

Edinburgh Research Explorer

The modal mu-calculus alternation hierarchy is strict

Citation for published version:
Bradfield, JC 1998, 'The modal mu-calculus alternation hierarchy is strict', Theoretical Computer Science,
vol. 195, no. 2, pp. 133 - 153. https://doi.org/10.1016/S0304-3975(97)00217-X

Digital Object Identifier (DOI):
http://dx.doi.org/10.1016/S0304-3975(97)00217-X

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

Publisher Rights Statement:
Open archive

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/S0304-3975(97)00217-X
https://www.research.ed.ac.uk/en/publications/27951d04-bff9-42fe-aafd-fa4712701f10

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 195 (1998) 133-l 53

The modal mu-calculus alternation hierarchy is strict

J.C. Bradfield *

Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, Edinburgh, EH9 3JZ, UK

Abstract

One of the open questions about the modal mu-calculus is whether the alternation hierarchy
collapses; that is, whether all modal fixpoint properties can be expressed with only a few alter-
nations of least and greatest fixpoints. In this paper, we resolve this question by showing that
the hierarchy does not collapse. @ 1998 - Elsevier Science B.V. All rights reserved

Keywords: mu-Calculus; Temporal logic; Expressivity; Fixpoints

1. Introduction

The modal mu-calculus, or Hennessy-Milner logic with fixpoints, is a popular logic

for expressing temporal properties of systems. It was first studied by Kozen in [l 11,

and since then there has been much work on both theoretical and practical aspects of

the logic. The feature of the logic that gives it both its simplicity and its power is that

it is possible to have mutually dependent minimal and maximal fixpoint operators. This

makes it simple, as the fixpoints are the only non-first-order operators, and powerful,

as by such nesting one can express complex properties such as ‘infinitely often’ and

fairness. A measure of the complexity of a formula is the alternation depth, that is,

the number of alternating blocks of minimal/maximal fixpoints. Formulae of alternation

depth higher than 2 are notoriously hard to understand, and in practice one rarely

produces them - not least because they are so hard to understand. It is therefore

natural to wonder whether in fact higher alternation depths are needed - it could be

the case that this alternation hierarchy collapses. Until now, the best result was that we

need both min-max and max-min formulae of depth 2, which was proven by Arnold

and Niwiriski in [2] using automata-theoretic methods and results of Rabin [20].

This question is given additional spice by the consideration of complexity issues.

All known algorithms for model-checking modal mu-calculus properties are exponen-

tial in the alternation depth d. The natural algorithm, by Emerson and Lei [9], was

* E-mail: jcb@dcs.ed.ac.uk

0304-3975/98/$19.00 @ 1998 -Elsevier Science B.V. All rights reserved

PZZSO304-3975(97)00217-X

134 J. C. Bradjieldl Theoretical Computer Science 195 (1998) 133-153

O(&); this has recently been improved to O(ndi2) by Long et al. [14] On the other

hand, the problem is in NP (due to Emerson et al. [8], and more directly seen by

Stirling’s game-theoretic approach [22]), and since the logic is closed under negation,

the problem is in NP fl co-NP, which suggests that it may well be in P, even if P # NP.

If the alternation hierarchy is strict, then we know that algorithms exponential in the

alternation depth cannot be made polynomial just by reducing all formulae to altema-

tion depth 3 (say) equivalents. Of course, if the hierarchy did collapse, we would not

necessarily immediately get a polynomial solution, since the reduction might involve a

large blow-up in the size of the formula.

The contribution of this paper is to resolve the question by establishing the strictness

of the hierarchy. The technique is slightly unusual, being not at all automata-theoretic;

instead, we analyse the descriptive complexity, in the sense of effective descriptive set

theory, of properties in the modal mu-calculus, and then code suitable arithmetic for-

mulae into a certain transition system in order to achieve the upper bounds established

for the complexity of properties. In previous work [6], transferring standard hierar-

chies allowed us to re-prove Arnold and Niwinski’s result, and obtain some other

mildly interesting results, such as a Al upper bound on the complexity of modal

mu-calculus properties. In this paper, we transfer a similar alternation hierarchy for

arithmetic with fixpoints, and thereby show the strictness of the modal mu-calculus

hierarchy.

The remainder of this paper is thus: in Section 2 we define the modal mu-calculus,

and arithmetic with fixpoints, and present some of the results on which we rely. In

Section 3, we establish the non-collapse of the ‘simple’ alternation hierarchy, which we

extend to the real alternation hierarchy in Section 4. Section 5 is the conclusion, and

Appendix A gives a summary of the mu-arithmetic hierarchy result that we transfer.

2. Preliminaries

2.1. Modal mu-calculus

We assume some familiarity with the modal mu-calculus, so in this section we

give brief definitions to establish notations and conventions. Expository material on the

modal mu-calculus may be found in [5,23].

The modal mu-calculus, with respect to some countable set 55’ of labels, has formulae

@ defined inductively thus: variables Z and the boolean constants tt, ff are formulae;

if @i and @z are formulae, so are @i V @2 and @t A @2; if @ is a formula and I a

label, then [Z]@ and (I) @ are formulae; and if @ is a formula and Z a variable, then

PZ. @ and vZ. 0 are formulae.

Note that we adopt the convention that the scope of the binding operators p and

v extends as far as possible. For consistency, we also apply this convention to the V

and 3 of first-order logic, writing Vx .(3y.P) V Q rather than the logicians’ traditional

XX VY [PI v &?I.

J. C. Bradfieldl Theoretical Computer Science 195 (1998) 133-153 135

Observe that negation is not in the language, but any closed mu-formula can be

negated by using the usual De Morgan dualities - p and v are dual by 1pZ. G(Z) =

vZ. +(lZ). Where necessary, we shall assume that free variables can be negated just

by adjusting the valuation. We shall use + etc. freely, though we must ensure that

bound variables only occur positively.

Given a labelled transition system 9 = (9’“,2, +), where 9 is a set of states, 2’ a

set of labels, and + 2 9’ x 9 x Y is the transition relation (we write s A s’), and given

also a valuation -Y- assigning subsets of Y to variables, the denotation Il@\]c C_ Y of

a mu-calculus formula @ is defined in the obvious way for the variables and booleans,

for the modalities by

11[1]@]]$ = {S I vs’.s L s’ =+ s’ E ~~q~}

ll(Z)@ll~ = {s I3s’.s J+ s’ As’ E p1g},

and for the fixpoints by

IlcLz.@ll~ = nts 2 9 I Il@ll&:=,] c a

IIvZ.@ll$ = U{S 5 9 I s G Il@ll&:=,]h

We shall drop the y and V whenever they are obvious, and accordingly write]]@]]Z:=S

for the denotation of @ when the variable Z has value 5’.

It is often useful to think of ,uZ and VZ as meaning respectively finite and infinite

looping from Z back to PZ (vZ) as one ‘follows a path of the system through the

formula’. Examples of properties expressible by the mu-calculus are ‘always (on a-

paths) P’, as vZ.P A [a]Z, ‘eventually (on a-paths) P’, as pZ.P V (a)Z, and ‘there is

an {a,b}-path along which b happens infinitely often’, as vY.@. (b)Y V (u)Z. (For the

latter, we can loop around Y for ever, but each internal loop round Z must terminate.)

There are several notions of alternation. The naive notion is simply to count syntactic

alternations of p and v, resulting in the following definition: A formula @ is said to

be in the classes CT and L’r iff it contains no fixpoint operators (‘S’ for ‘simple’ or

‘syntactic’). The class Cy+i is the least class containing C? U II:’ and closed under

the following operations: (i) application of the boolean and modal combinators; (ii) the

formation of PZ. @, where Qi E Z$, . Dually, to form the class L!z,, take Cf’ U If:‘,

and close under (i) boolean and modal combinators, (ii) vZ. @, for ~3 E ZIF+,. Thus,

the examples above are in @, @, and II? (but not Cy), respectively. We shall

say a formula is strict CF if it is in Zip - IIip.

However, this simple notion of alternation is not what we are concerned with, since

it does not capture the complexity of feedback between fixpoints: it does not distinguish

these two formulae

2-i = vY.pZ.(u)Y r\(Pv (b)Z)

Z-, = vY.(u)Y r\(pZ.Pv (b)Z)

136 J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153

- both are strict II?, but the first is more complex, as the inner fixpoint depends on

the outer, whereas in the second, the inner fixpoint is self-contained. To take account

of this, we need a stronger definition, for which there is more than one candidate. The

most common version is that of Emerson-Lei [9]; however, a more refined notion was

used by Niwinski [19], and since this captures the intuitive notion better than Emerson-

Lei, as well as providing a better complexity measure, we shall follow Niwinski. (For

an explanation of the differences, see the end of Section 4 - our results trivially im-

ply the non-collapse of the hierarchy of [9].) In fact, it is possible with a very mi-

nor modification to strengthen Niwiriski’s definition a little further; see the end of

Section 4.

A formula @ is said to be in the classes Cp and ZTr iff it contains no fixpoint

operators. To form the class zrt,, take J$@ U ZZ:‘, and close under (i) boolean and

modal combinators, (ii) ~2. @, for @ E $$t, and (iii) substitution of @’ E Cr$, for a

free variable of @ E CNP *+, provided that no free variable of @’ is captured by @; and

dually for II:!, .

Now we can distinguish rt and rz: both are in II?, but the ‘non-alternating’ rz

is also in Cy, for the following reason: pZ, P V (b)Z is in Cy, and so also in JCp;

and vY. (a)Y A W is in II?, and hence in Cy by rule (i); and Tz is the result of

substituting the former for the free variable W of the latter, and so is in zy by

rule (iii).

Intuitively, we are allowed to have arbitrary syntactic alternation, as long as the real

semantic dependency between the various fixpoints is restricted. To take the simplest

example, &Cl .v& 4X3. . . . v&~+&+~& VX$,+i has syntactic alternation depth 2n + 1,

but its real alternation depth is just 1, since all we have is an inner minimal fixpoint

depending on an outer minimal fixpoint, all the other fixpoints being vacuous. The

definition via restricted substitution is the simplest way of capturing this notion.

The (Niwiriski) alternation depth of a formula @ is the least n such that @ E ,Xrfr n

xINP llfl’
The relationship between the simple and Niwinski hierarchies is that ,$’ 2 ,J$“, but

.J$@ has non-empty intersection with every z;r” - CF_,; thus the non-collapse of the

simple hierarchy is not sufficient to give the non-collapse of the (Niwinski) alternation

hierarchy, which is the real question of interest.

Given a formula fl. G(Z) and a model, the approximants $Z. @, for i an ordinal,

are defined recursively by #Z. @ = //@[[Z:=S where S = UVci ,uqZ. @, and dually for

vZ. @. We may also write @c or Z% for #Z. @. We shall write Z<c for U,,[Z”.

(This is the notation introduced in [181; earlier work, and also most work in the modal

mu-calculus, uses a different notation, with the effect that their 25 is our ZCi. For our

purposes, Moschovakis’ notation is a little neater.)

Since mu-calculus formulae are monotonic in their variables, for successor ordi-

nals we have PC+’ Z. @ =)I @llz+z,s. Further, by the standard Tarski fixpoint theorem

we have ll~Z.@lI = UrEOrd P [Z.@; the smallest K such that ((pZ.@l] = lJ,,KpcZ.@ is

called the closure ordinal of pZ. @.

J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153 137

2.2. The arithmetic mu-calculus

In [151 (first presented at LICS ‘89) Robert Lubarsky studies the logic given

by adding fixpoint constructors to first-order arithmetic. Precisely, the logic (‘mu-

arithmetic’ for short) has as basic symbols the following: function symbols f,g, h;
predicate symbols P, Q, R; first-order variables x, y, z; set variables X, Y, Z; and the sym-

bols v , A, 3, ‘v’, p, v, 7, E. As with the modal mu-calculus, 1 can be pushed inwards to

apply only to atomic formulae, by De Morgan duality.

The language has expressions of three kinds, individual terms, set terms, and formu-

lae. The individual terms comprise the usual terms of first-order logic. The set terms

comprise set variables and expressions p(x,X).@ and v(x,X)& where X occurs posi-

tively in 4. Here p binds both an individual variable and a set variable; henceforth we

shall write just pX.4, and assume that the individual variable is the lower-case of the

set variable. The formulae are built by the usual first-order construction, together with

the rule that if z is an individual term and B is a set term, then r E 2 is a formula.

This language is interpreted over a structure J? for its first-order part. The semantics

of the first-order connectives is as usual; r E E is interpreted naturally; and the set term

/~X.$(x,x) is interpreted as the least fixpoint of the functional X H {m E J&) J?’ k

$(m, X)} (where X C J&‘). As with the modal mu-calculus, we define approximants,

and indeed the approximant approach is, of course, essential to Lubarsky’s method: Xc

is now the set {m E ~4! 14 b c/~(rn,lJ~<~X~)}, and the interpretation of pX.4 is then

U iEOrdXc; and dually for the greatest fixpoint. Closure ordinals are as for the modal

mu-calculus.

Henceforth, we shall take A to be the structure N of first-order arithmetic with

recursive functions and predicates. In particular, let (-,-), (-)O and (-)I be standard

pairing and unpairing functions.

The simplest examples of mu-arithmetic just use least fixpoints to represent an in-

ductive definition. For example, ,u~.x = 0 V (x > 1 A (x - 2) EX) is the set of even

numbers. Of course, the even numbers are also the complement of the odd numbers:

the odd numbers are defined by @.x = 1 V (x > 1 A (x - 2) E X), so by negating we

can express the even numbers as a maximal fixpoint vX.x # 1 A (x > 1 + (x - 2) E X).

To produce natural examples involving alternating fixpoints is rather difficult, since

even one induction is already very powerful, and most natural mathematical objects

are simple.

Lubarsky establishes a normal form theorem. The p-normal form is defined thus: a

set term is in p-normal form if it is a set variable, or of the form @. 4 or vX.4 with $J

in p-normal form. A formula is in p-normal form if it is quantifier-free, or of the form

z E 2 with E in p-normal form, or of the form 3.4 or Vx. cf~ with 4 in p-normal form.

In the presence of a pairing function, as in N, it is further possible to move first-order

quantifiers inside fixpoint quantifiers and produce a pair-normal form: a pair-normal

formula is either first-order or of the form r E 8 for pair-normal z, and a pair-normal

5 is px.4 where 4 is either first-order or r’ E vY.$ for pair-normal $ (and dually).

Thus there is an alternating string of fixpoints, followed by a first-order formula.

138 J.C. Bradjieldl Theoretical Computer Science 19.5 (1998) 133-153

At this point, we should mention that we are modifying slightly two of the definitions

in [151: the pair-normal form definition above is not precisely that in [151, and the

definition of alternation in [151 is not exactly the same as that we give below. However,

all the proofs in [15] work also with our definitions. These modifications are discussed

in Appendix A. That said, we now have the following theorem from [151:

Lemma 1. Every formula and set term is semantically equivalent to one in pair-

normal form.

One can define the syntactic alternation classes for arithmetic just as for the modal

mu-calculus: First-order formulae are CT and II?, as are set variables. The ZF+i

formulae and set terms are formed from the ,@’ U Zl,“” formulae and set terms by

closing under (i) the first-order connectives and (ii) forming pX.4 for 4 E C$.

We can now strengthen the preceding lemma to say that the conversion to pair-

normal form does not change the alternation class. This is a crucial result, and we there-

fore sketch the proof, taking into account the minor modifications mentioned above.

We shall be terse, and omit details; for some elaboration, see [15, pp. 298-2991.

Lemma 2. If 4 is C;F” (IIfP), it is semantically equivalent to a pair-normal formula

that is also C? (L’?).

Proof. We proceed by induction on n, and by structural induction on formulae and set

terms.

For a set term pX.4, we assume inductively that 4 is pair-normal; then we are

already pair-normal unless 4 is r E ,LLY. II/. In that case, the translation pairs up X and

Yinto Winthenaturalway,sothatm~Xiff(O,m)~Wandn~Yiff(l,(x,n))~W

(remember that r, I+G and Y may depend on the individual variable x as well as the set

variable X). Note that although Y depends on both x and X, we have only explicitly

coded the dependency on x. By standard monotonicity arguments about adjacent fix-

points of the same sign, the dependency on X can be ignored. Thus, we translate the

original term into

Pw.((W)O = 0 A (1, ((W)iJ’)) E W) v ((w)o = 1 A 9’)

where r’ is obtained from r by replacing every occurrence of x by (w)i, and II/’ is

obtained from $ by replacing every ‘p E X’ by ‘ (0, p) E W’, and every ‘p E Y’ by

‘(1, (x,p)) E W’, and then every x by ((w)i)o and every y by ((w)r)i. This procedure

clearly preserves the level in the hierarchy. Now, as 4 was pair-normal, its body $

was a II?, formula; hence the body of p W.. . . is II%, , and by induction can be

transformed into a flz, pair-normal formula, and we are done.

Now we consider formulae. For the case r E E, inductively transform Z to its pair-

normal form 3, as in the previous paragraph. Note that if the pairing of adjacent

fixpoints above is required, then we need to write (0, r) E E’, as r is supposed to be

in X, not W.

J. C. Bradjieldl Theoretical Computer Science 195 (1998) 133-153 139

The booleans are easy, since (r E pZ.4) A $ is equivalent to r E pZ. 4 A $J. A little

care is needed, though: if we have the conjunction of two fixpoints, one p and the

other v, we need to put the p on the outside if we are trying to make it CiP, and the v

if we are trying to make it II, sP. Thus, a formula that is both .Ef’ and IIF has a CiP

pair-normal form and also a II:” pair-normal form, but does not have a pair-normal

form that is both C? and nfP.

For formulae 3x.4, assume that 4 is r E pY.r,G. The existential quantifier is pushed

inside the fixpoint by a similar construction to that used in the case of set terms: let

W be a new variable, and build $’ from $ exactly as before. Then the set term

contains (0,O) iff 3x.4. Now the case of 4 being r E vY.+ is similar.

Similarly for formulae Vx.4.

So we see that the transformation makes no change to the CEP level, as claimed. 0

This is quite a complex construction, and some simple examples may be helpful.

First, consider ‘t is even and t is not a multiple of three’. If we use the inductive

definition of multiples that we had before, we get

As the two fixpoints are independent, we can move one inside the other to get

As an example of the treatment of first-order quantifiers, consider ‘t is a composite

number’. Let us again, for the purposes of exposition, use an inductive definition of

multiple, but use an existential quantifier over possible factors, that is to say ‘there is

an x > 1 such that t is a multiple (> 1) of x’:

%.x>lAtEpY.y=2xV(y>2xA(y-xEY)).

Applying the construction given above yields, where for readability we write WIO

etc. for ((w)i)o, etc.:

(0,o)E@.(w=(0,o)A~.(l,(x,t))EW)

V(wo=lAwio>lA(w,i=2wioV

(~11 >2~4’10 A (1, (wo,wl - wo)) E WI)).

Here the meat of the inductive definition is the same as before, but it is now being

carried on in the (()i)i component of W, which is parametrized by the (()I)0 compo-

nent representing x. The first line says, effectively, that the flag value (0,O) is in W

only if Zl.x.tEpY. and the second and third lines compute Y as the last component

of W, with the constraint on x included in this computation.

140 J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153

Having established the normal form results, Lubarsky then proves

Theorem 3. The hierarchy of the sets of integers defmable by Zip formulae of the
arithmetic mu-calculus is a strict hierarchy.

The theorem is actually that a set of integers is CiP definable il?’ it is El over the (least

n-reflecting admissible ordinal)th level of the constructible universe, but all we need

is the existence and strictness of the hierarchy. We include in Appendix A a summary

of the notions and proof ideas required for this very interesting theorem.

3. Transferring the simple hierarchy

Our aim is to transfer Lubarsky’s result to the NiwiIiski alternation hierarchy for the

modal mu-calculus. However, we shall start with the simple hierarchy, since a simple

coding trick will then extend it to the Niwitiski hierarchy. In order to establish our

results, we shall work with a particular class of transition systems.

A recursively presented transition system (r.p. t.s.) is a labelled transition system

(9,_Y, -+) such that Y is (recursively codable as) a recursive set of integers, 9 like-

wise, and + is recursive. Henceforth, we consider only recursively presented transition

systems, with recursive valuations for the free variables.

The first result is simple:

Theorem 4. For a modal mu-calculus formula @E Zip, the denotation //@1/ in any
r.p. t.s. is a Czp dejinable set of integers.

Proof. All we have to do is translate the semantics of the modal mu-calculus into

arithmetic. We translate s E //@11 in o t a mu-arithmetic formula 4(s) by induction on

@. For variables X that were bound in the top-level formula, we translate s E (IX[I to

s EX; for a free variable P of the top-level formula (which has a recursive valuation

by assumption), we translate to P(s), where P is the appropriate recursive predicate.

The booleans are obvious. For the modal operators, we have s E ll[a] Y (1 iff ‘v’t E 9.

(s % t) + $ where $ is the translation of t E 11 Y 11, and dually. Finally, for the

fixpoint operators, we translate s E IlpX. Y II to s E PX. $, where $ is the translation of

x E II Yy(I, and dually.

It follows immediately from the definitions that s E 1/@1/ iff 4(s), and that $J has the

same CsL” complexity as @. 0

The converse, showing that there are models of the modal mu-calculus with arbitrar-

ily complex mu-arithmetic translations, is conceptually quite straightforward: we just

define a suitable (and rather powerful!) transition system to code the evaluation of the

target formula.

J.C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153 141

Theorem 5. Let C/J(Z) be a C? formula of mu-arithmetic. There is a r.p.t.s. F with
recursive valuation V and a C? formula @ of the modal mu-calculus such that
&(s)o) ifls E 11@11,$. (Thus if q5 is not C,_, Q -definable, neither is 11 @II.)

Proof. We assume that 4 is alpha-converted so that all variables are distinct, and if

there are any free set variables, we replace them with predicate symbols. Our transition

system has as its states tuples of integers, one for each individual term in 4. Let s,

denote the r component of a state s, for a term r. We shall construct @ such that

SE II@‘11 iff &) (an d . g in eneral if 4 has multiple free individual variables zi, . . . ,Zk,

then SE]]@]] iff ~(s,,,...,~,,).)

We shall write comer quotes r l to turn pieces of arithmetic syntax into modal

mu-calculus variable and label symbols.

For every atomic formula P(z) occurring in 4, we equip the modal mu-calculus

with a variable rP(r)l such that s E V(rP(r)l) iff P(s~), and similarly for n-ary

predicates.

For every individual term r occurring in C#J that has the form f(ri, . . . , rk), we

equip 9 with a label rf(r’, . . . , q)‘, and the transitions given by s
‘f(r1 ,...,Tk)’

+ t iff

ti = f(sr,, . . . s,,) and tp = S+ for every r” # r.

For every first-order quantifier Vx or 3x in 4, we equip Y with a label rx’ and the

transitions given by s x t iff t, = s, for every z #x.

This is now sufficient to deal with the first-order part of mu-arithmetic. Before

considering the fixpoints, let us set down the construction of CD for the first-order part:

If 4(z) is C#Q V 42, then @ is @i V @2, and similarly for A. If C$ is Vx.$, then @ is

[rx’]Y, and if C$ is 3x.$, then @ is (rx’)Y.

If 4 is an atomic formula P(z), then @ is (~*)~P(r)l, where (z*) Y is defined thus:

(x*)r is just r, and (f(ri,...rk)*) r is (zi*) ...(Zk*)(rf(Zl,...,Zk)‘)r - that is, we

compute the arguments of f and then f. Let s be the corresponding sequence of

transitions. (We could, of course, wrap all this computation up into one transition; it

makes no difference.)

A simple induction now shows that SE ll@llv iff $(sz).

Thus, we have used the transition system to code up all the computation in arithmetic,

and the modal connectives to code the first-order quantifiers. To finish the job, we need

to translate the fixpoint operators of arithmetic into the fixpoint operators of the modal

mu-calculus.

For every fixpoint PX or VX occurring in 4, and for every formula r E X in 4, we

equip Y with a label rx(z)’ (recall that pX. $ is short for p(x,X).$). The transitions

are given by s ‘3 t iff tx =s, and tT/ = sTj for every r’ #x. (That is, we copy the

value of r to the ‘input variable’ x of the fixpoint.)

We now complete the translation: if 4 is r EX for X a set variable, then @ is

(r*)(‘x(z)‘)X. If 4 is r E pX. 1+9, then @ is (t*) (rx(r)‘)@. Y; and similarly for v.

The simple induction now extends in the obvious way. Since it is a little more

complex than the first-order part, we give details.

142 J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153

We add to the inductive hypothesis the clause that if X is a free set variable of 4

with valuation X, then s E llXl[iff s, E X. Now if 4 is z EX, then &s,) iff r E X iff

3t.t, = z A tx E X iff 3t.s s’x(r!‘ t A tx E X iff s E (((r*) (rx(z)l)XII, as required.

For the fixpoints themselves, we work by induction on the approximants. Consider

the set term pX.ll/, and suppose by induction that s E $IX. Y iff s, E pqX.$, for n < <.

Then s E $X. Y iff s E 11 Y/lxIEx<: iff $(sz,sx) (where X is valued at X =X’(in

arithmetic) iff s, E ,L&X .$. Thus the modal and arithmetic approximants correspond,

and then so do the limits.

Finally, observe that the fixpoint structure of 4 is preserved in the translation

to@. 0

To illustrate this construction, consider the mu-arithmetic definition of the even num-

bers that was given above; we can rewrite this as

where P(x) iff x = 0, Q(x) iff x > 1, and f(x) =x - 2. The individual terms of this

formula are x and f(x), so the states of the constructed transition system are pairs

(m, n) of integers. We equip the model with two atomic propositions r&)1 and ‘Q(x)1

such that IIrP(x)‘ll = {(O,n)} and [IrQ(~)~ll= {(m,n) I m> I}. We also have a label

‘f(x)’ such that (m,n) ‘3 (m, 112 - 2). Finally, we have a label rx(f(x))1 such that

(m,n)
‘x(f(x))’
- (n,n). Part of this machine is illustrated in Fig. 1. The translation into

modal logic is then

and a state (m,n) satisfies this formula just in case m is even.

This theorem, together with the previous theorem, gives us non-collapse:

Theorem 6. The simple hierarchy in the modal mu-calculus does not collapse.

Proof. Use the theorem to code an arithmetic strict Cc1 set of integers by a strict

ZF modal mu-formula @ on a r.p.t.s. Y-; by the previous theorem, no EF_t modal

formula can have the same denotation in r, and so no Cr_, modal formula is logically

equivalent to @. 0

Some remarks are in order at this point. Readers who think of the modal mu-calculus

as being really about finite systems may be feeling slightly uneasy about the transition

systems built above - is it not cheating to use infinite (and worse, infinite-branching)

systems with arbitrary recursive transition relations? Further, should we not be dealing

only with pure sentences, without arbitrary recursive predicates in the logic?

J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153 143

Fig. 1. Part of a transition system representing a p-arithmetic formula

To deal with the second point first, the predicates can be easily replaced by transitions

coding their characteristic functions.

As for the first point, we have also the theorem

Theorem 7. The simple hierarchy is strict on the class of jinite models.

Proof. Let @ be a strict C? formula; then for every CF__, formula Y, we have that

l(@ @ Y) is satisfiable, by the main theorem. But the modal mu-calculus has the finite

model property [12,24], so -(CD w Y) is satisfiable within the class of finite models.

Hence, @ is not equivalent to any CT-i formula even on finite models. 0

Another slight strengthening concerns the number of labels. The coding above

assumes the availability of an unlimited number of labels, to code symbols of arithmetic

formulae; however, this can easily be reduced to two, just by using a binary code for

the labels, and using intermediate states. For example, one might code the 3 variable x

by the sequence of labels aab, in which case the transition system would have dummy

states after the a transitions, and would branch on the b transition.

In application work, the modal mu-calculus is often extended to allow modalities to

be indexed by sets of labels, which allows the convenient expression of properties such

as ‘a happens infinitely often’ (see, for example, [5]). The hierarchy theorem applies

144 J. C. Bradfieldl Theoretical Computer Science 195 (1998) 133-153

also to this extension, provided that the index sets are restricted to be recursive: in

practice, they are usually finite or cofinite.

A more significant extension would be to determine whether the hierarchy is strict

on trees of bounded degree, the models originally studied by Niwinski. It is possible

that on trees of a fixed degree n, the hierarchy does collapse. However, this question

remains open.

4. The non-collapse of the alternation hierarchy

In order to extend this result to the Niwiriski alternation hierarchy, we need to do a

little more work along the lines of the normal form theorems. It would be possible to

do this stage of the work in the modal mu-calculus, using the theory of simultaneous

fixpoints [4] and extending the foregoing, but we choose instead to work in arithmetic,

as the necessary coding is easier there. So we shall prove that Cy formulae are

equivalent (in mu-arithmetic) to @’ formulae.

It is possible to define a notion of the Niwinski hierarchy for arithmetic that cor-

rectly captures the idea of genuine semantic alternation, but because of the existence

of individual variables in arithmetic, the definition is a little complex, and additional

minor complexities arise in the subsequent proof. As will become apparent, in the pres-

ence of pairing the Niwinski and simple classes are equal, up to logical equivalence,

so there is no intrinsic interest in defining it generally. Hence, to avoid unnecessary

work, we shall restrict ourselves to formulae of a well-behaved form, sufficient for

our purposes. We say that a formula 4 of mu-arithmetic is nice if no set term @C.$

or vX.lc/ occurring in 4 contains any free individual variable. Observe that the trans-

lation of the modal mu-calculus into mu-arithmetic, given in the proof of Theorem

4, produces only nice formulae. We then define the Niwiriski hierarchy Cf’ for nice

formulae of mu-arithmetic exactly as for the modal mu-calculus, where the variable

capture constraint refers to set variables. To be precise, the Cp = flp formulae are

the first-order formulae and the Cy = ZZY set terms are the set variables; Crf, is

formed by taking Z? U II? and closing under (i) first-order connectives and E; (ii)

,fZ.$ for *EC::,, provided that $ has at most x as a free individual variable; (iii)

substitution of a Crf, set term 3 for a free set variable of ti E ,J$‘i provided that no

free set variable of B . 1s captured by $. Hence, the translation takes modal C?’ to

arithmetic ZN” n .

Theorem 8. If 4 is a (nice, by de$nition) CfP formula of mu-arithmetic, it is equiva-
lent to some CiP formula, which moreover is nice and has p as its top-level connective
(i.e. is of the form a~,uX.$).

Proof. The proof is firstly by induction on n, and secondly by induction on the

construction of formulae according to the rules (i)-(iii) of the alternation hierarchy.

The case n = 0 is trivial. So assume n, and prove n + 1.

J.C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153 145

The base of the inner induction is the ZE;‘” and IIf’ formulae, which by the outer in-

duction are C? and II?, respectively. Any first-order combination C$ of such formulae

can be made Cz, by wrapping a dummy fixpoint round it - if 4 has free variable x,

transform it to x E PX. 4 (and then alpha-convert if desired), and if there is more than

one free variable, use pairing to code them into one. Similarly, given CF+, formulae

in the required form, a first-order combination of them can be wrapped in a dummy

fixpoint to have the required form.

For case (ii), if 4 is 2$i, inductively it is equivalent to some CT+, formula, and

then wrapping a p round it keeps it in CF+, of the desired form.

The non-trivial case is the substitution rule (iii). Let $, s be the Cft, formula and

term such that C$ is the result of substituting B for the free variable Z of ti. Inductively,

$ and c” are equivalent to formulae 0 E ,U. $1 and PLY. $2 of the required form (and

by niceness, the individual variables in cr are exactly the free individual variables of

$). All we need do now is to combine the inductive generation of X and Y along the

lines of the pair normal form theorem. By the side condition of (iii), s contains no

reference to any bound set variable of $, and by niceness no reference to any individ-

ual variable of 9. We can therefore pull it out to the same level as X. In detail, we

use a new variable W, with the intent that (0, n) E W H n EX and (1,n) E W M n E Y.

So we use the formula

(O,o) E~w.((W)O=OA$;)V((W)O= 1 A$;:>

where tj{ is formed from $1 by replacing ‘p E X’ by ‘ (0, p) E W’, replacing ‘p E Z’ by

‘(1,~) E W’, and x by (w)i; and similarly for I+$.

Provided that pX.+i and pY.$z are Cz:,, which they are by induction, this formula

is also zr+,, so we are done. 0

Corollary 9. The denotation of a modal C? formulae is arithmetic Zip dejinable.

By combining this result with Theorems 4 and 5, and the fact that every Czfl formula

is also C?, we immediately obtain our desired.

Theorem 10. The alternation hierarchy for the modal mu-calculus is strict.

For those who know only the notion of alternation depth defined in [9], it may be

worth explaining the differences between that notion and the one we are using (noted

briefly in [lo]). In [9], alternation depth is directly defined by an inductive definition

on formulae; however, it can easily be cast into our framework. In fact, the definition

of [9] contains a minor error, as noted in [l]; we assume the corrected version.

Recall the definition of the classes Cfp; we can define Emerson-Lei versions Cfi””

of these classes by modifying clause (iii) as follows: (iii’) substitution of CD’ E Cfif;‘; for

a free variable of CD E zz provided that @’ is a closed formula. A simple induction

now shows the following

146 J.C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153

Lemma 11. A formula @ has Emerson-Lei alternation depth <n ifs 43 E C$ n III%,

for n20.

Since it is immediate from the definitions that CiP & Cfi”” G ZfP, we obtain as a

corollary of our results that

Corollary 12. The alternation depth hierarchy of [9] is strict.

In his thesis [l], Andersen presents a somewhat complex improvement to the direct

definition of alternation depth in a way that provides tighter complexity bounds on the

algorithm of [9], and better reflects intuition. In fact, Andersen is bringing the direct

definition closer to the Niwinski notion: his definition satisfies the “j” direction of the

above lemma replacing C ELp by CNp. The examples Andersen provides (p. 28) of the

difference between the original definition and his improvement also serve as examples

of the differences between xELp and ZNfi; for example,

/LX.vZ./dJ.vY.Y AX

is in Cy, but only in Zy.

As mentioned earlier, there is a slight strengthening of the Niwiriski definition, to

address the following minor irritation. Although at higher levels, CNfi ignores vacuous

fixpoints, it does not do so at the bottom of the hierarchy: the formula pX. vY. [ajX

is zy but not Zy, even though the inner fixpoint is vacuous. One can fix this by

simply defining Cp to be closed under vacuous fixpoint formation, i.e. forming pZ.@

and vZ.@ where Z is not free in @ (see [171 for details). All our results (and indeed

all the complexity results on alternation) carry through with this modification; whether

it is worth doing, is a matter of taste.

5. Conclusion

The results of this paper solve the alternation hierarchy problem by a relatively

simple reduction to a known hierarchy problem. This is a fairly powerful technique: it

will apply to any mu-calculus whose models are powerful enough to allow the coding

of arithmetic. There is, however, a drawback: we should like to have simple explicit

examples of strict ZfP modal mu-calculus formulae. Although the arithmetic examples

are constructible in principle, the complexity of the proofs in [15] means that the

examples are not practically presentable, and so neither are the translations into the

modal mu-calculus.

Giacomo Lenzi has recently produced an independent proof of the non-collapse of

the Emerson-Lei alternation hierarchy in a closely related mu-calculus. The technique

is a very delicate topological analysis of the finite models of formulae of the logic, and

it does produce explicit and simple examples of strict formulae - exactly the examples

one would expect, in fact. The reader is referred to Lenzi’s paper [13].

J. C. Bradfieldl Theoretical Computer Science 195 (1998) 133-153 147

Acknowledgements

I thank Colin Stirling and other members of the Concurrency Club at the LFCS for

valuable discussions and pointers; Robert Lubarsky for some additional remarks on his

work; the CONCUR referees for their useful suggestions on the preliminary version

of this paper [7]; and the referees for this paper, and also Perdita Stevens, for further

improvements.

Appendix A. Summary of the mu-arithmetic hierarchy theorem

As is clear from the foregoing, there is no need to understand Lubarsky’s hi-

erarchy result in order to apply it. However, since the modal mu-calculus is es-

sentially about the power of mixed induction and co-induction, and [151 answers

that question, it is well worth while to gain (at least a superficial) understanding

of it.

An obstacle to this, and one that perhaps explains the surprising fact that it has

taken six years for the observations of this paper to be noticed, is that [151 is a

highly technical paper, written for an audience well versed in admissible set theory

and definability theory, whereas those interested in the modal mu-calculus tend to be

concurrency theorists or automata theorists. We therefore now give a quick summary

of the material.

A. 1. Preliminaries

The mathematics underlying the result is the theory of admissible sets and the theory

of inductive definability, the main development of which (up to the point required here)

occurred around 1960-1975. The standard reference on admissible sets is [3], and on

inductive definitions is [181.

In the (first-order) language of set theory (where E is the membership relation),

we say that a formula is & (=Cc = IIt,) if it contains no unbounded quantifiers - for

example, Vx E a.3y E b.x = y is do, but 3a.‘dx, y E a.x = y is not. A C formula may

also have unbounded existential quantifiers; if there is exactly one such, and it is at

the front, the formula is Ci. As usual, ZI is the dual of C.

Kripke-Platek set theory (KP) is a theory in which there is no Powerset axiom, and

Separation and Replacement are restricted. In fact, they are restricted to A0 and Ci

formulas, respectively - one can then derive them for A and C respectively, where a

formula is A if it is C and also equivalent to a Il formula. The intuition for this is

that instead of being able to form arbitrary subsets and use arbitrary functions, one can

only use ‘recursive’ subsets and ‘recursive’ functions, where ‘recursive’ is relative to

the universe, not just to the integers.

One of the most important theorems of KP (which in fact Kripke took as basic) is

the ‘C Reflection Principle’, that for any C formula 4, we have KP k ~$~33a.@(~),

148 J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153

where ca) is the operation of replacing unbounded quantifers by quantifiers bounded

in a. Thus, if a C formula is true in some model of KP, that model contains a set (a

witness) within which the formula is true. Therefore, C formulae are persistent; that

is, if true in a model, they are true in larger models (in an appropriate sense). Stronger

reflection properties are the key to Lubarsky’s [151 results.

It is useful to introduce w-elements (primitive elements with no membership struc-

ture); in our case the integers N will be ur-elements (and so they are not the same as

the finite ordinals!). The appropriate extension of KP is called KPU.

A set A (in the normal set-theoretic universe plus ur-elements) is admissible (over

a collection M) if it is a model of KPU - that is, it is a big enough fragment of the

universe to ‘do computable things’ in. If moreover M E A then we say A is admissible

above M - and then quantification over ur-elements becomes bounded quantification.

An ordinal OL is admissible (over/above M) if it is the ordinal of some admissible set

(including/containing M).
Godel’s constructible universe L is given (in one version) by iterating over the

ordinals the operation of defining subsets by one of a certain number of primitive

operations which are sufficient to give all of KF’U - for each stage L, (or L,(M) if

we start with M rather than @J), L,+i adds the sets definable by one use of a primitive

operation. (Accordingly, Lor+u, adds the sets that are first-order definable over L,.) If

CI is admissible above M, then L,(M) is an admissible set above M, and is in fact the

smallest with ordinal a.

One point that may cause confusion should be mentioned. The first admissible ordinal

is w (note that KPU does not have the Infinity axiom; the associated constructible

level L, is the set of hereditarily finite sets). However, if we have a countably infinite

collection M of ur-elements, such as N, the first admissible above M is the second

pure admissible, which turns out to be (not at all by coincidence!) op, the first

non-recursive ordinal.

The rest of this subsection gives notation and definitions from [15, Section 11.

We have mentioned C reflection; the standard general definition is that if o! is an

ordinal, r a class of formulas, and X a class of ordinals, CL is r-reflecting on X if for

all C#J E r (with parameters from L,), if L, + 4 then Lg /= 4 for some p E GI tlX.

Now we define gap reflection. For ~1 E X, let CI +Y be the next member of X beyond CC.

We say a is r gap-reflecting on X if for all C$ E r (with parameters from L, and a

constant symbol L,), if L,+x k c#&. := L,] th en L~+x k #[L, := Lp] for some fi < cL.

This is rather hard to give intuition for; the best the present author can suggest is that

in the same sense as a r-reflecting ordinal is big enough that it ‘does not tell you

anything you did not already know’ about r at your current level of the universe, so

a r gap-reflecting ordinal is so big that it does not tell you anything you could not

already find out about r by looking X-far farther up in the universe - not very helpful,

but perhaps better than nothing.

Now CI is said to be a l-reflecting admissible if it is admissible, and (n + 1)-reflecting

if it is nr gap-reflecting on the collection of n-reflecting admissibles. We write tl+”

for the next n-reflecting admissible beyond CI, and LX+ for LX+].

J. C. Brad$eldl Theoretical Computer Science 195 (1998) 133-153 149

Section 2 of [151 establishes various results about n-reflecting admissibles, which we

use as required, noting them thus (Section 2).

A.2. Modifications to [15]

We mentioned before Lemma 1 that we have made two slight modifications to the

definitions in Lubarsky’s paper, and we should now explain these.

The first modification is to the definition of ‘pair-normal’. We define it so that the

first-order matrix is an arbitrary first-order formula. Lubarsky imposes the additional

restriction that the first-order matrix is a boolean combination of Cy and fly (in the

usual sense of Kleene) formulae. The proof of the pair-normal form theorem now

contains an additional clause to reduce any first-order formula to pair-normal form. This

is done by the introduction of vacuous fixpoints: for example, ‘dx .3 y.‘dz. $J is equivalent

to Vx’.x’ E @.3y’.y’ E pY.Vz.$, and then the construction we gave in the proof can

be applied, and results in the production of a pair-normal formula in Lubarsky’s sense.

Since the sign of the vacuous fixpoints is irrelevant, it can be chosen so as not to

affect the alternation depth of any formula with an existing fixpoint. However, it is

not necessary to do this; none of the subsequent theorems makes any use of the

restriction on the form of the first-order matrix. Lubarsky chose [161 to impose this

additional restriction for aesthetic reasons, to simplify as much as possible the matrix,

and because it provides the natural generalization of Kleene’s classical result that any

first-order inductive definition on N is equivalent to a II: inductive definition. For our

purposes, it is cleaner to allow an arbitrary first-order matrix.

The second modification concerns the alternation classes. Lubarsky uses the plain

notation C, for his classes; these are defined as for our C?, except that (i) instead of

closure under conjunction and disjunction, we have: if 4 = $1 A $2 and each of $i is C,

or lT,, then 4 is Cn+i and II,,+,; but also (ii) if 4 is first-order, C#J is Co and 170. This

has the consequence that according to the definition (~1 E fli.4,) A (~2 E $C~.C#Q), for

first-order 4i, is only &, whereas its pair-normal form is Cl ; in our formulation, the

formula is Cy to start with. There is no reason to prefer the definition of [151, and it

may have that form simply owing to an oversight [161. Indeed, the details of Section 4

of [151 itself, if they were written out in full, would be rather more complicated with

Lubarsky’s definition than with ours.

A.3. The upper-bound theorem

The easier half of the main result of [151 is the upper-bound theorem:

Theorem A.1 (Lubarsky [15, Section 41). If& z is a Cf’ formula of mu-arithmetic,)

the set dejined by qf~ is Cl over the least n-reflecting admissible (above N).

Proof. We assume that 4 is in pair-normal form (in our sense).

The proof is by induction on n. We first strengthen the theorem to take account of set-

valued parameters: given a set W of integers, generalize the definition of

150 J.C. Bradfieldl Theoretical Computer Science 195 (1998) 133-153

n-reflecting admissible to n-W-reflecting admissible, by restricting to the admissibles

above W. Then if #(z) contains a free set variable W, the set defined by C$ is Cl

over the least n-W-reflecting admissible, when W is interpreted as W. (The case of

more than one free set variable merely requires a little more coding; and similarly

for free individual variables.) The notation CI fn is extended to mean ‘the next n-W-

admissible after CI’, where W will be understood from context (and similarly, c(may

depend on W).

The case n = 1 is actually obvious from established results such as Gandy’s theorem.

However, it can be proved directly.

Since we are assuming pair-normal form, work with pX.4 for C$ first-order, with

parameter W. Now consider the approximants Xfi = #X.4(W). XC0 = 0 is definable

over L,(W), and similarly each Xp = {x I&x, X’s)} is definable over L&W). Now

if a is the least W-admissible, we claim that (i) X’” is El over L,(W) and (ii)

X”=X’(” (so =x-).

(i) is true because z E XC’ iff

L,(W) k 3f.3P.(domf=D+ 1)

A(f(y)= xl4 { (x3 (~yfm)})Aztf(8)
_ that is, f enumerates the approximants of X up as far as j, and z is in f(p). This

is a C formula, so equivalent to a Cl formula.

(ii) is true because ZEX’ iff &z,X<‘). Working in L,(W), replace p EX<’ by

3/Q E X<b; bring the quantifiers to the front (which we can do in an admissible set),

and take sups, so getting 3/?&z, X’p); then z E Xb, so z E XCa.

Now consider the case n + 1. Let tl be the least (n + 1)-W-reflecting admissible. Our

formula is now of the form pLx.cr E vY. 4. By induction, given parameters W and X,

vY. C#I is III over the least ti-(W, X)-reflecting admissible. Thus, Ya = vY. 4(X”) is nl

over the least n-W-admissible, and so X’ is definable over it. Then Y1 = vY.c#J(X”)

is 171 over the least n-(W, X”)-reflecting admissible, which is at worst the second n-

W-admissible. This continues; and since (Section 2) there are a-many n-W-admissibles

below a, we get as above that X” is Cl over L,(W).

The part where gap reflection comes in is proving that X” = Xc”. To evaluate X”,

we need to consider Y, = vY.&X<‘). If we consider the approximants (Y,)b, by the

same argument as before, they close by at worst the next n-W-reflecting admissible

after c(, that is, by CC”, so that Y, = nB,.+,7(Y,)fl.

Therefore, z E Y, iff L,+. +Vf.(dom f =y~‘f enumerates (Y,)fi’)+Vp<y.z~

f (/I). This formula is, once the implications have been untangled, II, in L,+., and

it carries a parameter L,, since to define Xi”, which is referred to in the definition of

Y,, we need to quantify over ordinals in L,. Hence, by the definition of ~1, if its true,

its true in some Lb+” for fi < ~1, and so z E Yg, so z E X’p+‘, so z E X”. 0

The reader is warned that a number of details have been quietly ignored in this

condensation, but the essential ideas are still there.

J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153 151

A.4. Attaining the upper bound

The second half of the theorem, that if a set is Zi over w+~, the least n-reflecting

admissible, then it is C?-definable, is much more complex, occupying some ten pages

of coding even at a fairly abstract level of description. It is not really possible to

abbreviate this while preserving detail, so we just give a rough outline of the idea.

(We will write ~c)~ for the nth admissible, so wi =oFK.)

The idea is to use the fixpoints to encode into N methods of giving notations for

all the ordinals up to tl, and to encode the true Ci statements about L,.

In the base case n = 1, this is established material (see [3]). Using induction over a

first-order definition, we can construct the (codes of the) true C statements about L,, ,

and this is expressible with one least fixpoint @, say.

To go further, we need also to generate the true 171 sentences about L,, as a greatest

fixpoint vY. This is done by a similar technique: each step in the (co-)induction throws

out some ill-formed or false sentences, and by the time we close at wi, we have only

the true ni sentences left.

Now for n = 2, we embed PX and VY inside a minimal fixpoint PW, say. Now the

first approximant of W will code both the Ci and ni statements about L,, . The second

time round, we have access to information about L,, itself, so we end up with the

true Ci and ni statements about L,,, and so on. Then, with some extensions to the

control structure (encoded in the bodies of the fixpoints), we find that we eventually

close at the Ci statements about L,+z, the first 2-reflecting admissible.

For n > 2, the procedure is generalized appropriately.

A.5. Final remarks

This section has, we hope, given a flavour of the result on which this paper’s result

relies. One question that has been entirely unanswered so far is, what do these strict CiP

formulae look like, and so, what do the examples showing the strictness of the modal

mu-calculus look like? At first sight, looking at the ten pages so hastily summarized

above, the answer is ‘an unbelievably complicated mess’. At second sight, one tends

to think that it’s not so bad: although there is a colossal amount of coding going

on, most of that should be codable in the transition system of Theorem 5, leaving,

ultimately, quite simple formulae. In [193, the alternation hierarchy was shown to be

strict for a mu-calculus without conjunction (and without the quantifying power of the

modal box), and the examples were of a very simple form; and Lenzi’s proof [131 of

an alternation hierarchy for a closely related mu-calculus also gives simple examples.

It would be interesting to see whether our strict CfP formulae can be reduced to this

form; but this is a daunting exercise.

Finally, what is an n-reflecting admissible anyway? The answer is that of2, the

first 2-reflecting admissible, is huge; so huge that nobody but a specialist is likely to

have any comprehension of its magnitude (although, of course, it is countable, like

everything we deal with). To give an idea of just how big it is, recall that CI is

recursively inaccessible if it is an admissible limit of admissibles; this is equivalent

152 J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-1.53

to saying that o, = a. Writing pp for the Pth recursive inaccessible, we then say a is

1-hyperinaccessible if pZ = cr; then we can define /3-hyperinaccessible for all p. Then

we continue with the least CI such that tx is a-hyperinaccessible, and so on, and so

on. (Along the way, we pass such exotic beasts as the recursively Mahlo ordinals.)

All of these are smaller than mOf2; in fact, according to Aczel and Richter in [21],

o+* ‘appears to be greater than any ‘reasonable’ iteration into the transfinite of this

diagonalization process’ (a remark which is actually made about something very much

smaller than w+‘). The first well-known ordinal that is bigger than o+~ is actually

bigger than all the o+“: it is the first stable ordinal 00. (C is stable if the truth of C

formulae in L, is the same as their truth in L.) It turns out that (~0 is the least ordinal

not the order-type of a di well-ordering of N; this implies that the p-definable sets of

integers are actually a strict subset of the di sets of integers, which in turn implies

that the Ai upper bound on the complexity of modal mu-calculus formulae, produced

in [6] by elementary means, is actually strict.

References

[l] H.R. Andersen, Verification of Temporal Properties of Concurrent Systems, DAIMI PB-445, Computer

Science Dept, Aarhus University, 1993.

[2] A. Arnold, D. Niwinski, Fixed point characterization of Biichi automata on infinite trees, J. Inform.

Process. Cybemet. EIK 26 (1990) 451-459.

[3] J. Barwise, Admissible Sets and Structures, Springer, Berlin, 1975.

[4] H. BekiE, Definable operations in general algebras, and the theory of automata and flow charts, in:

C.B. Jones (Ed.), Programming Languages and their Definition, Lecture Notes in Computer Science,

vol. 177, Springer, Berlin, 1984.

[5] J.C. Bradfield, Verifying Temporal Properties of Systems, Birkhauser, Boston, 1991.

[6] J.C. Bradfield, On the expressivity of the modal mu-calculus, in: C. Puech, R. Reischuk (Eds.), Proc.

STACS ‘96, Lecture Notes in Computer Science, vol. 1046, Springer, Berlin, 1996, pp. 479-490.

[7] J.C. Bradfield, The modal mu-calculus alternation hierarchy is strict, in: U. Montanan, V. Sassone,

(Eds.), Proc. CONCUR ‘96, Lecture Notes in Computer Science, vol. 1119, Springer, Berlin, 1996,

pp. 233 -246.

[8] E.A. Emerson, C. Jutla, A.P. Sistla, On model-checking for fragments of p-calculus, in: C. Courcoubetis

(Ed.), Proc. CAV ‘93, Lecture Notes in Computer Science, vol. 697, Springer, Berlin, 1993,

pp. 385-396.

[9] E.A. Emerson, C.-L. Lei, Efficient model checking in fragments of the propositional mu-calculus,

in: Proc. 1st LICS, IEEE, Los Alamitos, CA, 1986, pp. 267-278.

[lo] R. Kaivola, On modal mu-calculus and Biichi tree automata, Inform. Process. Lett. 54 (1995) 17-22.

[l l] D. Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (1983) 333-354.

[12] D. Kozen, A finite model theorem for the propositional p-calculus, Studia Logica 47 (1988) 233-241.

[13] G. Lenzi, A hierarchy theorem for the mu-calculus, in: F. Meyer auf der Heide, B. Monien (Eds.),
Proc. ICALP ‘96, Lecture Notes in Computer Science, vol. 1099, Springer, Berlin, 1996, pp. 877109.

[14] D. Long, A. Browne, E. Clarke, S. Jha, W. Marrero, An improved algorithm for the evaluation

of fixpoint expressions, in: D.L. Dill (Ed.), Proc. CAV ‘94, Lecture Notes in Computer Science,

vol. 818, Springer, Berlin, 1994, pp. 338-350.

[15] R.S. Lubarsky, bl-definable sets of integers, J. SymboIic Logic 58 (1993) 291-313.

[161 R.S. Lubarsky, personal communication, 1997.

[17] A. Mader, Verification of modal properties using boolean equation systems, Doctoral Dissertation,
Institut Rir Informatik, Technische Universitiit Miinchen, 1996.

[18] Y.N. Moschovakis, Elementary Induction on Abstract Structures, North-Holland, Amsterdam, 1974.

J. C. Bradjeldl Theoretical Computer Science 195 (1998) 133-153 153

[19] D. Niwinski, On fixed point clones, in: L. Kott (Ed.), Proc. 13th ICALP, Lecture Notes in Computer

Science, vol. 226, Springer, Berlin, 1986, pp. 464-473.

[20] M.O. Rabin, Weakly definable relations and special automata, in: Y. Bar-Hillel (Ed.), Mathematical

Logic and Foundations of Set Theory, North-Holland, Amsterdam, 1970, pp. 1-23.

[21] W. Richter, P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, in:

J.E. Fenstad, P.G. Hinman (Eds.), Generalized Recursion Theory, North-Holland, Amsterdam, 1974,

pp. 301-381.

[22] C. Stirling, Local model checking games, in: 1. Lee, S.A. Smolka (Eds.), Proc. Concur ‘95, Lecture

Notes in Computer Science, vol. 962, Springer, Berlin, 1995, pp. l-11.

[23] C.P. Stirling, Modal and temporal logics, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.), Handbook

of Logic in Computer Science, vol. 2, Oxford University Press, Oxford, 1991, pp. 477-563.

[24] R.S. Streett, E.A. Emerson, An automata theoretic decision procedure for the propositional mu-calculus,

Inform. and Comput. 81 (1989) 249-264.

