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Abs t rac t .  In this paper we describe a linear time algorithm using O(n 2) 
processors for computing the fragment vector in Steiner triple systems. 
The algorithm is designed for SIMD machines having a grid intercon- 
nection network. We discuss an implementation and some experimental 
results obtained on the Connection Machine CM-2. 

1 I n t r o d u c t i o n  

Let n be a positive integer. By a Steiner triple system of order n, denoted by 
STS(n), we understand a pair (V, B), where V is a set of elements called points 
(or vertices) such that  IV I = n, and B is a set of such 3-subsets of V, called 
lines (blocks or triples), that  every unordered pair of distinct points of V occurs 
exactly once among the lines of B. It is well known that  STS(n) exists if and only 
if n - 1 (rood 6) or n -- 3 (rood 6). For example, an STS(7) over V = {1, 2, ..., 7} 
can be formed with the following set of fines B = {[1, 2, 3]; [4,1, 5]; [1, 6, 7]; 
[4, 6, 2]; [2, 5, 7]; [3, 4, 7]; [3, 5, 6] }. Two STS(n) (V1, B1) and (V2, B2) are said to 
be isomorphic if there is a bijection r : V1 -+ V~ such that  in, ~, 7] E B1 if and 
only if [r r r e B2. A k - line configuration, k > 1, is defined as 
any collection of k lines of an STS(n). An ErdSs configuration of order k is a 
k - l i ne  configuration on k + 2 points which contains no subconfiguration of m 
lines on m § 2 points for 1 < m < k. Two k - l ine  configurations C1 and C2 
axe considered to be isomorphic if there is a bijection between the vertices of 
the configurations mapping lines to fines. If C1 = C2 then such an isomorphism 
is called an automorphism. By frequency (or number of  occurrences) of a 
configuration C in a given STS(n)  we understand the number of all different 
representations of the configuration C in the STS(n). Let C be a configuration 
and let S be a subset of vertices of C. Then by a partial configuration Ps of 
C we understand a subconfiguration of C which consists only from lines having 
at least one vertex in S. Let  C be a configuration and let 7r be a vertex of C. 
Then the number of  symmetries of C according to the vertex 7~, denoted by 
T(C, ~), is the number of vertices v of C such that  there is an automorphism of 
C mapping ~r to v. Let C be a configuration. Let S be a subset of vertices of C 
and let P s  be the partial configuration of C, which is formed by a set of lines 
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L C B. Then by R(C, Ps) we denote the number of all different representations 
of C in STS(n) = (V, B) containing L. 

Non-isomorphic STSs are frequently used as source data for various kinds of 
statistical experiments. Similarly, we need different STSs in order to determine 
a linear basis for k-line configurations [2, 3, 5]. The classical approach is to 
randomly generate STSs on a computer using the hill-climbing technique [4]. 
This technique appears to be extremely fast but unfortunately cannot guarantee 
that STSs constructed in this way are non-isomorphic. As there is no known 
polynomial time algorithm to test isomorphism of STSs, in practice one can use 
invariants as a proof that two given STSs are non-isomorphic. 

In this paper, we concentrate on one invariant called fragment vector, orig- 
inally introduced by Gibbons in [1]. Consider an ErdSs configuration of order  
4 called the Pasch configuration. Let Ir be a point of an STS(n) and let f(lr) 

T w ~ , ,  

Fig. 1. Pasch configuration 

denote the number of Pasch configurations containing ~r. Then the fragment 
vector of an STS(n) is a sequence of integers f(~rl), f(zr2), ..., f(Tr,~) for 1q e V, 
1 < i < n, sorted in non-decreasing order. It is easy to see that determining 
the number of occurrences of the Pasch configuration in an STS(n) forms the 
main part of the algorithm for computing the fragment vector. In the next sec- 
tion we shall deal with a parallel algorithm for counting the frequency of the 
Pasch configuration designed for S I M D  machines having a grid interconnect.ion 

network. 

2 Parallel algorithm 

Before we describe the algorithm itself we shall present the following two lemmas, 
which will be used later in the design of the algorithm. 

L e m m a l .  Let ~ be an arbitrary vertex of the Paseh configuration. Then 

T(Pasch, a) = 6. 

It follows from Lemma 1 that if a is a vertex of the Pasch configuration and if 
S -- {a} then up to isomorphism, every vertex of the Pasch configuration induces 
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the same partial  configuration Ps. The following lemma shows the number of 
different representations of the Pasch configuration in an STS(n)  which can be 
obtained from a partial configuration Ps. 

L e m m a 2 .  Let STS(n)  be a Steiner triple system of order n. Let S = {a}, 
where a is an arbitrary vertex of the Pasch configuration and Ps denotes the 
partial configuration of the Pasch configuration. Then R(Pasch, Ps) <_ 2. 

As a next step we present an algorithm for massively parallel machine with a 
set of processors running in S I M D  mode and having a grid interconnection net- 
work. One can intuitively see that  a matrix representation of STS is well suited 
for S I M D  - M C  2 parallel machine. According to this representation the pro- 
posed algori thm consists of the following three levels. 

A l g o r i t h m  1. 

Level 1. Initialization 

- For each point a of STS(n) ,  0 < a < n, let f ( a ) :=0 .  Let N:=O, where N 
denotes the number of occurrences of the Pasch configuration. 

- Let  T,~• be a matr ix and let t ( i , j ) := - I  for 0 _< i , j  < n. 
- Transform the input list of triples forming STS(n)  to matrix Tn• in such 

a way that  the entry t(i,j):=x, 0 < i , j  < n, where x is a point of the triple 
[i, j, 4 

- Let  B , •  be an index matr ix such that  b(i,j):=j for 0 < i , j  < n. 

Level 2. Precomputat ion and reduction 

- As each triple of STS(n)  is represented six times in T,  we compress redun- 
dant  representations. Let An• be a matrix and let a(i,j):=t(ij), 0 < i, j < n. 
For all rows i, 0 < i < n, and each column j ,  0 < j < n, if a(i,j) r - 1  then 
a(i,a(~,D ) : =  - -  1 .  

- Delete the entries a(i,j) < O, 0 < i , j  < n, from the matr ix A and the corre- 
sponding entries b(i,j) from B. Note that  after this reduction the matrices A 

n - - 1  and B are of the size n x ~, where ~ = 2 �9 

- Let Cn• and Dn• be two matrices and let c(i,j):=a(i,j ) and d(i,j):=b(i,j ) 
forO< i < n a n d  O< j < ~. 

Level 3. Main computation 

- Let us shift the entries c(i,j) and d(i,j ) of the matrices C and D in such a 
way that  c(ij):=c(i,j+D and d(i,j):=d(i,j+l) for 0 < i < n and 0 < j < ~ - 1. 

- Delete the last column of the matrices A, B, C ~md D, and set ~ : = ~  - 1. 
Assume that  vertex a E P{~). Then the triple ht=[i, b(i,j), a(i,j)] corresponds 
to one line of P{a}, for c~ = i and for some j - th  triple from the list of 
triples containing a.  Similarly, the triple h2=[i, d(i,j), c(ij)] corresponds to 
the second line of P{~}. Thus the pairs of entries {a(i,0), b(i,0)}, {a(ij) ,  b(i,1)) , 
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. . . ,  {a(i,~-l), b(i,~-l)} of the matrices A and B, together with some vertex 
a = i, form the triples which represent one line of the partial configuration 
P(~}. The second line of P{~} is represented in a similar way, by pairs of 
corresponding entries of the rows i in C and D. Note that the lines hi and 
h2, containing the j- th pair of entries of the matrices A, B and C, D, forming 
P{a} for a = i, 0 _< a < n, cannot be the same. 

- For all a(~j), b(i,j), e(i,j) and d(i,j), 0 ~ i < r~ and 0 < j < ~, check if 
t(a(,,~),c(i.i) ) = t(b(~,~),d(id)). If yes, then without loss of generality the two 
other lines, not forming P{a} for a = i, have a common point. Thus we 
obtain one representation of the Pasch configuration from Lemma 2. In this 
case let N : = N + I  and/(Tr):=f(Tr)+l for all points 7r forming the triples 
which represent the Pasch configuration. 

- Repeat the previous step for all a(ij), b(ij), e(id) and d(ih), 0 <_ i < n and 
0 < j < qo, under the condition t(a(~ i),d~i i)) = t(b(i i),c(i ~))' which checks the 
second representation of the Pasch connotat ion ~om '~emma 2. 

- Repeat the last four steps until qo = 1. 
- By Lemma 1, let N : = N / 6  and for each point a of STS(n) ,  0 < a < n, let 

f (a) :=f(a) /6 .  The computation is performed and the algorithm terminates. 

T h e o r e m  3. Algorithm i computes the frequency of the Pasch configuration in 
an STS(n)  in linear time using O(n 2) processors. 

3 I m p l e m e n t a t i o n  a n d  e x p e r i m e n t a l  r e s u l t s  

As the processors of the Connection Machine CM-2 can be configured as a k- 
dimensional grid, we use this computational model for implementing our algo- 
rithm. The speedup of the parallel approach becomes significant with the order 
of STS greater than 100. For STS(249) we have achieved speedup approximately 
30 compared to the best known O(n 3) sequential algorithm running on a Sun 
SPARCstation 4 computer. Note that the original algorithm can be optimized 
by assuming wrap-around connections among processors in the grid, but this 
modification gives only slightly better results. 
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