
Laws of D a t a Paral le l A s s i g n m e n t

J.P. Wr~v

Department of Computer Science
The Queen's University of Belfast

Belfast BT7 1NN~ UK
jp.wray@qub.ac.nk

Abs t rac t . A set of lairs for data parallel assignment is outlined. The
laws illustrate the mathematical tractability of this programming con-
struct and provide a means of correctly transforming a complex assign-
ment into a sequence of simpler assignments which m~v then be inter-
preted on a variety of parallel architectures.

1 Introduction

One means of exploiting the potential of supercomputers for the efficient execu-
tion of scientific programs is to specie' a set of ~'fine grained" order independent
operations which may be applied to a data structure. The concept of applying
order independent updates to data structures [1, 8, 7, 12, 10] may be viewed
as an extension of multiple assigmnent [3, 4]. Data parallel assignment [9, 10]
captures the concept of independence of a set of operations; it may be executed
using any combination (parallel or sequential) of its atomic constituents (individ-
ual updates) and, consequently; is suitable for implementation on a wide range

of parallel architectures.
Previous work on da ta parallel assignment [9~ 10, 13] has resulted in the

development of complementary denotational and axiomatic definitions of its se-
mantics. These definitions exhibit mathematical regularity and facilitate the
development and verification of correct da ta parallel programs. In further work
a formal array processor based operational semantics of the construct has been
specified [15] aaqd da ta parallel a~signment has been compared with apparently
similar constructs in Fortran 90 and High Performance Fortran [11].

In this paper a set of laws for da ta parallel assignment is sketched. The mo-
tivation for studying the algebraic properties of data parallel assignment stems

from the observation [5] tha t

. . . conventional programs are mathematical expressions, and are subject
to a set of laws as rich and elegant, as those of any other branch of
mathematics, engineering; or natural science.

Tha t is, it is possible to define laws which allow a programmer to manipulate
and reason about programs in much the same way that mathematicians reason
about; for example, logic and calculus. These manipulations may be carried out
without reference to underlying domains or assertions. In particular, algebraic

771

laws may be used to define correctness-preserving t ransformations tha t can facil-
i tate the interpretat ion of da ta parallel assignment on various parallel computer
architectures. Furthermore, another consistent complementary description of the
construct will provide more information about its mathemat ica l regular i ty- -as
observed by Hoare and Lauer [6], a good intuitive criterion for such regularity
of a language is that it is easy to describe formally in more than one way.

Section 2 provides a brief overview of da ta parallel assignment. The laws of
da ta parallel assignment are outlined in Section 3. A structural normal form for
da ta parallel assignment, the validity of which is established using some of the
laws, is proposed in Section 4.

2 Data Parallel Ass ignment

Data parallel assignment is a means of specifying a set of independent updates
tha t are to be applied to a fine grained da ta s tructure (an array). For example,
if a, b, and c are n x n matrices, {(1, 1) , . . . , (n ,n)} denotes the set of index
pairs (i , j) such tha t 1 _< i , j <_ n, and {(k,/) ~ S I P (k , l) } denotes the set of
index pairs which belong to S and satisfy the predicate P , then the da ta parallel
assignment

V(i , j) e {(1, 1) , . . . , (n ,n)} .a (i , j) := b(i, j) + e(i , j)

assigns to a tile sum of b and e, and

V(i , j) E {(k,l) E { (1 , 1) , . . . , (n , n) } I k = l } . a (i , j) := 1

assigns the value "1" to each element in the diagonal of a.

The examples above involve scalars and structures of uniform dimension. A
structure of one dimension may be assigned values from a s t ructure of a different
dimension using a da ta parallel assignment incorporating an index .function,
i.e., a mapping from the indices of the structure on the left-hand side of the
assignment to the indices of a s tructure on the right-hand side. Da ta parallel
assignments may also involve conditional expressions. In general, a da ta parallel
assignment s ta tement has the form

Vilist E S.id(ilist) := exp

where ilist is a list of index variables, S is a set expression defining a set of
actual indices (integer tuples), id is an array variable, and exp is an expression
which may contain ilist as well as index functions. The effect of the assignment
is to "simultaneously" assign, for all indices in the set S, the values of exp to
the corresponding elements of id. Full details of the the syntax and denotat ional
semantics of da ta parallel assignment may be found in [13].

772

3 T h e L a w s

Each law is an equivalence of the form "A1 =_ A2", where A1 and A2 are data
parallel assignment schemas, and signifies that A1 may be rewritten as A2, and
vice-versa, whilst preserving meaning. The laws fall into three main categories:

1. Substitution laws, which define how bound variables may be renamed whilst
preserving meaning;

2. Laws derived from standard set and function taws such as the associative
and distributive laws for set union;

3. Laws for simplifying assignments, for example, laws which define absorption
of assignments and laws which define the removal of conditional expressions
from assignments.

Lack of space precludes listing the laws in full here. For complete details see [14].
The following is an example of a law in the third of the above categories:

a r free(S, B, e2)

Vi E S.a(i) := I f B Then el Else e2

=_ V i e {j e S I B<j/i)}.a(i) := el;Vi e {j 6 S t --,B(j/i)}.a(i) := e2

This law defines how a data parallel assignment involving a conditional expres-
sion may be replaced by a pair of unconditional assignments. It is valid only if
the array variable a does not occur free in any- of the sub-expressions S, B, or
e2. The set expressions in each of the two unconditional assignments could then
be further simplified through the application of substitution and set laws.

The validity of each of the laws can be established [14] using a straightforward
application of the denotational definitions. One application of the laws is in
establishing the equivalence of a data parallel assignment and a sequence of
such assignments having a special form--structural normal form--discussed in
the next section.

4 A Structural Normal Form

The definition of an operational interpretation of data parallel assigmnent is
simplified if the number of possible syntactic forms which needs to be considered
is reduced. This can be achieved by defining a structural form into which any
particular data parallel assignment (involving arithmetic operators of maximum
arity 2) rn~v be transformed without ehaalging its meaning:

Defini t ion 1. A data parallel assignment of the form

Vi E S.a(i) := L O P N L

where

773

1. L is an expression in which the only te rm (if any) involving fi'ee tuple vari-
ables is a(i);

2. NI , is an expression in which the only te rm (if any) involving free tuple
variables is b (F (i)) , where b is an array variable and F is an index function;

3. O P is a binary operator

is in s t r u c t u r a l n o r m a l fo rm.

Da ta parallel assignment is interpreted on a model distr ibuted array" processor
in [15]. To this end, the structural normal form ensures tha t each "atomic"
assignment involves at most one "non-local" da ta element (that which occurs in
the sub-expressions NL).

It is necessary to prove that any da ta parallel assignment can be t ransformed
into an equivalent sequence of s tructural normal form assigmnents. The strict
denotat ional equivalence of two sequences of da ta parallel assignments is inap-
propriate for this purpose since, for example, the final values of t empora ry vari-
ables (such as "dummy" variables used in swapping the values of two program
variables) are not significant from the programmer ' s point of view. Therefore the
notion of "relative equivalence", as defined below, is used.

D e f i n i t i o n 2. Let SS1 and SS2 be finite sequences of da ta parallel assigmnents,
and let a E Id. We say" that SS1 and 8S2 are e q u i v a l e n t w i t h r e s p e c t t o a
iff

Va E St.Vi 6 iddomain(cr, a).C[SS1]~r(a, i) = C[SS2]~(a, i)

where C is the semantic function for commands, and iddomain(cr, a) denotes the
index range of the array a in state o-.

Informally, SS1 and SS2 are equivalent with respect to a iff they always effect the
same t ransformation on a, regardless of their effect on other program variables.
The following theorem states that the structural normal form defined above
possesses the required properties.

T h e o r e m 3. For any data parallel assignment A to a variable a, there exists
a finite sequence of structural normal form data parallel assignments which is
equivalent, with respect to a, to A .

Proof. By induction on the s tructure of A, appealing to the laws discussed ear-
lier. Details are omitted. []

5 C o n c l u s i o n

Da ta parallelism continues to be a significant feature of parallel computing.
There is a need for a model of data parallel computa t ion that is t ractable and
efficiently implementable. It has been shown [11] that correctness proofs of pro-
grams based on da ta parallel assignment are more t ractable than their equiva-
lents expressed in Fortran 90 and HPF; it remains to be shown how da ta parallel
assignment may be efficiently implemented on a range of parallel architectures.

774

One possible approach is to derive an efficient implementat ion of a program
expressed using da ta parallel assignment through the au tomated application of
a sequence of correctness preserving transformations. This approach has been
successfully applied in the derivation of efficient parallel implementat ions from
functional specifications [2]. The laws presented in this paper provide the basis
for many of the necessary t ransformation rules. It would, however, be necessary
to define a set of special purpose transformations for carrying out optimizations
for particular architectures. Alternatively, it may be possible to t ransform pro-
grams expressed using da ta parallel assignment into equivalent Fortran 90 or
t I P F versions and thereby exploit the sophisticated compilers tha t have been
developed for these languages. This is a topic for further investigation.

References

1. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

2. M. Clint, S. Fitzpatrick, T..J. Harmer, P.L. Kilpatrick, and .J.M. Boyle. A family
of data-parallel derviations. In W. Gentzsch and U. Harms, editors, Proceedings
of High Performance Computing and Networking, Volume If, LNCS 797, pages
457-462. Springer-Verlag, 1994.

3. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
4. D. Gries. The Science of Programming. Prentice-HM1 International, 1981.
5. C.A.R. Hoare, I.J. Hayes, He .Jifeng, C.C. Morgan, A.W. Roscoe, ,I.W. Sanders,

I.H. Sorensen, .J.M. Spivey, and B.A. Sufrin. Laws of programming. Communica-
tions of the A CM, 30(8):672-686, 1987.

6. C.A.R. Hoare and P.E. Lauer. Consistent and complementary formal theories of
the semantics of programming languages. Acta Informatica, 3:135-153, 1974.

7. M. Metcalf and .J. Reid. Fortran 90 explained. Oxford University Press, 1990.
8. R.tt. Perrott. A language for array and vector processors. ACM Transactions on

Programming Languages and Systems, 2:266-287, 1979.
9. A. Stewart. SI.?vID language design using prescriptive semantics. BIT, 28:639-650,

1988.
10. A. Stewart. An axiomatic treatment of SIMD assignment. BIT, 30:70-82, 1990.
11. A. Stewart. Reasoning about data-parallel array assignment. Journal of Parallel

and Distributed Computing, 27:79-85, 1995.
12. P..J.L. V~rallis. Some primitives for the portable programming of array and vector

processors. BIT, 21:436-448, 1981.
13..J.P. ~Vray. The Semantics of Synchronised Assignment. PhD thesis, The Queen's

University of Belfast, .July 1992.
14. J.P. ~Vray. Algebraic laws and a normal form for data parallel assignment. Tech-

nical report, Department of Computer Science, The Queen's University of Belfast,

h/Iay 1996.
15..I.P. Wray and A. Stewart. Correct translation of data parallel assignment onto

array processors. Formal Aspects of Computing, 6:417-439, 1994.

