
Workshop 06

Parallel Discrete Algorithms

A Simple Parallel Dictionary Matching Algorithm*

Paolo Ferragina

Dipartimento eli Informatica
Universit~ di Pisa, Italy. E-mail: ferragin~di.unipi.it

Abs t rac t . In the Parallel Dictionary Matching problem a set of patterns/) is fixed
at the beginning, and the following Query(T) operation has to be quickly supported:
given an arbitrary text T[1 : t], for each position i retrieve the longest pattern in
7) that is prefix of text suffix T[i : t]. In this paper, we present a simple CRCW
PRAM algorithm achieving optimal work for answering Query(T) in the case of a
constant-sized alphabet.

1 Introduct ion

The classical pattern matching problem on strings consists of finding all occurrences of a
single pattern P[1 : p] as a substring of a text T[1 : t], where P and T are drawn from an
ordered alphabet S . The goal is to preprocess P such that all the succeeding queries on an
arbitrary text T can be answered quickly, that is, in optimal O(t) time [7, 15]. The "dual"
version of this problem, in which P is given on-line and T is fixed, has been studied as well
attaining optimal solutions [16, 19].

One generalization of the pattern matching problem is the multiple pattern matching
problem, commonly called dictionary matching (shortly, DM) problem. Here, instead of a
single pattern, a set of patterns 7) = {P1,-- . ,Ph}, called ~ the dictionary, is given to be
preprocessed and an arbitrary text T is provided on-line with the intention of finding all the
occurrences of the patterns in 7) that appear in 7" (let toee be their number). In addition
to its theoretical importance, DM problem has many practical applications. For example, in
molecular biology, one is often concerned with determining the sequence of DNA, and then
compare that sequence against all the known strings to find the ones that are related to
it. Also, in computer virus detection applications, a dictionary of computer viruses is given
and new programs are queried on-line to find out if they are infected.

Any pattern matching algorithm can be trivially extended to a set of patterns by match-
ing each pattern separately, thus requiring O(d + tk) time, where d --)"~=1 [Pi[is the
dictionary size (i.e., brute-force method). However, one may clearly hope that, once 7) has
been preprocessed, the cost of finding all the occurrences of 7)'s patterns in T be propor-
tional only to the length t of T and to the number tocc, independent of the length d of the
(usually) much larger dictionary. Aho and Corasick [1] were the first to solve optimally the
DM problem in O(d log a) sequential time for the preprocessing of 7), and O(t log o- +tocc)
time for answering a query on text T, where ~ -- min{d, [,U[}. This result is perhaps surpris-
ing because the text scanning time is independent of the dictionary size (for a constant-sized
27). Since then, a dynamic formulation of this problem has been also well studied achieving
very interesting results (e.g., see [2, 3, 4, 11]).

The DM problem has been also deeply investigated in the widely used Parallel Ran-
dom Access Machine (shortly PRAM [13]). In particular, the powerful Concurrent-Read-
Concurrent-Write variant of this model has been employed to describe various parallel solu-

* Work supported in part by MURST of Italy.

782

tions. We remark that in the parallel context, Query(T) opcration is defined as follows: For
each position of T, retrieve the longest pa~tern in T> that occurs in T starting at that posi-
tion. Notice tha~ the whole information about shorter patterns is contained implicitly in this
representation. Moreover, the output size does not prevent the algorithm to have polyloga-
rithmic time complexity when using O(t) processors. Amir and Farach [2] were the first to
provide an efficient parallel algorithm for the DM problem requiring O(tog m log d) time and
O(~ log m log d) work 2 for answering Query(T), and O(log m log d) time and O(d log d) work
for preprocessing :D, where m denotes the length of the longest pattern in T~. Then, Muthukr-
ishnan and Palem [17] presented an algorithm requiring O(Iog m) time and O(t log m) work
for answering Query(T), and O(logm) time and O(d) optimal work for preprocessing 9 .
They also presented an improved algorithm, in the case of a constant-sized ,U, which re-
quires O(Iog m) time and O(dlogm) work for preprocessing 29, and O(logm) time and O(t)
optimal work for answering Query(T). Both two solutions use a large amount of space,
fie. O(mdl+~), for any given e > 0. Using randomization, first Amir and Farach and Ma-
tias [5], and later Farach and Muthukrishnan [9], have reported very efficient algorithms
with expected work optimal bounds both for answering Query(T) and preprocessing 9 .

In this paper we provide a simple CRCW PRAM algorithm achieving optimal work for
answering Query(T) and requiring small space, in the case of a constant-sized alphabet.
The dictionary can be preprocessed in O(logd) time and O(dlogm) total work. Answer-
ing Query(T) requires O(logm) time and O(t) optimal work. The total required space is
O(d 2 log m). It is worth noting that our solution achieves the same time and work bounds
as in [17], but it is simpler and also requires less space for d 1-~ = O(lo--~).

2 P r e l i m i n a r i e s

In what follows we will use the classical naming technique [14] and the suffix tree data struc-
ture [16, 19] as basic tools to develop our parallel solution (see the corresponding literature

for more details).
Let X be a string of x characters and assume $ r 22. z The suffix tree STx built on

X$ is a digital search tree containing all the suffixes of X$ and occupying optimal O(z)
space [16]. The character $ is used to prevent that a suffix X[i : z]$ is a prefix of another
suffix X[j : zig; thus there exists a unique leaf in STx for each suffix of X$. Each arc of STx
is labeled with a substring X[i : j], which is represented as a triple (X, i, j). Given the suffix
tree STx and a node u, we denote by W(u) the concatenation of the labels on the path from
the root to node u. Clearly, W(u) is a substring of X and thus every ancestor w of u in STx
denotes a string W(w) which is a proper prefix of W(u). In general, given a substring V of
X$, we define the {exact) locus of V as the node v in ST); such that V = W(v). Moreover,
we define the e3:tended locus of a string U as the node u in STx such that U is a prefix of
W(~) and W(p(u)) is a proper prefix of U, where p(u) is the parent of u in STx.

The parallel construction of the suffix tree works on the arbitrary CRCW PBAM and
requires two phases [6] (see [12] for a work-optimal algorithm). In the first phase, called
naming, we label all of X 's substrings of power-of-two length. Labels are integers between
1 and z +.1, and equal substrings get the same label (this is called consistent naming).
In the second phase, called refining, a sequence of refinement trees RT (r) is produced for
r = [log z] 0. The final tree RT (~ is basically the suffix tree STx, except for some minor
adjustments. For each intermediate value r, RT (r) is a better and better approximation of

suffix tree STx.

2 By work of a parallel algorithm, we mean the total number of operations performed to solve a
problem [13]. A parallel algorithm is called work optimal if its work is of the order of time of the
best possible sequential algorithm for the same problem.

s From now on we assume that alphabet ~ has constant size.

783

T h e o r e m l . [6] Given a string X[1 : x], the names of all its substrings of power-of-two
length and its set of refinement trees can be computed in O(log z) time and O(x log z) work.
The total required space is 0 (~ 2 logx).

To search for the longest prefix of a string Y[1 : y] which occurs in string X, we
maintain all of X 's refinement trees and partition Y in substrings ch,a2,. . . ,Crk, where
k < [log y J, [~i[= 2 r,, rl > ri+l. Then, we label these substrings consistently with X and
search for them in X 's refinement trees, thus obtaining:

L e m m a 2 . [6] Given an arbitrary st~qng Y[1 : y], Y ' s longest prefix occurring m X (and
its extended locus in S T x) can be found in O(log y) time and O(y) work.

Before concluding this section, let us recall a simple result which will be used later.

L e m m a 3 . [10] Let T be a tree in which the root and some nodes are marked. The pointer
to the deepest marked ancestor of each node in T can be computed in O(log ITI) time and
O(]TI) optimal work on the E R E W PRAM.

3 Preprocessing 2)

Let :D = {P1,- . - , Pk} be a dictionary of patterns of total size d = ~--~-i~1 IP~l and maximal
pattern length m = max{]P~l : 1 < i < k} (w.l.o.g. assume m is a power of two). Since the
dictionary is fixed at the beginning, our goal is to preprocess it by building a proper set of
da ta structures to support work-optimal queries on arbitrary texts that are provided on-line.

Preprocessing 7) consists of two main steps. In Step (1), all the patterns in 7) are labeled
and the corresponding set of refinement trees is built. In Step (2), the suffix tree ST9, built
on the patterns of ~P, is augmented with some additional information.

S t e p (1): Consider the string D = Pl$1Pz$2...Pk$k, where $i y~ f j for each i r j ,
and $i ~ 2~ for all i = 1 , . . . , k. Notice that D's total length is still O(d). Apply the naming
technique to consistently label all of D's substrings having power-of-two length at most m
(Theorem 1). Then, build the suffix tree STD and its set of refinement trees R T (i) only
for i = log m , . . . , 1, 0, by exploiting the fact that all of D's substrings longer than m are
distinct, so taking O(logm) time and O(dlogm) total work. The total space required by
the set of refinement trees is therefore O(d 2 log m). It is worth noting that the final suffix
tree STD has a distinct leaf for each suffix of a pattern in 7). Hence Lemma 2 ceaa be easily
extended as follows:

L e m m a 4 . Given a string Y[1 : y], Y "s longest prefix occurring in a pattern o l d (and its
extended locus in STD) can be found in O(logy) time and O(y) work.

Step (2): Augment the suffix tree STB computing for each node u E STD the deepest
ancestor of u, called lp(u), which is the locus of a pattern in Z) (i.e., W(lp(u)) E ~9). To do
this, we mark the root of ST~ and all of its leaves that are locus of some Pi$i. If the leaf
storing a string Pi$i is connected to its parent by an arc whose first labeling character is
$i, then we delete the mark from the leaf and mark its parent (i.e., this node is the exact
locus of the pattern Pi)- From the properties of suffix trees [16], it immediately follows that
lp(u) is u's deepest marked ancestor. Therefore, we can use Lemma 3 (with ITI = O(d)) and
compute lp(u) in O(logd) time and O(d) work.

We further augment STD computing a set of pointers ezt (c, u), for all c E S and u E STD,
defined as follows:

784

Defini t ion5. For each node u E STD and for each character c E S, we define ezt(c, u) = v
if and only if v is the extended locus in ST19 of the longest prefix of cW(u) occurring in D
(possibly eW(u) itself).

Notice that ezt(c, u) is different from the pointer defined in [8], because in that case a
pointer is defined for a character c and a node u only if the string eW(u) occurs in D and
thus its extended locus is defined. In our case, instead, it may be lW(ezt(c, u)) I < W(u) + 1,
because cW(u) might not occur in any pattern of 29. We remark also that the augmented
STD still requires O(d) space, because],U] = O(1) (by the hypothesis), and thus we have
a constant number of ezt-pointers leaving from each node in STD. We prove the following
result:

L e m m a 6 . For each node u E STD and for each character c E ~, the pointer ezt(c, u) can
be computed in O(logm) time and O(dlogm) total work on the CRCW PRAM.

Proof. In Step (1), all the substrings of the patterns in 2) have been consistently labeled,
and the corresponding set of refinement trees has been built accordingly. Given a node
u ~ STD and a character e E 22, let us consider the string a = cW('u), and its substrings
of length 2 q, for 0 < q < log]a]. The substrings a[i : i + 2 q - 1], with i > 1, are actually
substrings of W(u), and thus they have been labeled in Step (1). Conversely, the names of
substrings tr[1 : 2q], for all 0 <: q <_ loglal, are not directly available (because we do not
know even if a occurs in a pattern of 29). They are computed inductively by observing that
~[1 : 2 q] = or[1 : 2 q-l] or[2 q-I + 1 : 2q], where the substring ~[2 q~l + 1 : 2q] is entirely
contained in W(u) mad thus its name is already known. Hence, we can label all of a 's
prefixes having power-of-two length in O(log Itrl) = O(logm) sequential time by using the
BB matrices previously adopted to label 29's patterns. Finally, using Lemma 4, we search
for a in the set of refinement trees built on D, thus finding the extended locus ezt(c, u) of
the longest prefix of a that occurs in some pattern of 29. [3

Furthermore, STo is preprocessed in O(logd) time and O(d) total work to support
constant-time LCA queries [18]. This way, given two arbitrary leaves e, ~' E STD, the longest
common prefix between the two suffixes W(l) and W(s I) can be computed in O(1) sequential
time by means of LCA(I,g). Therefore we have:

T h e o r e m 7. preprocessing phase requires O(log d) time and O(d log m) work on the CRCW
PRAM. The total required space is O(d 2 logm).

4 Answering Query(T)
We describe an approach that answers Query(T) based upon the information computed in
Section 3 and available in the augmented STD. We first introduce a problem which arises
in answering Query(T) and whose solution is used as a key tool in our parallel algorithm.

4.1 Left Ex tens ion p rob l e m

Let X be a substring of a pattern in 2). Clearly, X is consistently labeled and IXt < m.
Furthermore, let Oh,..., el be a sequence of characters drawn from zU. For 1 <: i < h, we
define lcp/ as the longest prefix of the string c / . . . clX that occurs in some pattern of Z)
(i.e., it occurs in D). The following proposition is easily provable:

785

P r o p o s i t i o n 8 . lcpi is the longest prefix of cilcpi-1 that occurs in some pattern of 7).

Proposition 8 highlights that lcpi-1 contains the whole information that suffices for com-
puting lep~. The next step consists of solving efficiently the Left Extension problem defined
as follows: For all i = 1 , . . . , h, retrieve the extended locus u~ of lepl in STD (notice that
ui exists since lcpi occurs in D, by definition). This problem was studied in [9]. We propose
below a simpler solution based upon ext-pointers in STD.

A l g o r i t h m - L E P (X , ch . . . el)

S tep 1: Let u0 be the extended locus of X in STD. Retrieve u0 by searching for X in
the refinement trees built on D. Since X is consistently labeled, u0 can be retrieved in
O(log tXI) = O(log m) sequential time (by Lemma 4).

S tep 2: For i = 1, . . . , h, set us := ext(u~_l,e~).

Before showing the correctness of Algorithm-LEP, we state an intermediate result.

L e m m a g . Let Z be a string and node z be its extended locus in ~ o . For each character
e E 27, the node ext(c, z) is the extended locus of the longest prefix of cZ occurring in some
pattern of ~9.

Proof. Let v be the extended locus of the longest, prefix of eg occurring in some pattern of
2). Recall that ext-pointers are computed only for the substrings of D that have exact locus
in STD. Therefore, if Z = W(z), then the lemma clearly follows by Definition 5. Otherwise
(i.e., Z is a proper prefix of W(z), and W(p(z)) is a proper prefix of Z), we do not have
directly the ezt-pointer for g. Nevertheless, we can show that v = ext(c, z).

Since Z is a proper prefix of W(z), we have that eg is a proper prefix of eW(z). Thus
v is an ancestor of ext(c, z) in STz~ (by suffix tree's structure). By contradiction, assume
that v is a proper ancestor of ext(e,z), that is, v # ext(e,z). Thus, W(v) is a proper prefix
of W(ext(e, z)). Now, since v is a node in STD, it has at least two outgoing arcs that have,
for example, as first labeling characters d and d s, with d # c u. Thus, W(v)d and W(v)c"
occur in D. Let W(v) = eft, for some fl ~ 27", then we may conclude that 13d and tic" also
occur in D. By suffix tree's properties, fl must therefore have locus up in ST2). Moreover,
fl is a proper prefix of W(z) (recall that W(v) is a proper prefix of W(ezt(c, z))), so that
ua is a proper ancestor of z, and ext(c, uZ) = v (exact locus). From the definition of v, the
longest prefix of eZ occurring in some pattern of :D must be cfl and, by the hypothesis,
Ifll <]ZI < IW(z)l. Hence, the longest prefix of cW(z) occurring in some pattern of 7)
should be eft, contradicting the hypothesis that v # ezt(c, z) ! E]

The correctness of Algorithm-LEP is proved by induction. The basis holds since u0 is
the extended locus of X (by definition). Let us set lcpo := X. By the inductive hypothesis,
ui-1 is the extended locus oflep~_l, thus lcpi-1 is a prefix of W(ui-1). From Proposition 8,
it immediately follows that lcpi is the longest prefix of cilcpi_l occurring in some pattern
of:P. Hence, applying Lemma9 (with c = ci, Z = lcpi-x and z = ui-1), we derive that
ext(cl, ui-1) is the extended locus of lcpi.

T h e o r e m 10. Left Extension problem defined on a sequence of characters ch, . . . ,c l E
and on a substring X of some pattern in ~9, can be solved in O(h) sequential time once the
extended locus of X in STD is given.

4.2 The a lgo r i t hm

It consists of four steps, called Preprocesaing, Sampling, Left Extension, and Retrieval. Let
us describe first their main features and then proceed to their detailed discussion.

In the Preprocessing step, we label only the text substrings of length 2q which start at
positions (h2q + 1), for all 0 _< q < logm and 0 < h < [~ j . These substrings are O(t) in

786

total. In the Sampling step, we consider a subset S of text positions which are O(logm)
positions apart each other (note that 1`9[t = O(ogl-ffff~)). For each i ~ S, we compute the
longest prefix T[i : i + Li - 1] of T[i : t], for a proper value Li, occurring in some pattern of
:D by using the refinement trees built on D and the text consistent labeling (see [9, 17] for
a different approach). In the Left Extension step, we compute T ~ : j + Lj - 1] for all the
other positions j E [1 : t], by exploiting the ezt-pointers stored in the nodes of STD (see
Theorem 10). In the Retrieval step, we use/p-pointers and substring T[j : j q- Lj - 1], for
all j = 1 4, to retrieve the longest pattern in 7), say Plong(j), that is prefix of T[j : t].

P R E P R O C E S S I N G STEP. Recall that m is the length of the longest pattern in 7). Let
us assume to append to the end of T, t special symbols $ ~ Z, and $ r $j, for j = 1 k.
This way T = T[1 : 2t]. We perform a "partial naming" of T by applying the labeling
procedure of [6] to all text substrings T[h2 q + 1 : h2 q § 2q], where" 0 < h < [~ J and
0 < q < logm. For a fixed q, these substrings cover entirely T without any overlapping and
thus their number is O(~-~q). Hence, their total number is O(~). Therefore, by using the BB
matrices employed to label the patterns in ~9, Preprocessing step takes O(log m) time and
O(t) work. We point out that, we are saving space by avoiding the labeling of those text
substrings that do not occur in any pattern of :D (i.e., whose entries in the BB matrices
are not initialized). Moreover, we are saving time and work by performing only a partial
naming.

S A M P L I N G STEP. Let us consider the subset ,9 of text positions defined as follows:
,9 = {h2 I~176 1 : h -- 0, 1, 2 , . . . , [~ J } . That is, ,9 is the set of every other 2 z~176
positions in T, so that [,9] -- O(~[logm). For each suffix T[i : t], with i e S, the longest
prefix T[i : i + Li - t], for a proper value Li > 0, occurring as a substring of some pattern
in 2) satisfies the following property:

Proposltionll. [Pto.g(1)[_< Li <_ m.

Notice that, even if T[i : t] could have been not completely labeled in the Preprocessing
step, each substring T[h2 q Jr I : h2 q % 2 q] that occurs in T[i : i % L~ - 1] has been consistently
labeled because T[i : i + Li - 1] is a substring of some pattern in ~ (by its definition) and
i ----- h~2 l~176 -{- 1, for some h ~ > 0. Hence, we can find T[i : iq- L~ - 1], searching for T[i : ~]
in the refinement trees built on D (Lemma 2). Sampling step requires O(logm) time and
O(~) total work, since we are searching for O(~/ logm) suffixes in total. We remark that,
this step determines also the exact length Li, for all i E ,9.

E X T E N S I O N STEP. We compute the longest prefix T[j : j + Lj - 1] occurring in some
pattern of 29, for all the other positions j E [1 : t]. Indeed, we exploit the ext-pointers stored
in each node of STD, the length Li (for each i E `9), and the result proved in Theorem 10.

t We map one processor to each position i E s (hence we need O(lo-ffff-~) processors in

total). Each processor executes the following algorithm:

- Let ui be the extended locus of T[i : iq-Li - 1], where i E S (determined in the Sampling

step).
-- For s := I to 2 l~176 - l do

* ui- , := ext(T[i "-- d , ui-,+l)-
* Compute the length Li- , of the longest prefix of T[i - s : 4] occurring in some

pattern o f g , by using L(-~+I and an LCA query. That is, if ui-~ is the root of STD

then set Li-s :--- 0; otherwise proceed as follows:
, Let ~i-~+x and s be any two leaves of ST.o descending from u~-,+t and u~_,,

respectively, and assume that W(s = P i t : IPI], for some pattern P E :D.
. Determine the new leaf s associated with the second suffix of P i t : IPI], i.e.,

W(l) = P i t + 1: IPI].
, Set Li - , := 1 + min{Lt-~+l, tW(LCA(ei - ,§163

787

From Proposition 8, we have L i - , + l >_ L i - , - 1 and thus T[i - s : i - s + L i - , - 1]
is a prefix of the string T [i - s : i - s + L i - , + l] . The computation of the node u i - , is
correct, as immediately derives from Theorem 10 because node u i - , is the extended locus
(maybe exact locus) of T [i - s : i - s + L i - , - 1] (with lcpo = T[i : i -k Li - 1] and
Icp, = T[i - s : i - s + L i - , - 1]).

It remains to be shown that L i - , is correctly computed by the LCA query executed in the
above algorithm. Indeed, let us assume that u i - , is not the root of S T D , thus Li-~ > O. Let
W (~ - , + I) and W(~i- ,) be two suffixes of some patterns in 7) associated with the two leaves
s and s respectively. From suffix tree's properties, we clearly have that T[i - s + 1 :
i - s + L i - ,+ l] : W(ei_,+l)[1 : L i - ,+ l] and T [i - s : i - s + L i - , - 1] : W(gi_,)[1 : L i - ,] .
From the observations above and since L i - , + l >_ L i - , - 1 > 0, we can state the following
result:

P r o p o s i t i o n l 2 . W(g)[1 : Li_, - I] is a (maybe proper) pre f ix o f W(~/-8+l)[1 : Li-$-l-1],
where l is the leaf s tor ing the second su f f ix o f W (g i - ,) .

Hence, two cases may arise in the computation of L i - , , either L i _ , : L i - , + l + 1,
or L i - , < L i - , + l + 1. From Proposition 12, it is clear that both two cases are managed
correctly by L C A (g i - , + I , s For the time complexity of the Left Extension step, we observe
that all of the t O(]o--~) processors can execute simultaneously the loop in O(log m) time (by
Theorem 10). After that, for each suffix T[j : t] we have the extended locus u j of its longest
prefix T[j : j + Lj - 1] occurring in some pattern of 7) and its length L j .

R E T R I E V A L STEP. We retrieve the longest pattern, say Ptong(j), that is prefix of
T [j : t]. If u j is the exact locus of T [j : j + L j - 1] (i.e., [W(uj)] : Lj) and uj is the locus
of some pattern in 7) (i.e., W (u j) 6 7)), then we set P~o,g(j) := W (u j) . Otherwise, we set
Plong(j) := W (l p (u j)) . The correctness derives from Proposition 11 and from the definitions
of Lj and u j . As far as for the time complexity, this step requires O(1) sequential time for
each position in T. Hence, using O (t / l o g m) processors, this step takes O(logm) time in
total.

Summing up the time and work bounds required by the four steps above, we immediately
derive:

T h e o r e m 13. Given an arb i t rary tex t T [I : t], Query(T) can be answered in O(logm) t ime
and O(t) to ta l work on the C R C W P R A M .

A c k n o w l e d g m e n t s I thank R. Grossi and the anonymous referees for their helpful com-
ments and suggestions on the early version of this paper.

R e f e r e n c e s

1. A. V. Aho, and M. J. Corasick. Efficient string matching: an aid to bibliographic search.
Communicat ions of the A CM, 333-340, 1975.

2. A. Amir and M. Farach. Adaptive dictionary matching. In I E E E Symposium on Foundations
o f Computer Science, 760-766, 1991.

3. A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dynamic dictionary matching. Jour-
nal of Computer and Sys tem Science, 208-222, 1994.

4. A. Amir, M. Farach, R.M. Idury, H. La Poutr4, and A. A. Schs Improved dictionary
matching. Informat ion and Computation, 258-282, 1995.

5. A. Amir, M. Farach, and Y. Matins. Efficient randomized dictionary matching algorithms. In
Combinatorial Pat tern Matching, 259-272, 1992.

6. A. Apostolico, C. Iliopolus, G. M. Landau, B. Schieber, and U. Vishkin. Parallel construction
of a suffix tree with applications. AIgorithmica, 347-365, 1988.

788

7. R. S. Boyer and J. S. Moore. A fast string searching algoritlma. Communications o] the ACM,
762-772, 1977.

8. M. T. Chen and 3. Sefferas. Efficient and elegant subword tree construction. In Combinatorial
Algorithms on Words, 97-107, 1985.

9. M. Farach and S. Muthukrishnan. Optimal parallel dictionary matching and compression. In
A CM Symposium on Parallel Algorithms and Architectures, 244-253, 1995.

10. P. Ferragina. Incremental Text Editing: a new data structure. In European Symposium on
Algorithms, LNCS 855, 495-507, 1994.

11. P. Ferragina and F. Luccio. On the parallel Dictionary Matching problem: new results with
applications. In European Symposium on Algorithms, 1996 (to appear).

12. It. Hariharan. Optimal parallel suffix tree construction. In ACM Symposium on Theory of
Computing, 290-299, 1994.

13. J. J~ .]~. An introduction to parallel algorithms. Addison-Wesley, 1992.
14. R. Karp, R. Miller, and A. Rosenberg. Rapid identification of repeated patterns in strings,

arrays and trees. In ACM Symposium on Theory of Computing, 125-136, 1972.
15. D. E. Knuth, I. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM Journal

on Computing, 63-78, 1977.
16. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,

262-272, 1976.
17. S. Muthukrislman and K. Palem. Highly efficient dictionary matching in parallel. In ACM

Symposium on Parallel Algorithms and Architectures, 69-78, 1993.
18. B. Schieber and U. Vishkin. On finding lowest common ancestor: simplification and paralleliza-

tion. SIAM Journal on Computing, 1253-1262, 1988.
19. P. Weiner. Linear pattern matching algorithm. In IEEE Switch. Aut. Theory, 1-11, 1973.

