Parallel Algorithm for Computing the Fragment Vector in Steiner Triple Systems

Erik Urland
Centre Universitaire d' Informatique
Université de Genève, 24 rue Général Dufour
1211 Genève 4, Switzerland
urland@cui.unige.ch

Abstract

In this paper we describe a linear time algorithm using $O\left(n^{2}\right)$ processors for computing the fragment vector in Steiner triple systems. The algorithm is designed for SIMD machines having a grid interconnection network. We discuss an implementation and some experimental results obtained on the Connection Machine CM-2.

1 Introduction

Let n be a positive integer. By a Steiner triple system of order n, denoted by $S T S(n)$, we understand a pair (V, B), where V is a set of elements called points (or vertices) such that $|V|=n$, and B is a set of such 3 -subsets of V, called lines (blocks or triples), that every unordered pair of distinct points of V occurs exactly once among the lines of B. It is well known that $S T S(n)$ exists if and only if $n \equiv 1(\bmod 6)$ or $n \equiv 3(\bmod 6)$. For example, an $S T S(7)$ over $V=\{1,2, \ldots, 7\}$ can be formed with the following set of lines $B=\{[1,2,3] ;[4,1,5] ;[1,6,7]$; $[4,6,2] ;[2,5,7] ;[3,4,7] ;[3,5,6]\}$. Two $S T S(n)\left(V_{1}, B_{1}\right)$ and $\left(V_{2}, B_{2}\right)$ are said to be isomorphic if there is a bijection $\phi: V_{1} \rightarrow V_{2}$ such that $[\alpha, \beta, \gamma] \in B_{1}$ if and only if $[\phi(\alpha), \phi(\beta), \phi(\gamma)] \in B_{2}$. A k - line configuration, $k \geq 1$, is defined as any collection of k lines of an $S T S(n)$. An Erdös configuration of order k is a k-line configuration on $k+2$ points which contains no subconfiguration of m lines on $m+2$ points for $1<m<k$. Two k-line configurations C_{1} and C_{2} are considered to be isomorphic if there is a bijection between the vertices of the configurations mapping lines to lines. If $C_{1}=C_{2}$ then such an isomorphism is called an automorphism. By frequency (or number of occurrences) of a configuration C in a given $S T S(n)$ we understand the number of all different representations of the configuration C in the $S T S(n)$. Let C be a configuration and let S be a subset of vertices of C. Then by a partial configuration P_{S} of C we understand a subconfiguration of C which consists only from lines having at least one vertex in S. Let C be a configuration and let π be a vertex of C. Then the number of symmetries of C according to the vertex π, denoted by $Y(C, \pi)$, is the number of vertices v of C such that there is an automorphism of C mapping π to v. Let C be a configuration. Let S be a subset of vertices of C and let P_{S} be the partial configuration of C, which is formed by a set of lines
$L \subseteq B$. Then by $R\left(C, P_{S}\right)$ we denote the number of all different representations of C in $S T S(n)=(V, B)$ containing L.

Non-isomorphic STSs are frequently used as source data for various kinds of statistical experiments. Similarly, we need different STSs in order to determine a linear basis for k-line configurations $[2,3,5]$. The classical approach is to randomly generate STSs on a computer using the hill-climbing technique [4]. This technique appears to be extremely fast but unfortunately cannot guarantee that STSs constructed in this way are non-isomorphic. As there is no known polynomial time algorithm to test isomorphism of STSs, in practice one can use invariants as a proof that two given STSs are non-isomorphic.

In this paper, we concentrate on one invariant called fragment vector, originally introduced by Gibbons in [1]. Consider an Erdös configuration of order 4 called the Pasch configuration. Let π be a point of an $S T S(n)$ and let $f(\pi)$

Fig. 1. Pasch configuration
denote the number of Pasch configurations containing π. Then the fragment vector of an $S T S(n)$ is a sequence of integers $f\left(\pi_{1}\right), f\left(\pi_{2}\right), \ldots, f\left(\pi_{n}\right)$ for $\pi_{i} \in V$, $1 \leq i \leq n$, sorted in non-decreasing order. It is easy to see that determining the number of occurrences of the Pasch configuration in an $S T S(n)$ forms the main part of the algorithm for computing the fragment vector. In the next section we shall deal with a parallel algorithm for counting the frequency of the Pasch configuration designed for SIMD machines having a grid interconnection network.

2 Parallel algorithm

Before we describe the algorithm itself we shall present the following two lemmas, which will be used later in the design of the algorithm.

Lemma 1. Let α be an arbitrary vertex of the Pasch configuration. Then $\Upsilon($ Pasch,$\alpha)=6$.
It follows from Lemma 1 that if α is a vertex of the Pasch configuration and if $S=\{\alpha\}$ then up to isomorphism, every vertex of the Pasch configuration induces
the same partial configuration P_{S}. The following lemma shows the number of different representations of the Pasch configuration in an $S T S(n)$ which can be obtained from a partial configuration P_{S}.

Lemma 2. Let $S T S(n)$ be a Steiner triple system of order n. Let $S=\{\alpha\}$, where α is an arbitrary vertex of the Pasch configuration and P_{S} denotes the partial configuration of the Pasch configuration. Then $R\left(P a s c h, P_{S}\right) \leq 2$.

As a next step we present an algorithm for massively parallel machine with a set of processors running in SIMD mode and having a grid interconnection network. One can intuitively see that a matrix representation of STS is well suited for $S I M D-M C^{2}$ parallel machine. According to this representation the proposed algorithm consists of the following three levels.

Algorithm 1.

Level 1. Initialization

- For each point α of $S T S(n), 0 \leq \alpha<n$, let $f(\alpha):=0$. Let $N:=0$, where N denotes the number of occurrences of the Pasch configuration.
- Let $T_{n \times n}$ be a matrix and let $t_{(i, j)}:=-1$ for $0 \leq i, j<n$.
- Transform the input list of triples forming $S T S(n)$ to matrix $T_{n \times n}$ in such a way that the entry $t_{(i, j)}:=x, 0 \leq i, j<n$, where x is a point of the triple $[i, j, x]$.
- Let $B_{n \times n}$ be an index matrix such that $b_{(i, j)}:=j$ for $0 \leq i, j<n$.

Level 2. Precomputation and reduction

- As each triple of $S T S(n)$ is represented six times in T, we compress redundant representations. Let $A_{n \times n}$ be a matrix and let $a_{(i, j)}:=t_{(i, j)}, 0 \leq i, j<n$. For all rows $i, 0 \leq i<n$, and each column $j, 0 \leq j<n$, if $a_{(i, j)} \neq-1$ then $a_{\left(i, a_{(i, j)}\right)}:=-1$.
- Delete the entries $a_{(i, j)}<0,0 \leq i, j<n$, from the matrix A and the corresponding entries $b_{(i, j)}$ from B. Note that after this reduction the matrices A and B are of the size $n \times \varphi$, where $\varphi=\frac{n-1}{2}$.
- Let $C_{n \times \varphi}$ and $D_{n \times \varphi}$ be two matrices and let $c_{(i, j)}:=a_{(i, j)}$ and $d_{(i, j)}:=b_{(i, j)}$ for $0 \leq i<n$ and $0 \leq j<\varphi$.

Level 3. Main computation

- Let us shift the entries $c_{(i, j)}$ and $d_{(i, j)}$ of the matrices C and D in such a way that $c_{(i, j)}:=c_{(i, j+1)}$ and $d_{(i, j)}:=d_{(i, j+1)}$ for $0 \leq i<n$ and $0 \leq j<\varphi-1$.
- Delete the last column of the matrices A, B, C and D, and set $\varphi:=\varphi-1$. Assume that vertex $\alpha \in P_{\{\alpha\}}$. Then the triple $h_{1}=\left[i, b_{(i, j)}, a_{(i, j)}\right]$ corresponds to one line of $P_{\{\alpha\}}$, for $\alpha=i$ and for some j-th triple from the list of triples containing α. Similarly, the triple $h_{2}=\left[i, d_{(i, j)}, c_{(i, j)}\right]$ corresponds to the second line of $P_{\{\alpha\}}$. Thus the pairs of entries $\left\{a_{(i, 0)}, b_{(i, 0)}\right\},\left\{a_{(i, 1)}, b_{(i, 1)}\right\}$,
$\ldots,\left\{a_{(i, \varphi-1)}, b_{(i, \varphi-1)}\right\}$ of the matrices A and B, together with some vertex $\alpha=i$, form the triples which represent one line of the partial configuration $P_{\{\alpha\}}$. The second line of $P_{\{\alpha\}}$ is represented in a similar way, by pairs of corresponding entries of the rows i in C and D. Note that the lines h_{1} and h_{2}, containing the j-th pair of entries of the matrices A, B and C, D, forming $P_{\{\alpha\}}$ for $\alpha=i, 0 \leq \alpha<n$, cannot be the same.
- For all $a_{(i, j)}, b_{(i, j)}, c_{(i, j)}$ and $d_{(i, j)}, 0 \leq i<n$ and $0 \leq j<\varphi$, check if $t_{\left(a_{(i, j)}, c_{(i, j)}\right)}=t_{\left(b_{(i, j)}, d_{(i, j)}\right)}$. If yes, then without loss of generality the two other lines, not forming $P_{\{\alpha\}}$ for $\alpha=i$, have a common point. Thus we obtain one representation of the Pasch configuration from Lemma 2. In this case let $N:=N+1$ and $f(\pi):=f(\pi)+1$ for all points π forming the triples which represent the Pasch configuration.
- Repeat the previous step for all $a_{(i, j)}, b_{(i, j)}, c_{(i, j)}$ and $d_{(i, j)}, 0 \leq i<n$ and $0 \leq j<\varphi$, under the condition $t_{\left(a_{(i, j)}, d_{(i, j)}\right)}=t_{\left(b_{(i, j)}, c_{(i, j)}\right)}$, which checks the second representation of the Pasch configuration from Lemma 2.
- Repeat the last four steps until $\varphi=1$.
- By Lemma 1, let $N:=N / 6$ and for each point α of $S T S(n), 0 \leq \alpha<n$, let $f(\alpha):=f(\alpha) / 6$. The computation is performed and the algorithm terminates.
Theorem 3. Algorithm 1 computes the frequency of the Pasch configuration in an $S T S(n)$ in linear time using $O\left(n^{2}\right)$ processors.

3 Implementation and experimental results

As the processors of the Connection Machine CM-2 can be configured as a k dimensional grid, we use this computational model for implementing our algorithm. The speedup of the parallel approach becomes significant with the order of STS greater than 100 . For $S T S(249)$ we have achieved speedup approximately 30 compared to the best known $O\left(n^{3}\right)$ sequential algorithm running on a Sun SPARCstation 4 computer. Note that the original algorithm can be optimized by assuming wrap-around connections among processors in the grid, but this modification gives only slightly better results.

References

1. Gibbons, P. D.: Computing techniques for the construction and analysis of block designs, Ph.D. Thesis, University of Toronto, 1976.
2. Grannell, M. J.-Griggs, T. S. and Mendelsohn, E.: A small basis for four-line configurations in Steiner triple systems, Journal of Combinatorial Designs, Vol. 3, No. 1 (1995), p. 51-59.
3. Horak, P.-Phillips, N.-Wallis, W. D. and Yucas, J.: Counting frequencies of configurations in Steiner triple systems, to appear in Journal of Combinatorial Designs.
4. Stinson, D. R.: Hill-climbing algorithms for the construction of combinatorial designs, Annals of Discrete Math. 26, (1985), p. 321-334.
5. Urland, E.: A linear basis for the 7 -line configurations, submitted for publication, Journal of Comb. Math. and Comb. Computing.
