
Millipede: Easy Parallel P r o g r a m m i n g in
Available Dis tr ibuted Environments* **

(Extended Abstract)

Roy Friedman 1, Maxim Goldin 2, Ayal Itzkovitz 2, and Assaf Schuster 2

1 Department of Computer Science, CorneU University, Ithaca, NY 14850.***
2 Department of Computer Science, The Technion, Haifa, 32000, Israel.

A b s t r a c t . MILLIPEDE is a generic run-time system for executing paral-
lel programming languages in distributed environments. In this project,
a set of basic constructs which axe sufficient for most parallel program-
ming languages is identified. These constructs are implemented on top of
a cluster of workstations such that in order to run a specific parallel pro-
gramming language in this distributed environment, all that is needed
is a compiler, or a preprocessor, that maps the source language parallel
code to the MILLIPEDE constructs. Some performance measurements of
parallel programs on MILLIPEDE are also presented.

1 Introduction

The idea of using a cluster of workstations as a cost/effective high-performance
parallel computer is becoming feasible as local area networks become faster and
faster. This has led to the development of many run-time systems that support
parallel programming languages on cluster environments in recent years [1, 3,
4, 5, 7, 8, 9, 10, 11, 12]. (A detailed comparison with these systems and others
appears in the long version of this paper.) These run-time systems mainly differ
by the memory consistency protocols they support, the load balancing schemes
they employ, and the programming language they are targeted for. However, each
of these run-time systems supports only one parallel programming language:

This means that in order to use an existing run-time system, one needs
to adapt himself/herself to the one and only programming language which is
supported by it. In this project, we have developed MILLIPEDE, a generic run-
time system for parallel applications, which can support a variety of parallel
programming languages. MILLIPEDE provides a flexible interface for creating
parallel activities in the system, a distributed shared memory management, load
balancing, and synchronization methods in the form of library routines. These

* The MILLIPEDE project is supported by Intel Academic Relations Grant, by Microsoft
R&D group, and by a grant from the Israeli Ministry of Industry and Commerce.

** The MILLIPEDE URL: http ://www. cs. technion, ac. il/~assa~/millipede �9 html
*** This author is currently supported by ARPA/ONR grant N00014-92-J-1866. Much

of this work was done while this author was still with the Department of Computer
Science at the Technion.

85

can be used by a compiler, or a preprocessor, to map the primitives of the
language to the constructs provided by MILLIPEDE. Thus, the only thing that
is required in order to implement most of the parallel programming languages
on MILLIPEDE is to make the appropriate changes in its compiler, adjusting it
to MILLIPEDE'S interface, which is much easier than developing a new run-time
system from scratch.

The goM of MILLIPEDE is therefore to support a large variety of parallel
programming languages using commodity parts and standard operating systems
so that most people can continue using their "favorite" parallel programming
language on the same run-time environment which works with their existing
equipment. Also, since it is relatively easy to incorporate new programming lan-
guages to the system, languages which are not supported at this point can be
added on demand. For people that have no experience with parallel program-
ming, MILLIPEDE currently supports the PARC programming language, which
is a simple, yet powerfull, extension of C to parallel programming [2]. (We elab-
orate on PARC in the full version of this paper [6].) Other languages that we are
currently supporting include a parallel version of C + + (CParPar), Java, and
Par-Fortran 90. We intend to support Cilk, SPLASH macros, and Split-C soon.

For further flexibility and in order to be able to adapt to the particular needs
of different applications, MILLIPEDE supports both strong and weak consistency
memory management, which can be chosen by the application, and a variant of
release consistency is being implemented. Also, several load balancing schemes
have been implemented, and they can also be picked by the application. These
protocols and schemes are described in more detail in the full version of this
paper [6]. MILLIPEDE is fully implemented on MACH, and a more advanced
version is under final stages of implementation on Windows-NT TM.

We have conducted several performance measurements on the MACH imple-
mentation, and initial results are very encouraging. These results prove that at
least for a large class of programs, it is possible to provide reasonable perfor-
mance while running on a cluster of off-the-shelf workstations with an unmodi-
fied operating system, connected by an off-the-shelf network, and using a generic
run-time system and a friendly programming language. Most programs achieve
good speedups, while the speedups for programs that have natural paralleliza-
tion is close to linear. Also, there seems to be a correlation between the problem
sizes and the speedups, indicating that when the problem is large enough, the
benefits of using our system outweighs the overhead imposed by it. We believe
that by further optimizing the implementation, we will be able to achieve even
better performance.

2 M i l l i p e d e ' s s u p p o r t in P a r C ' s c o n s t r u c t s

MILLIPEDE provides powerfull interface that support PARC's constructs. PARC
provides four constructs for creating parallel activities in the system:

p p a r b l o c k creates a given number of activities, each being specified separately.
In particular, this can be used to implement fork-like primitives.

86

lpa rb lock similar to pparblock, but the number of parallel activities created is
limited to some multiplication of the number of processor, so that if more
blocks are specified, some of them will be executed within the same activity.
This is useful for improved performance.

p p a r f o r creates a given number of similar parallel activities which differ only by
an index which is passed to them. Mainly useful for creating parallel loops.

lpa r for similar to pparfor, but the number of actual parallel activities which
are created is limited to some multiplication of the number of processor in
the system.

The the following synchronization and atomic access constructs are provided:
sync which is a barrier synchronization, faa for atomic fetch-and-add opera-
tions, tss as an atomic test-and-set operation, rs t as an atomic reset operation,
and semaphore_wai t and semaphore_signal for mutual exclusion in critical
sections. PARC also supports two main calls for early termination of parallel
activities: pcon t inue , terminates the current parallel activity and pbreak , ter-
minates the current parallel activity and its siblings.

In order to run a PARC program in MILLIPEDE, a compiler for the source
code programming language must first translate it into object code, with the
appropriate calls to MILLIPEDE library functions, and must add a call to MIL-
LIPEDE initialization routine. Then, the code can be linked together with the
MILLIPEDE library to create the executable which runs both the MILLIPEDE
run-time system and the application. When the application is executed, typi-
cally one activity is first created on one of the nodes. Then, as the execution
develops, more parallel activities may be created or terminated on various nodes
of the system, and parallel activities may migrate from one node to the other,
depending on the load balancing policy chosen. This process is explained in more
detail in the full version of this paper [6].

3 P e r f o r m a n c e

We have conducted several performance measurements which include matrix
multiplication, finding the shortest distance in graphs, the traveling salesperson
problem, and a linear equation solver. Due to space limitations, we only present
here the high-lights of these measurements, but the full version of this paper
contains a detailed description of these results [6].

In the case of matrix multiplication and finding the shortest distance in
graphs, our system achieved close to linear speed-ups with problem size (matrix
size and number of nodes respectively) of 400 elements.or more and 4 nodes. For
the traveling salesperson problem we achieved a speedup of 60% with 3 nodes,
but only marginal speedup for the linear equation solver.

4 C o n c l u s i o n s a n d F u r t h e r R e s e a r c h

In this work we have demonstrated that building a generic run-time system that
can support a variety of programming languages and provide reasonable perfor-

87

mance while using only commodity parts can be done. In our approach, adding
support for a new parallel programming language means only slightly modifying
its compiler, which increases the accessibility of distributed environments to par-
allel applications. This way all programming languages ported to our system can
enjoy the same set of memory consistency and load balancing protocols, which
can match the performance needs of their applications.

We are currently experimenting with porting more parallel programming
languages to MILLIPEDE, supporting more memory consistency protocols, and
developing new load balancing schemes. We are also investigating ways of incor-
porating fault-tolerance into our system.

R e f e r e n c e s

1. H. Assenmacher, T. Breitbach, P. Buhler, V. Hubsch, and R. Schwarz. PANDA -
Supporting Distributed Programming in C++. In Proc. 7th European Conf. on
Object-Oriented Programming (ECOOP), Kaiserslantern, July 1993.

2. Y. Ben-Asher, D.G. Feitelson, and L. Rudolph. ParC: An Extension of C for
Shared Memory Parallel Processing. Software Practice ~ Experience, 1995.

3. B.N. Bershad, M.J. Zekanskas, and W.A. Sawdon. The Midway Distributed Shared
Memory System. In COMPCON, pages 528-537, February 1993.

4. Robert D. Blumofe and David S. Park. Scheduling Large-Scale Parallel Compu-
tations on Networks of Workstations. In Proc. 3rd Syrup. on High-Performance
Distributed Computing, pages 96-105, August 1994.

5. J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and Performance
of Munin. In In proc. 13th Syrup. on Operating Systems Principles, pages 152-164,
October 1991.

6. R. Friedman, M. Goldin, A. Itzkovitz, and A. Schuster. Millipede: Easy Parallel
Programming in Available Distributed Environments. Technical Report LPCR-
9506, Department of Computer Science, The Technion - Israel Institue of Tech-
nology, November 1995.

7. A.M. Vahdat D.P. Ghormley and T.E. Anderson. Efficient, Portable, and Robust
Extension of Operating System Functionality. Technical Report CS-94-842, Uni-
versity of California - Berkeley, 1994.

8. P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. TreadMarks: Distributed
Shared Memory On Standard Workstations and Operating Systems. In USENIX,
pages 115-131, January 1994.

9. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. In In Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture,
pages 148-159, May 1990.

10. H. Mehl. Distributed Shared Memory: A Survey. Technical Report SFB124-33/92,
University of Kaiserslantern, Department of Computer Science, P.O.Box 3049, D-
6750 Kaiserslautern, Germany, 1992.

11. A. Mohindra and U. Ramachandran. A Survey of Distributed Shared Memory in
Loosely-Coupled Systems. Technical Report GIT-CC-91/01, College of Comput-
ing, Georgia Institute of Technology, Atlanta, GA 30332, January 1991.

12. B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues and Al-
gorithms. COMPUTER, pages 52-59, August 1991.

