
Scalability and Granularity Issues of the
Hierarchical Radiosity Method

AXEL PODEHL THOMAS RAUBER GUDULA R/)NGER *

Computer Science Dep., UniversitS~t des Saarlandes, 66041 Saarbriicken, Germany

A b s t r a c t . The radiosity method is a global illumination method from
computer graphics to visualize light in scenes of diffuse objects within
an enclosure. The hierarchical radiosity method reduces the problem size
considerably but results in a highly irregular algorithm which makes a
parallel implementation more difficult. We investigate a task-oriented
shared memory implementation and present optimizations with differ-
ent effects concerning locality and granularity properties. As execution
platform we use the SB-PRAM, a shared-memory machine with uniform
memory access time, which allows us to concentrate on load balancing
and scalability issues.

1 I n t r o d u c t i o n

The radiosity method is a simulation method from computer graphics to gen-
erate photo-realistic images of computer-generated three-dimensional environ-
ments with objects which diffusely reflect or emit light [4]. The method is based
on the energy radiation between surfaces of objects and accounts for direct illu-
mination and multiple reflections between the surfaces. First, all intensity val-
ues of an environment are determined in a view-independent stage, and then an
image is computed using conventional visible-surface and interpolative shading
algorithms.

The radiosity method uses a decomposition of the surfaces of objects in the
scene into small elements, for each of which a radiosity value has to be com-
puted. The radiosity values are the radiant energy per unit t ime and per unit
area which are determined by solving a transport equation of energy, a system
of linear equations describing the mutual interactions between radiosity energies
of different surfaces with the help of geometric configuration factors. Building
up and solving the transport equation causes high computational costs. For a
reduction of the computational costs, a variety of methods have been proposed,
including an adaptive refinement technique [7], hierarchical methods [6], or pro-
gressive methods [2]. Adaptive and hierarchical methods reduce the number
configuration factors to be computed by combining several mutual dependen-
cies. The progressive method reduces the costs of solving the linear equation
system. A further reduction of computation time can be achieved by parallel
implementations [9].

The efficient computational technique of the hierarchical radiosity method is
achieved by computing the mutual illumination of surfaces more precisely only
for short distances and less precisely for far surfaces. The mutual influence decays
with the square of the distance and, thus, a uniform accuracy is achieved. This

* author supported by DFG

790

results in a smaller number of radiosity values to be computed and a reduction of
interactions which can be computed efficiently on the hierarchical data structure
supporting the hierarchical method.

In this article, we investigate the implementation of the hierarchical radiosity
method on shared memory machines. The starting point of the investigation is
the SPLASII-2 benchmark implementation [11] described in [9] which is tuned
towards an execution on a cache-based virtual shared-memory machine with a
physically distributed memory (Stanford DASH). In this implementation load
balance is realized by using distributed task queues with task stealing. This
competes with the locality of accesses to the task queues, because each a.ttempt
to steal a task includes an access to a remote task queue.

Usually, the competition between load balance (and granularity) and data
locality hinders a concise study for scMability. This limitation vanishes when
using an execution platform like the SB-PRAM providing a large number of
processors and a globM shared memory with unit access time [1]. Thus, the im-
plementation can concentrate on the efficient exploitation of the task granularity
and can neglect effects of locality. The original implementation is optimized on
the algorithmic level, on the design level for tasks (towards a finer graaular-
ity), and on the task administration level. The optimized version is derived from
the SPLASH-2 implementation by several optimization steps improving the ex-
ploitation of the degree of parallelism. Both implementations have good speedup
values on the SB-PRAM for a small number of processors, exceeding the speedup
vMues on the DASH. The optimized version exhibits good speedup values also
for large numbers of processors (up to 2048).

The remainder of the paper is organized as follows. Section 2 summarizes the
classical and the hierarchical radiosity methods. Section 3 describes the shared
memory implementation. Section 4 discusses the experiments and Section 5 con-
cludes.

2 T h e h i e r a r c h i c a l r a d i o s i t y m e t h o d

The classical radiosity method starts with the subdivision of the input polygons
(representing the surfaces of the objects in the scene) into a number of small
patches with area Aj, j = t , . . . , n . For each of the patches, a radiosity value
Bj (of dimension [watt/m ~]) is computed which describes the specific radiant
energy per unit time and per unit area of Aj. Because of the mutual illumination
of diffuse objects, a radiosity value Bj is composed of two parts: the emission
energy per unit area Ej and the reflections of light that is incident on patch
j from all other visible patches not occluded by patches in between. The light
incident from patch i on patch j is a portion Hi = Bi-Fij of the radiosity Bi;
the dimensionless configuration factor or form factor) F~j describes the fraction
of lightening from patch i incident to patch j. Each form factor is a double
integral depending only on the geometric constellation of the two elements i and
j. Using the symmetry relation F~jA~ = FjiA~, and diffuse refiectivity factors pd,
the unknown radiosity values Bj can be specified by a linear system of equations

(see [3]):

Bj = Ej + pj ~ FjiBi, j = l , . . . , n . (1)
i = 1

791

Fig. 1. Mixed BSP-quad-tree data structure:
the large circles represent nodes of the BSP
tree, the small shaded circles represent nodes
of the quadtrees. The arrows show interac-
tions between nodes of different quadtrees.

System (1) is solved by an iterative solution method for lineal" equation sys-
tems like the Jacobi method. But the main computational effort of the radiosity
method consists in computing the n(n - 1)/2 configuration factors.

The hierarchical radiosity method [6] reduces the computational effort by
adaptively subdividing polygons into a hierarchy of smaller pieces of the surfaces.
For each input polygon the subdivision into the hierarchy is organized in a quad-
tree such that the four children of a node represent a partition of the patch
attached to the parents node. The input polygons themselves are organized in
a BSP tree (binary space partitioning tree) where each node of the BSP tree
represents the root of the corresponding quad-tree (see Figure 1). The union
of the patches attached to leaves of all quad-trees of this data structure now
represent the patches Ai, i = 1, . . . , n, of the scene.

The algorithm starts by building up the BSP-tree in an initialization step.
During the computation of the form factors, the quad-trees are built up adap-
tively in order to guarantee the computations to be of sufficient precision.

For each patch, the decision about the set of interacting elements with which
the energy exchange is computed depends on an a-priori estimation of the in-
fluence of the radiosity. The method computes the energy transport (i.e., the
configuration factor) between two patches only if it is not too large; otherwise
the patches are subdivided. The subdivision of patches is performed if the energy
transport between two patches is not small enough, i.e., VijFijB j ~ BF~. When
the radiant surface Aj is larger (i.e., Aj > Ai) then this area Aj is divided and
the interaction list are adapted appropriately. The patch Ai is deleted from the
interaction list of Aj and is inserted in the interaction lists of the children of
Aj. If Aj < Ai then Ai is divided and the children of Ai are inserted into the
interaction list of Aj. The division of patches is stopped such that the patches
are not smaller than At. This procedure is performed for all pairs of input poly-
gons and because all interactions use the same quadtree, each patch in the tree
has its individual set of interaction patches for which the configuration factors
have to be computed. Thus, the computation of radiosity for a leaf element
may use configuration factors with internal elements of the quadtree unifying all
the interaction with nodes in the corresponding subtree (representing a further
division of the node element).

The a-priori-estimations of the energy transport take into account the config:
uration factors, the radiosity values and the visibility values. The use of radiosity
values is possible because the hierarchical method alternates iteration steps of
the Jacobi method to solve the energy system (1) with a re-computation of the
quad-tree and the interaction sets based on estimations of VjiFjiBi with radios-
ity values Bi from the last step. The values VjiFjiBi are estimated and must
not be larger than a bound BF~. The iteration stops when the difference of the
total radiosity of two successive iterations is small enough.

In this paper, we consider a version of the radiosity method described in

792

[6] and adopted in the implementation of the SPLAStt-2 benchmark suite [11]
with the following methods: The form factors are approximated numerically by
a ray tracing method proposed in [10] using form factors from four points of
Ai (which are points from pieces which form a partition of As) to four small
disks ADz, t = 1 , . . . , 4 , covering A j . The visibility test proposed in [6] uses a
ray tracing method with a fixed number of rays between two patches. Here we
use rays from 16 sub-elements to 16 sub-elements The percentage of rays not
blocked by intervening surfaces is used as visibility factor ldj C [0, 1].

One iteration step of the Jacobian method consists in a top-down and a
bottom-up traversal for each quadtree: In the top-down traversal, a radiosity
value for each node is computed by computing the influence of all interaction
partner j E I (p a t c h) and adding the radiosities of the parents node. The leaves of
the quadtrees also take into account the emission E j . In the bottom-up traversal,
each node computes area-weighted radiosity of the children in order to make new
radiosity values available on every level of the tree for the estimations of energy
exchange and the next iteration step.

Figure 2 shows the hierarchical radiosity methods already expressing explic-
itly the potential parallelism. Portions of the program that can be executed
independently from each other in parallel are separated by a]1 sign. Loops with
independent iterations are described by forall.

(1) do recursively: insert-polygon(pa)
with procedure insert-polygon(pl) =
{insert pi into BSP tree;

do in parallel {insert-polygon(pi+l) II forall p j, j < i, compute Fpjp,, Fp,; j } }

(2) Compute visibility factors Vp~p~;
d_9_o { forM1, polygons p E {Pl , . . . , Pk }
do recursively: compute-interaction(root(p));
with procedure compute-interaction(i) =

{ forall interactions j E I(i) d_.o_o {
Compute visibility factor ~j ;
if ViAFoB~ > BF, and A i , A j > A , then {

Divide (Ai, Aj);
compute configuration factors of new interactions; }

Compute B(i) = pi ~ j e I (i) V i jF i jB (j) + B(parent(i)) ;

if i is leaf then. {
B(i) = S (i) + E(i);
while i is last child of parent(i) do {

i = parent(i);
B(i) = 1/4 Ej=~..d(i~ B(j); }

else { forall children k of i d__q compute-interaction(k); } } } }
while (ERROR > �9)

(3) forall_ elements in all quadtrees d__oq { bilinear interpolation; }

Fig. 2. Hierarchical radiosity method with maximum degree of parallelism.

793

3 P a r a l l e l i m p l e m e n t a t i o n

For the parallel implementat ion of the hierarchical radiosity method we used a
task-oriented shared memory model and the SB-PRAM as execution platform.
The SB-PRAM is a realization of a modified fluent machine [1]. A number p of
physical processors has access to p memory modules each consisting of rn mem-
ory cells. The processors are connected to the memory modules via a butterfly
interconnection network. Thus, the memory is accessed as a virtual linear shared
memory distributed among the modules. Besides the usual load and store oper-
ations to access memory cells, the SB-PRAM also offers multiprefix instructions
which enable several processors to perform simple operations on a memory cell
in parallel. The multiprefix instruction with addition MPADD starts with one
local value for each processor and produces the sequence of prefix sums; initially
one input value resides on one processors and at the end each processor holds one
sum. A multiprefix operation is performed in two t ime units, independently of
the number of part icipating processors. It is even possible that different groups of
processors perform separate multiprefix operations in parallel. Multiprefix oper-
ations can be used for an efficient realization of access coordination to the global
memory (locking) or parallel data structures like parallel task queues [5]. They
can also be used for the implementat ion of a parallel loop which is controlled by
a shared counter. The access to the counter by a multiprefix operation allows a
dynamic execution of the loop iterations without sequentializations.

SPLAS'tI implementation: The SPLASH2 benchmark suite comprises several
parallel example programs realizing irregular applications, which are mainly in-
tended for the Standorf DASH multiprocessor [8]. The multiprocessor is a cache
coherent shared address space processor with physically distributed memory.
The software simulator of the DASH (described in [9], [9]) simulates the non-
uniform memory access with a constant access t ime for each level, i.e., cache,
local memory and non-local memory or cache.

The parallel implementat ion of the hierarchical radiosity method realizes
parallelism that occurs across input polygons, across the patches that a polygon
is divided into, and across the interactions computed for a patch. This parallelism
is reflected in the choice of tasks: The B-tasks and F-tasks realize parallelism
in the first phase. The parallel computat ion of interactions and parallel BF-
refinement are realized by R-tasks and V-tasks. The last phase uses A-tasks.

TASK NAME COMPUTATIONS PERFORMED BY THE TASK

B-task(p) insert input polygon p into BSP-tree and create B- and F-tasks
F- task(i j) compute form factors F~j and Fji for input polygons i and j
R- ta sk (p) compute phase (2) for patch/element p except visibility factor
V-task(i j) compute visibility factor V/j between patches i and j
A- task (p) create A-tasks for children of patch p and

perform bilinear interpolation if p is an element

In the original SPLASH-2 implementat ion, each processor has its own task
queue and inserts new tasks created by local tasks into this queue to mainta in
locality. But because of the dynamical ly changing hierarchical data structure,
load balance cannot be achieved by a static assignment of tasks. To avoid a bad
load balance, a processor is allowed to access task queues of the other proces-
sors, if its own queue is empty (task stealing) [11]. Concurrent accesses to the
same data are avoided by the locking mechanism, e.g. when interactions between
patches/elements are computed.

794

(1) do recursively: B-task(p1)
with task B-task(pl) =

{ insert polygon pi into BSP-tree;
do ill parMlel { B-task(pi+l); II forall p j , j < i do F-task(ij)}}

(2) d_o { forall polygons p E {p l , . . . pk}
do reeursively: R-task(root(p));

with task R-task(i) = {
forall interactions j E I(i) d__o {

V-task(i j);
hierarchical subdivision and computation of radiosity values;}

forall children k of i d__o_o {
compute configuration factors of new interactions;
R-task(k);}}

while (ERROR > e)
(3) forall polygons p E {pl,...Pk} do recursively: A-task(root(p));

with task A-task(q) = { forall children r of q d._~o A-task(r) }

Fig. 3. Task organization of the Splash implementation.

The SPLASH implementation is illustrated in a pseudo-code task-program
in Figure 3. The pseudo language reflects the fact that tasks perform both
computations and initiations of other tasks (similar to procedures in sequen-
tial programming calling other procedures). The B-tasks have to be executed
sequentially. The initiation of data dependent F-tasks is expressed by a recur-
sire call-structure using the keyword do recursively. The corresponding task is
defined by a with task statement having a recursive structure due to the hierar-
chical tree structure used in the algorithm. A possible schedule of B-tasks and
F-tasks on 4 processors is depicted in Figure 5 on the left. The independence
of computations on different quad-trees in phase (2) is expressed by a forall
construct. The interactions within each quadtree are performed recursively ac-
cording to the tree structure determining data dependencies between R-tasks.
The visibility V-tasks for children are initiated by the parents R-task. The last
phase creates a hierarchy of A-tasks of which only the leaf-tasks perform the
bilinear interpolation.

S B - P R A M implementation: The SB-PRAM implementation uses the SPLASH
implementation as starting point. Optimizations of the parallel implementation
include a parallel construction of the BSP tree, the use of a parallel task queue,
and the use of parallel loops where locality can be ignored. Table ?? summarize
the modifications.

The BSP tree is constructed by a parallel search over the polygon tree in
contrast to a sequential construction in order to reduce the sequential parts of
the computation. In the second phase, the tasks ' to compute interactions (one
task for each input element) do not offer enough parallelism for a large number
of processors. In the first iteration step the number of tasks cannot be increased.
But because these interactions all take place on the same level, this phase is
separated from the rest of the iteration and the mutual configuration factors
are solved with a parallel loop. Moreover, the symmetry of the configuration
factors is exploited. In all following iterations, the computation of configuration

795

P H A S E M O D I F I C A T I O N SPECIFIC M O D I F I C A T I O N ADVANTAGES

1 algorithmic redefined B'-tasks
for building BSP-tree

1,2 algorithmic parallel loop
and for combined initial

task design interactions Vpq, Fpq

larger potential parallelism;
worthwhile for large
numbers of processors;
creation of regular foral l - loop
realized by parallel loop;
exploitation of form-factor
symmetries is possible

2 task design modified V'-tasks
for computing Vpq, Fpq

3 implementation parallel loop
for bilinear interpolation

1-3 software support task allocation

refinement of granularity

task-administration for
foral l- loop is avoided
parallel queue avoids
failures in task stealing

Table 1. Optimizat]ons for an efficient SB-PRAM implementation

factors and the visibility values are completely moved to lower levels in the quad-
trees thus creating a high degree of parallelism. The tasks for the final bilinear
interpolation for smoothing the solution are also executed in a parallel loop over
the leaf elements. This strategy replaces the version where all internal patch
nodes were involved in creating tasks for their child nodes for locality reasons.
The modified tasks are:

TASK N A M E

B'-task(p)
F ' -comp. (i j)

R~-task(p)
V'-task(i j)

A ' -comp. (p)

COMPUTATIONS PERFORMED BY THE TASK
insert polygon p into BSP-tree and build sublists of elements
compute form factors Fij, Fji and visibility factors 1@, V3i
for input polygons i and j
compute phase (2) for element/patch except form and visibility factors
compute visibility factor Vij and form factor Fiy
between patches/elements i and j
compute bilinear interpolation for element p

The corresponding task program is given in Figure 4 showing four instead of
three phases which are still separated by synchronization points. The implemen-
tation supports the use of parallel loops and increases the granularity. A possible
schedule on 4 processors is given in Figure 5 on the right.

4 Experiments

Figure 6 (left) shows the speedup values of the original SPLASH implementa-
tion on the DASH (as reported in [9]) and on the SB-PRAM simulators for the
SPLASH test scene (with 346 input polygons). Due to the task stealing mecha-
nism the DASH reaches the best efficiency with a coarser granularity where the
V-tasks are chosen to compute four visibility values instead of one; this causes
locality advantages on the BSP-tree data structure (DASH(default) in Figure 6
left). In contrast, the SB-PRAM achieves a better speedup when a finer gran-
ularity with one visibility computation per V-task is chosen (SB-PRAM(finest)
in Figure 6 left). The original SPLASH implementation performs better on the
SB-PRAM (SB-PRAM(default) in Figure 6 left) than on the DASH because of
unit memory access times and the redundance of locality.

796

(1') do recursively: B'-task(pl,..pk);
with task B'-task(pl,..pk) = {

insert pl in BSP-tree;
built lists of polygons (q~, ..q~) visible and (r~, ..r~)invisible s p~;
do in parallel {B'-task(q~, ..qz) I[B'-task(r~, ..r,~) } }

(1") forall i , j = 1,. . . , k with i < j d q F'-computation(ij);
(2') d__~o { for.all polygons p ~ {p~ p~}

do recursively: It '-task(root(p));
with task R'-task(1) = {

forall interactions j ~ t(i) d_pq {
V'-task(ij);
hierarchical subdivision a~d computatio~ of radiosity values;}

forall children k of i d___o It'-task(k);}
while (ERROR > e)

(3') forall elements p in all quadtrees d_oo A'-computations(p)

Fig. 4. Task organization for the SB-PRAM implementation

The large number of processors and the additional software support (see
Section 3) makes the SB-PRAM to an ideal platform to study the scalability
properties inherent in an algorithms. But the massive parallelism and the uni-
form access time require a different implementation strategy for the study of
the scalability of the hierarchical radiosity method. The optimizations described
in Section 3 take this modified concept into account by replacing the expensive
task concept by parallel loops when loops exhibit a regular, independent par-
allel structure (F'-computations, A'-computations), decreasing the granularity
(new V'-tasks and R'-tasks with smaller runtime), increasing the degree of po-
tential parallelism by destroying data locality (B'tasks), and exploiting a new
task-administration concept by using unit access time task-queues.

Figure 6 (right) shows the speedup values for the original SPLASH imple-
mentation and the optimized implementation on the SB-PRAM simulator for
up to 2048 processors. The SPLASH implementation does not scale well for
more than 256 processors. For 1024 processors the optimized version still has an
efficiency of 0.742. Table 7 reports the speedup values $1024 and the absolute
runtimes T1024 for both implementations of the SPLAH test scene. The values for
the SPLASH implementation with phases (1), (2), (3) are on the left; the values
for the optimized version with phases (1'), (1"), (2'), (3') are on the right. The
phases overlap according to the algorithmic structure. The timings in columns
T1 left and right show that the optimized version performs even better in the
sequential case (5.8 %).

The efficient parallelization of the B-tasks (BSP-tree) is more important for
massively parallel implementations than for a relatively small number of pro-

Fig. 5, Task scheduling for SPLASH tasks and SB-PRAM tasks

797

Speedup

,//"
./

64- /"

46" ,,,,//,/,/,//" ,
32 ~ DASFI (default)

15

6
/

51 i i l 1 I 1 [I L
24 8 16 32 40 48 64 Proces~)rs

Speedup

2048

512

256

128
64

,/
,/

/,
,/ /-

optimized impl.

SPLASH-2 impl.

64225618 512 1024 2046 Processors

Fig . 6. Speedup values on the SB-PRAM and on the DASH. Left diagram: original
SPLASH-2 implementation on the DASH and the SB-PRAM with default granularity of the
tasks and the finest granularity that is possible. Right diagram: default granularity finest
granularity on the SB-PRAM for larger number of processors.

cessors where the fraction 1 of the computation for building the BSP-tree
is neglectable. Moreover, the prephase for sorting the input polygons is done
before building the BSP-tree. Experiments have shown that the global execu-
tion t ime of the entire algorithms depends significantly on the order of the input
polygons; the time varies by a factor of up to 10. This is a general phenomenon
which should be separated from issues of parallelization.

A different phenomenon concern the convergence of the iteration steps solv-
ing the system of radiosity values (1). The iteration may converge faster in the
parallel implementation than in the sequential one thus saving a full iteration
step. The reason is the use of updated values within one iteration step if the num-
ber of patches is greater than the number of processors. The faster convergence
corresponds to the faster convergence in the Gauss-seidel method for solving
linear systems. This effect is exploited in the (non-hierarchical) progressive ra-
diosity method [2]. Besides the improvements of the efficiency our investigations
show that the optimized version leads to a much simpler source code. The main
reasons are the lack of locality, the use of parallel loops which corresponds to the
loops in the pseudocode algorithms, and the simplified task administration.

S P LAS H2 implemen ta t ion op t imized implemen ta t ion

dimension sec [sec s e c l sec
!BSP and 1 6898.7 104.6i 66.0 1.44 5.409 7.805 1' BSP
form factor

876.3 7.413 6496.2 1" root inter.
iteration 2 90726 244.1 371.7

791.5 108.0 85487 2 ~ iteration.
bil.interp, bil.interp.
total [[97658 [353.2]276.5[760.5J121.0192021 [total

Fig. 7. Timings of the SPLASH2 and the optimized implementation on the SB-PRAM.
The input scene is the SPLASH2 test scene.

798

5 Conclusions

We have presented a task oriented shared memory implementation for the hier-
archical radiosity method. The main interest was to investigate the scatability
issues of the method. The SB-PRAM with uniform access time offers a good
platform to study efficient implementations and scalability properties for irregu-
lar problems because the locality properties of the applications do not influence
the resulting performance and the investigations can concentrate on the m a d -
main degree of paralMism. The experiments have shown that an implementation
designed for up to 64 processors is not suitable to achieve good speedups on a
large number of processors. A redesign of the algorithms provides a large number
of independent tasks. The means are regular foratt-toops and an decrease of the
granularity in the phases realizing the interactions between different surfaces.
The resulting parallel algorithms shows good speedup for up to 2048 proces-
sors. Thus, the hierarchical radiosity methods can be implemented efficiently
although it has highly irregular computation and access patterns. Moreover, the
investigations have shown that parallel data structures provided by the underly-
ing machine can support massively parallel, efficient implementations of highly
irregular algorithms.

References

1. F. Abolhassan, J. Keller, and W.J. Paul. On the Cost-Effectiveness of PRAMs.
In Proceeding of the 3rd IEEE Symposium on Parallel and Distributed Processing,
pages 2-9, 1991.

2. Micheal Cohen, Shenchang Chen, John Wallace, and Donald Greenberg. A progres-
sive refinement approach to fast radiosity image generation. Computer Graphics,
22(4):75-84, 1988. Proceedings of the SIGGRAPH '88.

3..James Foley, Adries van Dam, Steven Feiner, and John Hughes. Computer Graph-
ics: Principles and Practice. Addison-Wesley, Readings USA, 1990.

4. Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennet Battaile.
Modeling the interaction of light between diffuse surfaces. Computer Graphics,
18((3):212-222, 1984. Proceedings of the SIGGRAPH '84.

5. Th. Griin, Th. Rauber, and J. Rbhrig. The programming environment of the
SB-PP~AM. In Proe. 7th tASTED/ISMM Int.1 Conf. on Parallel and Distributed
Computing and Systems, Washington DC, pages 504-509, October 1995.

6. Pat Hanrahan, David S~lzman, and Larry Aupperle. A rapid hierarchical radiosity
algorithm. Computer Graphics, 1991.

7. Paul S. Heckbert. Simulating Global illumination using Adaptive Meshing. PhD
thesis, university of California, Berkeley, 1991.

8. Daniel Lenoski, James Laudon, Truman Joe David Nakahira, Luis Stevens, Anoop
Gupta, and John Hennessy. The dash prototype: Logic overhead and performance.
tEEE Transactions on Parallel and Distributed Systems, 4(1):41-61, 1993.

9. 3.P. Singh, C. Bolt, T. Totsuka, A. Gupta, and J. Hennessy. Load balancing and
data locality in adaptive hierarchical N-body methods: Barnes-hut, fast multipole,
and radiosity. Journal of Parallel and Distributed Computing, 27:118-141, 1995.

10. John Wallace, Kells Elmquist, and Erie Haines. A ray tracing algorithm for pro-
gresslve radiosity. Computer Graphics, 23(3):315-324, 1989. Proceedings of the
SIGGRAPH '89.

11. S.C. Woo, M. Ohara, E. Torrie, 3.P. Singh, and A. Gupta. The SPLASH-2 Pro-
grams: Chaxacterization and Methodological Considerations. In ISCA '95, pages
24-36, 1995.

