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A b s t r a c t .  The radiosity method is a global illumination method from 
computer graphics to visualize light in scenes of diffuse objects within 
an enclosure. The hierarchical radiosity method reduces the problem size 
considerably but results in a highly irregular algorithm which makes a 
parallel implementation more difficult. We investigate a task-oriented 
shared memory implementation and present optimizations with differ- 
ent effects concerning locality and granularity properties. As execution 
platform we use the SB-PRAM, a shared-memory machine with uniform 
memory access time, which allows us to concentrate on load balancing 
and scalability issues. 

1 I n t r o d u c t i o n  

The radiosity method is a simulation method from computer graphics to gen- 
erate photo-realistic images of computer-generated three-dimensional environ- 
ments with objects which diffusely reflect or emit light [4]. The method is based 
on the energy radiation between surfaces of objects and accounts for direct illu- 
mination and multiple reflections between the surfaces. First, all intensity val- 
ues of an environment are determined in a view-independent stage, and then an 
image is computed using conventional visible-surface and interpolative shading 
algorithms. 

The radiosity method uses a decomposition of the surfaces of objects in the 
scene into small elements, for each of which a radiosity value has to be com- 
puted. The radiosity values are the radiant energy per unit t ime and per unit 
area which are determined by solving a transport equation of energy, a system 
of linear equations describing the mutual interactions between radiosity energies 
of different surfaces with the help of geometric configuration factors. Building 
up and solving the transport  equation causes high computational costs. For a 
reduction of the computational costs, a variety of methods have been proposed, 
including an adaptive refinement technique [7], hierarchical methods [6], or pro- 
gressive methods [2]. Adaptive and hierarchical methods reduce the number 
configuration factors to be computed by combining several mutual  dependen- 
cies. The progressive method reduces the costs of solving the linear equation 
system. A further reduction of computation time can be achieved by parallel 
implementations [9]. 

The efficient computational technique of the hierarchical radiosity method is 
achieved by computing the mutual  illumination of surfaces more precisely only 
for short distances and less precisely for far surfaces. The mutual  influence decays 
with the square of the distance and, thus, a uniform accuracy is achieved. This 

* author supported by DFG 



790 

results in a smaller number of radiosity values to be computed and a reduction of 
interactions which can be computed efficiently on the hierarchical data structure 
supporting the hierarchical method. 

In this article, we investigate the implementation of the hierarchical radiosity 
method on shared memory machines. The starting point of the investigation is 
the SPLASII-2 benchmark implementation [11] described in [9] which is tuned 
towards an execution on a cache-based virtual shared-memory machine with a 
physically distributed memory (Stanford DASH). In this implementation load 
balance is realized by using distributed task queues with task stealing. This 
competes with the locality of accesses to the task queues, because each a.ttempt 
to steal a task includes an access to a remote task queue. 

Usually, the competition between load balance (and granularity) and data 
locality hinders a concise study for scMability. This limitation vanishes when 
using an execution platform like the SB-PRAM providing a large number of 
processors and a globM shared memory with unit access time [1]. Thus, the im- 
plementation can concentrate on the efficient exploitation of the task granularity 
and can neglect effects of locality. The original implementation is optimized on 
the algorithmic level, on the design level for tasks (towards a finer graaular- 
ity), and on the task administration level. The optimized version is derived from 
the SPLASH-2 implementation by several optimization steps improving the ex- 
ploitation of the degree of parallelism. Both implementations have good speedup 
values on the SB-PRAM for a small number of processors, exceeding the speedup 
vMues on the DASH. The optimized version exhibits good speedup values also 
for large numbers of processors (up to 2048). 

The remainder of the paper is organized as follows. Section 2 summarizes the 
classical and the hierarchical radiosity methods. Section 3 describes the shared 
memory implementation. Section 4 discusses the experiments and Section 5 con- 
cludes. 

2 T h e  h i e r a r c h i c a l  r a d i o s i t y  m e t h o d  

The classical radiosity method starts with the subdivision of the input polygons 
(representing the surfaces of the objects in the scene) into a number of small 
patches with area Aj, j = t , . . . , n .  For each of the patches, a radiosity value 
Bj (of dimension [watt/m ~] ) is computed which describes the specific radiant 
energy per unit time and per unit area of Aj. Because of the mutual illumination 
of diffuse objects, a radiosity value Bj is composed of two parts: the emission 
energy per unit area Ej and the reflections of light that is incident on patch 
j from all other visible patches not occluded by patches in between. The light 
incident from patch i on patch j is a portion Hi = Bi-Fij of the radiosity Bi; 
the dimensionless configuration factor or form factor) F~j describes the fraction 
of lightening from patch i incident to patch j. Each form factor is a double 
integral depending only on the geometric constellation of the two elements i and 
j. Using the symmetry relation F~jA~ = FjiA~, and diffuse refiectivity factors pd, 
the unknown radiosity values Bj can be specified by a linear system of equations 

(see [3]): 

Bj = Ej + pj ~ FjiBi, j = l , . . . , n .  (1) 
i = 1  
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Fig. 1. Mixed BSP-quad-tree data structure: 
the large circles represent nodes of the BSP 
tree, the small shaded circles represent nodes 
of the quadtrees. The arrows show interac- 
tions between nodes of different quadtrees. 

System (1) is solved by an iterative solution method for lineal" equation sys- 
tems like the Jacobi method. But the main computational effort of the radiosity 
method consists in computing the n(n - 1)/2 configuration factors. 

The hierarchical radiosity method [6] reduces the computational effort by 
adaptively subdividing polygons into a hierarchy of smaller pieces of the surfaces. 
For each input polygon the subdivision into the hierarchy is organized in a quad- 
tree such that  the four children of a node represent a partition of the patch 
attached to the parents node. The input polygons themselves are organized in 
a BSP tree (binary space partitioning tree) where each node of the BSP tree 
represents the root of the corresponding quad-tree (see Figure 1). The union 
of the patches attached to leaves of all quad-trees of this data structure now 
represent the patches Ai, i = 1, . . . ,  n, of the scene. 

The algorithm starts by building up the BSP-tree in an initialization step. 
During the computation of the form factors, the quad-trees are built up adap- 
tively in order to guarantee the computations to be of sufficient precision. 

For each patch, the decision about the set of interacting elements with which 
the energy exchange is computed depends on an a-priori estimation of the in- 
fluence of the radiosity. The method computes the energy transport (i.e., the 
configuration factor) between two patches only if it is not too large; otherwise 
the patches are subdivided. The subdivision of patches is performed if the energy 
transport between two patches is not small enough, i.e., VijFijB j ~ BF~. When 
the radiant surface Aj is larger (i.e., Aj > Ai) then this area Aj is divided and 
the interaction list are adapted appropriately. The patch Ai is deleted from the 
interaction list of Aj and is inserted in the interaction lists of the children of 
Aj. If Aj < Ai then Ai is divided and the children of Ai are inserted into the 
interaction list of Aj. The division of patches is stopped such that  the patches 
are not smaller than At. This procedure is performed for all pairs of input poly- 
gons and because all interactions use the same quadtree, each patch in the tree 
has its individual set of interaction patches for which the configuration factors 
have to be computed. Thus, the computation of radiosity for a leaf element 
may use configuration factors with internal elements of the quadtree unifying all 
the interaction with nodes in the corresponding subtree (representing a further 
division of the node element). 

The a-priori-estimations of the energy transport take into account the config: 
uration factors, the radiosity values and the visibility values. The use of radiosity 
values is possible because the hierarchical method alternates iteration steps of 
the Jacobi method to solve the energy system (1) with a re-computation of the 
quad-tree and the interaction sets based on estimations of VjiFjiBi with radios- 
ity values Bi from the last step. The values VjiFjiBi are estimated and must 
not be larger than a bound BF~. The iteration stops when the difference of the 
total radiosity of two successive iterations is small enough. 

In this paper, we consider a version of the radiosity method described in 
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[6] and adopted in the implementation of the SPLAStt-2 benchmark suite [11] 
with the following methods: The form factors are approximated numerically by 
a ray tracing method proposed in [10] using form factors from four points of 
Ai (which are points from pieces which form a partition of As) to four small 
disks ADz, t = 1 , . . . , 4 ,  covering A j .  The visibility test proposed in [6] uses a 
ray tracing method with a fixed number of rays between two patches. Here we 
use rays from 16 sub-elements to 16 sub-elements The percentage of rays not 
blocked by intervening surfaces is used as visibility factor ldj C [0, 1]. 

One iteration step of the Jacobian method consists in a top-down and a 
bottom-up traversal for each quadtree: In the top-down traversal, a radiosity 
value for each node is computed by computing the influence of all interaction 
partner j E I ( p a t c h )  and adding the radiosities of the parents node. The leaves of 
the quadtrees also take into account the emission E j .  In the bottom-up traversal, 
each node computes area-weighted radiosity of the children in order to make new 
radiosity values available on every level of the tree for the estimations of energy 
exchange and the next iteration step. 

Figure 2 shows the hierarchical radiosity methods already expressing explic- 
itly the potential parallelism. Portions of the program that  can be executed 
independently from each other in parallel are separated by a ]1 sign. Loops with 
independent iterations are described by forall. 

(1) do recursively: insert-polygon(pa) 
with procedure insert-polygon(pl) = 
{insert pi into BSP tree; 

do in parallel {insert-polygon(pi+l ) II forall p j, j < i, compute Fpjp,, Fp,;  j } } 

(2) Compute visibility factors Vp~p~; 
d_9_o { forM1, polygons p E {Pl , . . . , Pk } 
do recursively: compute-interaction(root(p)); 
with procedure compute-interaction(i) = 

{ forall interactions j E I( i )  d_.o_o { 
Compute visibility factor ~j ;  
if ViAFoB~ > BF, and A i , A j  > A ,  then { 

Divide (Ai, Aj);  
compute configuration factors of new interactions; } 

Compute B(i )  = pi ~ j e I ( i )  V i jF i jB ( j )  + B(parent( i ) ) ;  

if i is leaf then. { 
B(i)  = S ( i )  + E(i); 
while i is last child of parent( i )  do { 

i = parent(i);  
B(i) = 1/4 Ej=~..d(i~ B(j); } 

else { forall children k of i d__q compute-interaction(k); } } } } 
while (ERROR > �9 ) 

(3) forall_ elements in all quadtrees d__oq { bilinear interpolation; } 

Fig. 2. Hierarchical radiosity method with maximum degree of parallelism. 
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3 P a r a l l e l  i m p l e m e n t a t i o n  

For the parallel implementat ion of the hierarchical radiosity method we used a 
task-oriented shared memory  model and the SB-PRAM as execution platform. 
The SB-PRAM is a realization of a modified fluent machine [1]. A number  p of 
physical processors has access to p memory  modules each consisting of rn mem-  
ory cells. The processors are connected to the memory  modules via a butterfly 
interconnection network. Thus, the memory  is accessed as a virtual linear shared 
memory  distributed among the modules. Besides the usual load and store oper- 
ations to access memory  cells, the SB-PRAM also offers multiprefix instructions 
which enable several processors to perform simple operations on a memory  cell 
in parallel. The multiprefix instruction with addition MPADD starts with one 
local value for each processor and produces the sequence of prefix sums; initially 
one input value resides on one processors and at the end each processor holds one 
sum. A multiprefix operation is performed in two t ime units, independently of 
the number  of part icipating processors. It  is even possible that  different groups of 
processors perform separate multiprefix operations in parallel. Multiprefix oper- 
ations can be used for an efficient realization of access coordination to the global 
memory  (locking) or parallel data  structures like parallel task queues [5]. They 
can also be used for the implementat ion of a parallel loop which is controlled by 
a shared counter. The access to the counter by a multiprefix operation allows a 
dynamic execution of the loop iterations without sequentializations. 

SPLAS'tI implementation: The SPLASH2 benchmark suite comprises several 
parallel example programs realizing irregular applications, which are mainly in- 
tended for the Standorf  DASH multiprocessor [8]. The multiprocessor is a cache 
coherent shared address space processor with physically distributed memory.  
The software simulator of the DASH (described in [9], [9]) simulates the non- 
uniform memory  access with a constant access t ime for each level, i.e., cache, 
local memory  and non-local memory  or cache. 

The parallel implementat ion of the hierarchical radiosity method realizes 
parallelism that  occurs across input polygons, across the patches that  a polygon 
is divided into, and across the interactions computed for a patch. This parallelism 
is reflected in the choice of tasks: The B-tasks and F-tasks realize parallelism 
in the first phase. The parallel computat ion of interactions and parallel BF- 
refinement are realized by R-tasks and V-tasks. The last phase uses A-tasks. 

TASK NAME COMPUTATIONS PERFORMED BY THE TASK 

B-task(p)  insert input polygon p into BSP-tree and create B- and F-tasks 
F- task( i j )  compute form factors F~j and Fji for input polygons i and j 
R- ta sk (p )  compute phase (2) for patch/element p except visibility factor 
V-task( i j )  compute visibility factor V/j between patches i and j 
A- task (p )  create A-tasks for children of patch p and 

perform bilinear interpolation if p is an element 

In the original SPLASH-2 implementat ion,  each processor has its own task 
queue and inserts new tasks created by local tasks into this queue to mainta in  
locality. But because of the dynamical ly changing hierarchical data  structure, 
load balance cannot be achieved by a static assignment of tasks. To avoid a bad 
load balance, a processor is allowed to access task queues of the other proces- 
sors, if its own queue is empty  (task stealing) [11]. Concurrent accesses to the 
same data  are avoided by the locking mechanism, e.g. when interactions between 
patches/elements  are computed.  
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(1) do recursively: B-task(p1) 
with task B-task(pl) = 

{ insert polygon pi into BSP-tree; 
do ill parMlel { B-task(pi+l); II forall p j , j  < i do F-task(ij)}} 

(2) d_o { forall polygons p E {p l , . . . pk}  
do reeursively: R-task(root(p));  

with task R-task(i) = { 
forall interactions j E I(i) d__o { 

V-task(i j); 
hierarchical subdivision and computation of radiosity values;} 

forall children k of i d__o_o { 
compute configuration factors of new interactions; 
R-task(k);}} 

while (ERROR > e ) 
(3) forall polygons p E {pl,...Pk} do recursively: A-task(root(p));  

with task A-task(q) = { forall children r of q d._~o A-task(r) } 

Fig. 3. Task organization of the Splash implementation. 

The SPLASH implementation is illustrated in a pseudo-code task-program 
in Figure 3. The pseudo language reflects the fact that  tasks perform both 
computations and initiations of other tasks (similar to procedures in sequen- 
tial programming calling other procedures). The B-tasks have to be executed 
sequentially. The initiation of data dependent F-tasks is expressed by a recur- 
sire call-structure using the keyword do recursively. The corresponding task is 
defined by a with task statement having a recursive structure due to the hierar- 
chical tree structure used in the algorithm. A possible schedule of B-tasks and 
F-tasks on 4 processors is depicted in Figure 5 on the left. The independence 
of computations on different quad-trees in phase (2) is expressed by a forall 
construct. The interactions within each quadtree are performed recursively ac- 
cording to the tree structure determining data dependencies between R-tasks. 
The visibility V-tasks for children are initiated by the parents R-task. The last 
phase creates a hierarchy of A-tasks of which only the leaf-tasks perform the 
bilinear interpolation. 

S B - P R A M  implementation: The SB-PRAM implementation uses the SPLASH 
implementation as starting point. Optimizations of the parallel implementation 
include a parallel construction of the BSP tree, the use of a parallel task queue, 
and the use of parallel loops where locality can be ignored. Table ?? summarize 
the modifications. 

The BSP tree is constructed by a parallel search over the polygon tree in 
contrast to  a sequential construction in order to reduce the sequential parts of 
the computation. In the second phase, the tasks ' to compute interactions (one 
task for each input element) do not offer enough parallelism for a large number 
of processors. In the first iteration step the number of tasks cannot be increased. 
But because these interactions all take place on the same level, this phase is 
separated from the rest of the iteration and the mutual configuration factors 
are solved with a parallel loop. Moreover, the symmetry of the configuration 
factors is exploited. In all following iterations, the computation of configuration 
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P H A S E  M O D I F I C A T I O N  SPECIFIC M O D I F I C A T I O N  ADVANTAGES 

1 algorithmic redefined B'-tasks 
for building BSP-tree 

1,2 algorithmic parallel loop 
and for combined initial 

task design interactions Vpq, Fpq 

larger potential parallelism; 
worthwhile for large 
numbers of processors; 
creation of regular foral l - loop 
realized by parallel loop; 
exploitation of form-factor 
symmetries is possible 

2 task design modified V'-tasks 
for computing Vpq, Fpq 

3 implementation parallel loop 
for bilinear interpolation 

1-3 software support task allocation 

refinement of granularity 

task-administration for 
foral l- loop is avoided 
parallel queue avoids 
failures in task stealing 

Table 1. Optimizat]ons for an efficient SB-PRAM implementation 

factors and the visibility values are completely moved to lower levels in the quad- 
trees thus creating a high degree of parallelism. The tasks for the final bilinear 
interpolation for smoothing the solution are also executed in a parallel loop over 
the leaf elements. This strategy replaces the version where all internal patch 
nodes were involved in creating tasks for their child nodes for locality reasons. 
The modified tasks are: 

TASK N A M E  

B'-task(p) 
F ' -comp. ( i j )  

R~-task(p) 
V'-task(i j )  

A ' -comp. (p )  

COMPUTATIONS PERFORMED BY THE TASK 
insert polygon p into BSP-tree and build sublists of elements 
compute form factors Fij, Fji and visibility factors 1@, V3i 
for input polygons i and j 
compute phase (2) for element/patch except form and visibility factors 
compute visibility factor Vij and form factor Fiy 
between patches/elements i and j 
compute bilinear interpolation for element p 

The corresponding task program is given in Figure 4 showing four instead of 
three phases which are still separated by synchronization points. The implemen- 
tation supports the use of parallel loops and increases the granularity. A possible 
schedule on 4 processors is given in Figure 5 on the right. 

4 Experiments 

Figure 6 (left) shows the speedup values of the original SPLASH implementa- 
tion on the DASH (as reported in [9]) and on the SB-PRAM simulators for the 
SPLASH test scene (with 346 input polygons). Due to the task stealing mecha- 
nism the DASH reaches the best efficiency with a coarser granularity where the 
V-tasks are chosen to compute four visibility values instead of one; this causes 
locality advantages on the BSP-tree data structure (DASH(default) in Figure 6 
left). In contrast, the SB-PRAM achieves a better speedup when a finer gran- 
ularity with one visibility computation per V-task is chosen (SB-PRAM(finest) 
in Figure 6 left). The original SPLASH implementation performs better on the 
SB-PRAM (SB-PRAM(default) in Figure 6 left) than on the DASH because of 
unit memory access times and the redundance of locality. 
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(1') do recursively: B'-task(pl,..pk); 
with task B'-task(pl,..pk) = { 

insert pl in BSP-tree; 
built lists of polygons (q~, ..q~) visible and (r~, ..r~)invisible s p~; 
do in parallel {B'-task(q~, ..qz) I[ B'-task(r~, ..r,~) } } 

(1") forall i , j  = 1,. . . ,  k with i < j d q F'-computation(ij);  
(2') d__~o { for.all polygons p ~ {p~ .. . .  p~} 

do recursively: It '-task(root(p)); 
with task R'-task(1) = { 

forall interactions j ~ t(i) d_pq { 
V'-task(ij);  
hierarchical subdivision a~d computatio~ of radiosity values;} 

forall children k of i d___o It'-task(k);} 
while (ERROR > e ) 

(3') forall elements p in all quadtrees d_oo A'-computations(p) 

Fig. 4. Task organization for the SB-PRAM implementation 

The large number of processors and the additional software support (see 
Section 3) makes the SB-PRAM to an ideal platform to study the scalability 
properties inherent in an algorithms. But the massive parallelism and the uni- 
form access time require a different implementation strategy for the study of 
the scalability of the hierarchical radiosity method. The optimizations described 
in Section 3 take this modified concept into account by replacing the expensive 
task concept by parallel loops when loops exhibit a regular, independent par- 
allel structure (F'-computations, A'-computations), decreasing the granularity 
(new V'-tasks and R'-tasks with smaller runtime), increasing the degree of po- 
tential parallelism by destroying data locality (B'tasks), and exploiting a new 
task-administration concept by using unit access time task-queues. 

Figure 6 (right) shows the speedup values for the original SPLASH imple- 
mentation and the optimized implementation on the SB-PRAM simulator for 
up to 2048 processors. The SPLASH implementation does not scale well for 
more than 256 processors. For 1024 processors the optimized version still has an 
efficiency of 0.742. Table 7 reports the speedup values $1024 and the absolute 
runtimes T1024 for both implementations of the SPLAH test scene. The values for 
the SPLASH implementation with phases (1), (2), (3) are on the left; the values 
for the optimized version with phases (1'), (1"), (2'), (3') are on the right. The 
phases overlap according to the algorithmic structure. The timings in columns 
T1 left and right show that the optimized version performs even better in the 
sequential case (5.8 %). 

The efficient parallelization of the B-tasks (BSP-tree) is more important for 
massively parallel implementations than for a relatively small number of pro- 

Fig. 5, Task scheduling for SPLASH tasks and SB-PRAM tasks 



797 

Speedup 

,//" 
./ 

64- /" 

46" ,,,,//,/,/,//" , 
32 ~ DASFI (default) 

15 

6 
/ 

51 i i  l 1 I 1 [ I L 
24  8 16 32 40 48 64 Proces~)rs 

Speedup 

2048 

512 

256 

128 
64 

,/ 
,/ 

/, 
,/ /- 

optimized impl. 

SPLASH-2 impl. 

64225618 512 1024 2046 Processors 

Fig .  6. Speedup values on the SB-PRAM and on the DASH. Left diagram: original 
SPLASH-2 implementation on the DASH and the SB-PRAM with default granularity of the 
tasks and the finest granularity that is possible. Right diagram: default granularity finest 
granularity on the SB-PRAM for larger number of processors. 

cessors where the fraction 1 of the computation for building the BSP-tree 
is neglectable. Moreover, the prephase for sorting the input polygons is done 
before building the BSP-tree. Experiments have shown that the global execu- 
tion t ime of the entire algorithms depends significantly on the order of the input 
polygons; the time varies by a factor of up to 10. This is a general phenomenon 
which should be separated from issues of parallelization. 

A different phenomenon concern the convergence of the iteration steps solv- 
ing the system of radiosity values (1). The iteration may converge faster in the 
parallel implementation than in the sequential one thus saving a full iteration 
step. The reason is the use of updated values within one iteration step if the num- 
ber of patches is greater than the number of processors. The faster convergence 
corresponds to the faster convergence in the Gauss-seidel method for solving 
linear systems. This effect is exploited in the (non-hierarchical) progressive ra- 
diosity method [2]. Besides the improvements of the efficiency our investigations 
show that  the optimized version leads to a much simpler source code. The main 
reasons are the lack of locality, the use of parallel loops which corresponds to the 
loops in the pseudocode algorithms, and the simplified task administration. 

S P LAS H2  implemen ta t ion  op t imized  implemen ta t ion  

dimension sec [sec s e c l  sec 
!BSP and 1 6898.7 104.6i 66.0 1.44 5.409 7.805 1' BSP 
form factor 

876.3 7.413 6496.2 1" root inter. 
iteration 2 90726 244.1 371.7 

791.5 108.0 85487 2 ~ iteration. 
bil.interp, bil.interp. 
total [ [ 97658 [353.2]276.5[760.5J121.0192021 [ total 

Fig. 7. Timings of the SPLASH2 and the optimized implementation on the SB-PRAM. 
The input scene is the SPLASH2 test scene. 
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5 Conclusions  

We have presented a task oriented shared memory implementation for the hier- 
archical radiosity method. The main interest was to investigate the scatability 
issues of the method. The SB-PRAM with uniform access time offers a good 
platform to study efficient implementations and scalability properties for irregu- 
lar problems because the locality properties of the applications do not influence 
the resulting performance and the investigations can concentrate on the m a d -  
main degree of paralMism. The experiments have shown that  an implementation 
designed for up to 64 processors is not suitable to achieve good speedups on a 
large number of processors. A redesign of the algorithms provides a large number 
of independent tasks. The means are regular foratt-toops and an decrease of the 
granularity in the phases realizing the interactions between different surfaces. 
The resulting parallel algorithms shows good speedup for up to 2048 proces- 
sors. Thus, the hierarchical radiosity methods can be implemented efficiently 
although it has highly irregular computation and access patterns. Moreover, the 
investigations have shown that  parallel data  structures provided by the underly- 
ing machine can support massively parallel, efficient implementations of highly 
irregular algorithms. 
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