s1), η(e), σ(s2)
)

∈ TranA′ ;

(s1, e, s2) ∈ TranA & η(e)↑ ⇒ σ(s1) = σ(s2);

which preserves the labelling, i.e., makes the following diagram commutative

EA
/

η

��
ℓA

EA′

��
ℓA′

LA
/

λ
LA′ ;

and the independence, i.e.,

e1 IA e2 & η(e1)↓, η(e2)↓ ⇒ η(e1) IA′ η(e2).

1We use, respectively, f : A → B and f : A ⇀ B to indicate total and partial functions. For
f a partial function, f(x)↓ (f(x)↑) means that f is (un)defined at x.



It is immediate to see that lats and their morphisms form a category, which
we shall refer as LATS.

Starting from Definition 1.1, transition systems with independence attempt
to simplify the structure retaining explicitly only the independence, now layered
directly on the transitions. As already mentioned, the notion of event becomes
implicit, determined by the independence relation through the equivalence ∼.

Definition 1.3 (Transition Systems with Independence)
A transition system with independence (tsi for short) is a structure

T = (ST , iT , LT ,TranT , IT ),

where (ST , iT , LT ,TranT ) is a transition system and IT ⊆ TranT × TranT , the
independence relation, is an irreflexive, symmetric relation, such that, denoting
by ≺ the binary relation on transitions given as

(s, a, s1) ≺ (s2, a, u) ⇔

∃b ∈ LT . (s, a, s1) IT (s, b, s2) &

(s, a, s1) IT (s1, b, u) & (s, b, s2) IT (s2, a, u)

and by ∼ the least equivalence on transitions which includes it, we have

T1. (s, a, s1) ∼ (s, a, s2) ⇒ s1 = s2;

T2. (s, a, s1) IT (s, b, s2) ⇒ ∃u. (s, a, s1) IT (s1, b, u) & (s, b, s2) IT (s2, a, u);

T3. (s, a, s1) IT (s1, b, u) ⇒ ∃s2. (s, a, s1) IT (s, b, s2) & (s, b, s2) IT (s2, a, u);

T4. (s, a, s1) ≺ ∪≻ (s2, a, u) IT (w, b, w′) ⇒ (s, a, s1) IT (w, b, w′).

The ∼-equivalence classes, in the following denoted by [(s, a, s′)], for (s, a, s′)
a representative of the class, are to be thought of as events, i.e., t1 ≺ t2 means
that t1 and t2 are part of a ‘concurrency diamond’, whilst t1 ∼ t2 means that they
are occurrences of the same event. Concerning the axioms, notice then that T1

(the global condition mentioned earlier) corresponds to A2 and axioms T2 and T3

correspond, respectively, to A3 and A4. The role of T4 is to ensure that the
independence relation is actually well defined as a relation on events. In the rest
of the paper we shall see that this view of [(s, a, s′)] agrees with the notion of
events for lats and that, in fact, it identifies an interesting subclass of them.

Using I(t) to denote the set {t′ | t IT t′}, we can state the following lemma
which will be useful later on. As a matter of notations, we shall use πi to denote
projections, i.e., if t is (s, a, s′), then π1(t) = s, π2(t) = a and π3(t) = s′.

Lemma 1.4

Axiom T4 is equivalent to

t1 ∼ t2 ⇒ I(t1) = I(t2). (T4
′)

Proof. Easy, by induction. X



The following definition of morphisms for transition systems with indepen-
dence resembles closely that given earlier for lats.

Definition 1.5 (Transition System with Independence Morphisms)
For T and T ′

tsi, a morphism from T to T ′ consists of a pair of (partial) functions
(σ : ST → ST ′ , λ : LT ⇀ LT ′) which is a morphism of transition systems and, in
addition, preserves independence, i.e.,

(s1, a, s2) IT (s′1, b, s
′
2) & λ(a)↓, λ(b)↓ ⇒

(

σ(s1), λ(a), σ(s2)
)

IT ′

(

σ(s′1), λ(b), σ(s′2)
)

.

We shall use TSI to denote the category of tsi and their morphisms.

The following lemma states that tsi morphisms are well defined as maps of
events, an easy consequence of the fact that they preserve independence that we
shall use in order to embed TSI into LATS.

Lemma 1.6 (Morphisms map Events to Events)
For (σ, λ) : T → T ′ a morphism of tsi and (s1, a, s2) ∼ (s′1, a, s′2) equivalent
transitions of T , if λ(a)↓, then

(

σ(s1), λ(a), σ(s2)
)

∼
(

σ(s′1), λ(a), σ(s′2)
)

, i.e.,
lats morphisms preserve ∼.

2 From LATS to TSI: a coreflection

The scene is now set to expose the adjunction between TSI and a full subcategory
of LATS. First, we define an inclusion ta : TSI →֒ LATS in the obvious way.

On the objects, ta acts by decorating each transition with the event identified
by the ∼-class the transition belongs to. The label of such an event is, of course,
the label originally carried in the tsi by the transition. Observe that, in force
of Definition 1.3 of ∼, this labelling is well defined. Finally, the independence
relation of ta(T ) is inherited directly from the one of T . The formal definition
is as follows.

Definition 2.1 (TSI →֒ LATS)
For T a tsi, let ta(T ) be the structure (ST , iT , E,Tran, I, LT , ℓ), where, denoting
by ∼ the equivalence relation induced by IT as in Definition 1.3,

⊲ E = TranT /∼, the set of ∼-classes of TranT ;

⊲ Tran =
{(

s1, [(s1, a, s2)], s2

) ∣

∣ (s1, a, s2) ∈ TranT

}

;

⊲ [(s1, a, s2)] I [(s′1, a, s′2)] if and only if (s1, a, s2) IT (s′1, a, s′2);

⊲ ℓ
(

[(s1, a, s2)]
)

= a.

It follows from Lemma 1.4 that the definition of the independence on the
events of ta(T ) is well given. It is now easy to verify the following.

Proposition 2.2

The transition system ta(T ) is a lats.



Proof. Axiom A1 is trivially satisfied. Axiom A2 is satisfied because of T1, for, by
definition of ta , two transitions carry the same event if and only if they belong
to the same ∼-class in T . Concerning A3 and A4, they correspond directly to T2

and T3. X

In order to define ta as a functor, we need to assign its action on the mor-
phisms in TSI.

Definition 2.3 (TSI →֒ LATS)
For (σ, λ) : T → T ′ a morphism of tsi, let ta

(

(σ, λ)
)

be (σ, η, λ), where

η
(

[(s, a, s′)]
)

=

{

[

(σ(s), λ(a), σ(s′))
]

if λ(a)↓,

undefined if λ(a)↑.

That Definition 2.3 is well given follows from Lemma 1.6; it is then easy to
check that ta is a full and faithful functor, i.e., an embedding of TSI in LATS.

The obvious idea for a map at left inverse to ta, as hinted also in [21], is
to forget the events and bring the independence from the events down to the
transitions, i.e., for A a lats, to take at(A) to be (SA, iA, LA,Tran , I), where

⊲ (s, a, s′) ∈ Tran if and only if (s, ea, s′) ∈ TranA,

⊲ (s, a, s1) I (s2, b, s3) if and only if (s, ea
1 , s1), (s2, e

b
2, s3) ∈ TranA & e1 IA e2.

This construction, however, contrarily to the claims of [21], is not well defined on
the whole LATS, since the interplay between the explicitly given independence
and events in lats allows rather complicated situations—of dubious computa-
tional significance—which cannot be expressed with tsi. A counterexample is
illustrated by the following lats.

The independent events are e IA e1,v

u

s3

==

eb

1

||||||||||||||||||
s1

>>

eb

1}}}

}}}

FF

eb

2

s1

``

eaAAA

AAA

XX

ea

3

s4

aa

ea

BBBBBBBBBBBBBBBBBB

s

hh

ea

3

PPPPPPPPPPPPPPP

``

ea

66

eb

2

nnnnnnnnnnnnnnn

>>

eb

1

e3 IA e1, e IA e2, and e2 IA e3, i.e.,
the system consists of three indepen-
dency diamonds ‘on top of each oth-
er’. It is easy to check that this is
an object of LATS. However, by ap-
plying at we create a ‘ghost’ indepen-
dency diamond (the one highlighted by
the dotted lines), so violating condi-
tion T1. In fact, (s, a, s3) ∼ (s, a, s1)
with s1 6= s3. This demonstrates that

the combination of independence and events makes it hard to define ‘uniformly’
a map from LATS to TSI to act as left inverse to ta : TSI →֒ LATS.

However, it is not hard to check that things go smoothly for those lats be-
longing to the image of ta. In such a case, at lands in TSI and, of course, we
have the following result.

Lemma 2.4

For any T in TSI, we have at ◦ ta(T ) = T .



At this point, the issue arises of identifying suitable conditions which, im-
posed on lats, constrain them down to a category which bears good relationships
with TSI. Possibly, one should also like to find a nice characterisation of the im-
age of ta in LATS. We shall do so next, by focusing on extensional asynchronous
transition systems.

We start by considering lats A satisfying

(s1, e
a
1 , s2) 6= (s1, e

b
2, s2) ∈ TranA ⇒ a 6= b. (Ex)

In words, these are lats where no two transitions between the same states can
carry the same label. This is a kind of extensionality condition that, in view
of Definition 1.3, is clearly necessary for our purposes. In fact, without (Ex),
the one-to-one correspondence between morphisms of the kinds ta(T ) → A and
T → at(A)—required by the adjointness conditions—would not exist. Next, we
let the counterexample discussed above guide us to identify two simple additional
conditions—strengthening A3 and A4 with uniqueness criteria—that we shall
prove to be necessary and sufficient in order for at to be well defined on lats

satisfying (Ex). As a notation, for (s, ea, s′) ∈ TranA, we shall use at(s, ea, s′)
to refer to the (unique) transition (s, a, s′) ∈ Tranat(A) it corresponds to.

Proposition 2.5

For A a lats satisfying (Ex), at(A) belongs to TSI if and only if

i) for e1 IA e2 and (s, ea
1 , s1), (s, e

b
2, s2) ∈ TranA, there exists a unique pair

(s1, x
b
2, u), (s2, x

a
1 , u) ∈ TranA such that e1 IA x2, e2 IA x1, and x1 IA x2.

ii) for e1 IA e2 and (s, ea
1 , s1), (s1, e

b
2, u) ∈ TranA, there exists a unique pair

(s, xb
2, s2), (s2, x

a
1 , u) ∈ TranA such that e1 IA x2, e2 IA x1, and x1 IA x2.

Proof. If at(A) ∈ TSI, the pairs of transitions in i) and ii) exist because of axioms A3

and A4. Their uniqueness is needed in order for at(A) to satisfy axiom T1. Sup-
pose that, on the contrary, in case ii) there are two pairs (s1, x

b
2, u), (s2, x

a
1 , u) and

(s1, y
b
2, w), (s2, y

a
1 , w) satisfying the condition. Since A satisfies (Ex), we have w 6= u,

which implies that at(s, eb
2, s2) ≺ at(s1, y

b
2, w) and at(s, eb

2, s2) ≺ at(s1, x
b
2, u), i.e.,

that at(s1, x
b
2, u) ∼ at(s1, y

b
2, w), which contradicts T1. The case for ii) can be

proved along the same lines, thus showing the necessity of the conditions.

Concerning their sufficiency, the extensionality guarantees that Iat(A) is irreflexive,
whilst the property of symmetry for Iat(A) is inherited from IA. It remains check
that the axioms T1–T4 defining tsi hold for at(A). Axioms A3, A4 and conditions
i) and ii) above ensure that if at(t) ≺ at(t′), then π2(t) = π2(t

′), i.e., t and t′

represent the same event. It follows then by induction that at(t) ∼ at(t′) implies
π2(t) = π2(t

′), for all at(t),at(t′) ∈ Tranat(A). If in addition π1

`

at(t)
´

= π1

`

at(t′)
´

,
then also π1(t) = π1(t

′) and axiom A2 implies that π3(at(t)) = π3(at(t
′)). So T1 is

satisfied. Actually, this also implies that T4 holds. For, since the independence in
at(A) is inherited from that on the events in A, and t and t′ carry the same event, we
have that at(t) ∼ at(t′) implies I(at(t)) = I(at(t′)). This, as proved by Lemma 1.4,
is equivalent to T4. Finally, T2 and T3 hold because of the corresponding A3

and A4. X



We call extensional the lats satisfying (Ex) and the conditions of Proposi-
tion 2.5, and we denote by eLATS the full subcategory of LATS they determine.

Clearly, at can be extended to a functor from eLATS to TSI which simply
‘forgets’ the event component of LATS morphisms, i.e., for (σ, η, λ) : A → A′,
take at

(

(σ, η, λ)
)

to be (σ, λ). We shall see next that such a functor is right
adjoint to ta : TSI →֒ eLATS.

Proposition 2.6 (ta ⊣ at : TSI ⇀ eLATS)
For any A ∈ eLATS and any morphism m : T → at(A) in TSI, there exists a
unique morphism mT : ta(T ) → A such that at(mT ) = m.

Proof. Let m be (σ, λ). Clearly, by definition of at , mT must be of the form (σ, γ, λ)
for some γ : Eta(T ) → EA. It is easy to realize that the only possible choice for γ is
the following: for (s, a, s′) ∈ TranT and λ(a)↓, let γ([(s, a, s′)]) be the event e ∈ EA

of the unique transition
`

σ(s), eλ(a), σ(s′)
´

∈ TranA. This is a well given definition,
for Lemma 1.6 ensures that m maps all transitions in [(s, a, s′)] to the same ∼-class
of Tranat(A), and the proof of Proposition 2.5 shows that if two transitions belong
to the same ∼-class of Tranat(A), they originate from transitions in TranA carrying
the same event. This proves both existence and uniqueness of mT . X

Proposition 2.6 proves that the identity natural transformation

η =
{

idT : T → at ◦ ta(T )
}

T∈TSI

is the unit of an adjunction involving ta and at . Moreover, since η is an iso-
morphism, by standard results in category theory, we have that the adjunction
ta ⊣ at : TSI ⇀ eLATS is a coreflection, i.e., TSI is coreflective in eLATS. This,
together with Proposition 2.5 and the discussion at the beginning of the present
section, shows that eLATS is the largest subcategory of LATS on which at can
be defined as a functor to TSI, yielding a right adjoint to ta.

3 meLATS: A category of LATS equivalent to TSI

In this section we identify the replete image of ta in LATS, i.e., the full sub-
category meLATS of eLATS consisting of the objects isomorphic to ta(T ), for
some T ∈ TSI. In addition, we characterise those lats for which the indepen-
dence can be recovered from the structure of events, and relate them to a relevant
subcategory of TSI considered in [15, 18].

Recall from basic category theory that meLATS is determined by the coreflec-
tion: it consists of those A ∈ eLATS for which the corresponding component ǫA

of the counit of ta ⊣ at is iso. Applying standard categorical results to derive ǫ
from (−)T and η, we find that it is the natural transformation

ǫ =
{

(idSA
, γ, idLA

) : ta ◦ at(A) → A
}

A∈eLATS
,

where for (s, a, s′) ∈ Tranat(A), γ([(s, a, s′)]) =def e, for e ∈ EA the event of the
unique (s, ea, s′) ∈ TranA. Clearly, ǫA is iso if and only if γ is such, i.e.,

∀t, t′ ∈ TranA, π2(t) = π2(t
′) ⇒ at(t) ∼ at(t′),



which means that two transitions carry the same event if and only if they be-
long to the same ∼-class of A (viewed as a tsi). Although this characterises
meLATS ⊂ LATS equivalent to TSI, it would of course be better to find a more
direct description of it, one not referring to at(A). This is the purpose of the
notion of event-maximal asynchronous transitions systems introduced next.

Intuitively, a lats is event-maximal if its events and independence are ‘tightly
coupled’, so that one cannot ‘split’ events without destroying the global lats

structure. More precisely, A is event-maximal if for any ē ∈ EA and any sub-
set T of transitions carrying ē, the structure resulting from replacing ē on the
transitions in T by a fresh event ẽ is no longer a lats.

Definition 3.1 (Event-Maximal Asynchronous Transition Systems)
For A a LATS, ē ∈ EA, and T ⊂ Tē = {t ∈ TranA | π2(t) = ē}, let A[T ]
denote the replacement of ē on the transitions in T for a fresh event ẽ 6∈ EA,
i.e., A[T ] = (SA, iA, EA ∪ {ẽ},Tran, I, LA, ℓ), where

⊲ Tran =
(

TranA r T
)

∪
{

(s1, ẽ, s2)
∣

∣ (s1, ē, s2) ∈ T
}

;

⊲ I = IA ∪
{

(ẽ, e)
∣

∣ ē IA e
}

;

⊲ ℓ(e) =

{

ℓA(e) if e ∈ EA,

ℓA(ē) if e = ẽ.

A lats A is event-maximal if for each ē ∈ EA and each nonempty T ⊂ Tē, the
transition systems A[T ] is not a lats.

The category meLATS is the full subcategory of LATS consisting of the exten-
sional, event-maximal lats.

Observe that the interesting, nontrivial choices for T are those such that
∅ ⊂ T ⊂ Tē, i.e., those in which at least one ẽ-transition is added and at least
one ē-transition is kept in A[T ]. The definition above, stating that any such
structure must fail to be a lats, is our way to express that—as remarked in the
introduction—the identity of the events in event-maximal lats is forced by the
independence relation. This provides us with the direct characterisation of TSI

in terms of LATS that we sought.

Proposition 3.2 (meLATS ∼= TSI)
meLATS is equivalent to TSI.

Proof. Let A be an extensional lats. We prove that the counit ǫA is iso if and only
if A belongs to meLATS. To this purpose, let γ be the event component of ǫA.

If γ is iso, i.e., for all t, t′ ∈ TranA we have that π2(t) = π2(t
′) implies at(t) ∼ at(t′),

for any choice of ē ∈ EA and any ∅ ⊂ T ⊂ Tē, then the condition in Definition 3.1
is satisfied, since, by the extensionality of A, either A3 or A4 must fail for A[T ]. In
fact, in order for A[T ] to be a LATS, extensionality implies that t′ ∈ T whenever a
at(t′) ∼ at(t) for some t ∈ T , i.e., by the hypothesis on γ, T should be Tē. So A is
event-maximal.



If γ is not iso, i.e., if there exist t and t′ such that which at(t) 6∼ at(t′) but
π2(t) = π2(t

′), then T = {t′′ | at(t′′) ∼ at(t)} ⊂ Tπ2(t) is a nonempty set for which
the ‘splitting’ of π2(t) yields a lats, i.e., A is not event-maximal. X

To conclude this exposition, we observe that the independence relation in
event-maximal lats is not uniquely determined by rest of the structure. This
is due to the fact that the independence on events is still rather intensional
notion: events may be independent and still never occur in the same path, i.e.,
intuitively, be mutually exclusive. Observing that such situations have little
computational relevance, one may consider on lats the property

e1 IA e2 ⇒ ∃(s, e1, s1), (s, e2, s2) ∈ TranA, (E)

which can be seen as an extensionality condition on IA. It is easy to prove that,
if A ∈ meLATS satisfies (E), then e1 IA e2 if and only if there exists a square
in A involving e1 and e2, i.e.,

s1

!!

e2

BB
BB

s

>>e1 }}}}

  e2

AA
AA

u

s2

>>

e1

||||

Thus, for such lats the independence is completely redundant and can be omitted:
all the information is already contained in (SA, iA, EA,TranA, LA, ℓA).

It is worth remarking here that a condition corresponding to (E) for TSI—
viz., whenever t IT t′, there exist (s, a, s′) ∼ t and (s, b, s′′) ∼ t′ in TranT —was
identified in [15, 18] while investigating the tight relationships between tsi and
event structures. Such a condition yields TSIE, a very good-behaved full subcat-
egory of TSI for which we can state the following corollary of Proposition 3.2,
which concludes the paper. Here we use meLATSE to denote the full subcategory
of meLATS consisting of the structures satisfying (E).

Proposition 3.3 ( meLATSE
∼= TSIE)

meLATSE is equivalent to TSIE.
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