
Parallel Algorithm for Computing the Fragment
Vector in Steiner Triple Systems

Erik Urland

Centre Universitaire d' Informatique
Universit~ de Gen~ve, 24 rue G~n~ral Dufour

1211 Gen~ve 4, Switzerland
urland @cui. unige, ch

Abs t rac t . In this paper we describe a linear time algorithm using O(n 2)
processors for computing the fragment vector in Steiner triple systems.
The algorithm is designed for SIMD machines having a grid intercon-
nection network. We discuss an implementation and some experimental
results obtained on the Connection Machine CM-2.

1 I n t r o d u c t i o n

Let n be a positive integer. By a Steiner triple system of order n, denoted by
STS(n), we understand a pair (V, B), where V is a set of elements called points
(or vertices) such that IV I = n, and B is a set of such 3-subsets of V, called
lines (blocks or triples), that every unordered pair of distinct points of V occurs
exactly once among the lines of B. It is well known that STS(n) exists if and only
if n - 1 (rood 6) or n -- 3 (rood 6). For example, an STS(7) over V = {1, 2, ..., 7}
can be formed with the following set of fines B = {[1, 2, 3]; [4,1, 5]; [1, 6, 7];
[4, 6, 2]; [2, 5, 7]; [3, 4, 7]; [3, 5, 6] }. Two STS(n) (V1, B1) and (V2, B2) are said to
be isomorphic if there is a bijection r : V1 -+ V~ such that in, ~, 7] E B1 if and
only if [r r r e B2. A k - line configuration, k > 1, is defined as
any collection of k lines of an STS(n). An ErdSs configuration of order k is a
k - l i ne configuration on k + 2 points which contains no subconfiguration of m
lines on m § 2 points for 1 < m < k. Two k - l ine configurations C1 and C2
axe considered to be isomorphic if there is a bijection between the vertices of
the configurations mapping lines to fines. If C1 = C2 then such an isomorphism
is called an automorphism. By frequency (or number of occurrences) of a
configuration C in a given STS(n) we understand the number of all different
representations of the configuration C in the STS(n). Let C be a configuration
and let S be a subset of vertices of C. Then by a partial configuration Ps of
C we understand a subconfiguration of C which consists only from lines having
at least one vertex in S. Let C be a configuration and let 7r be a vertex of C.
Then the number of symmetries of C according to the vertex 7~, denoted by
T(C, ~), is the number of vertices v of C such that there is an automorphism of
C mapping ~r to v. Let C be a configuration. Let S be a subset of vertices of C
and let P s be the partial configuration of C, which is formed by a set of lines

810

L C B. Then by R(C, Ps) we denote the number of all different representations
of C in STS(n) = (V, B) containing L.

Non-isomorphic STSs are frequently used as source data for various kinds of
statistical experiments. Similarly, we need different STSs in order to determine
a linear basis for k-line configurations [2, 3, 5]. The classical approach is to
randomly generate STSs on a computer using the hill-climbing technique [4].
This technique appears to be extremely fast but unfortunately cannot guarantee
that STSs constructed in this way are non-isomorphic. As there is no known
polynomial time algorithm to test isomorphism of STSs, in practice one can use
invariants as a proof that two given STSs are non-isomorphic.

In this paper, we concentrate on one invariant called fragment vector, orig-
inally introduced by Gibbons in [1]. Consider an ErdSs configuration of order
4 called the Pasch configuration. Let Ir be a point of an STS(n) and let f(lr)

T w ~ , ,

Fig. 1. Pasch configuration

denote the number of Pasch configurations containing ~r. Then the fragment
vector of an STS(n) is a sequence of integers f(~rl), f(zr2), ..., f(Tr,~) for 1q e V,
1 < i < n, sorted in non-decreasing order. It is easy to see that determining
the number of occurrences of the Pasch configuration in an STS(n) forms the
main part of the algorithm for computing the fragment vector. In the next sec-
tion we shall deal with a parallel algorithm for counting the frequency of the
Pasch configuration designed for S I M D machines having a grid interconnect.ion

network.

2 Parallel algorithm

Before we describe the algorithm itself we shall present the following two lemmas,
which will be used later in the design of the algorithm.

L e m m a l . Let ~ be an arbitrary vertex of the Paseh configuration. Then

T(Pasch, a) = 6.

It follows from Lemma 1 that if a is a vertex of the Pasch configuration and if
S -- {a} then up to isomorphism, every vertex of the Pasch configuration induces

811

the same partial configuration Ps. The following lemma shows the number of
different representations of the Pasch configuration in an STS(n) which can be
obtained from a partial configuration Ps.

L e m m a 2 . Let STS(n) be a Steiner triple system of order n. Let S = {a},
where a is an arbitrary vertex of the Pasch configuration and Ps denotes the
partial configuration of the Pasch configuration. Then R(Pasch, Ps) <_ 2.

As a next step we present an algorithm for massively parallel machine with a
set of processors running in S I M D mode and having a grid interconnection net-
work. One can intuitively see that a matrix representation of STS is well suited
for S I M D - M C 2 parallel machine. According to this representation the pro-
posed algori thm consists of the following three levels.

A l g o r i t h m 1.

Level 1. Initialization

- For each point a of STS(n) , 0 < a < n, let f (a) :=0 . Let N:=O, where N
denotes the number of occurrences of the Pasch configuration.

- Let T,~• be a matr ix and let t (i , j) := - I for 0 _< i , j < n.
- Transform the input list of triples forming STS(n) to matrix Tn• in such

a way that the entry t(i,j):=x, 0 < i , j < n, where x is a point of the triple
[i, j, 4

- Let B , • be an index matr ix such that b(i,j):=j for 0 < i , j < n.

Level 2. Precomputat ion and reduction

- As each triple of STS(n) is represented six times in T, we compress redun-
dant representations. Let An• be a matrix and let a(i,j):=t(ij), 0 < i, j < n.
For all rows i, 0 < i < n, and each column j , 0 < j < n, if a(i,j) r - 1 then
a(i,a(~,D) : = - - 1 .

- Delete the entries a(i,j) < O, 0 < i , j < n, from the matr ix A and the corre-
sponding entries b(i,j) from B. Note that after this reduction the matrices A

n - - 1 and B are of the size n x ~, where ~ = 2 �9

- Let Cn• and Dn• be two matrices and let c(i,j):=a(i,j) and d(i,j):=b(i,j)
forO< i < n a n d O< j < ~.

Level 3. Main computation

- Let us shift the entries c(i,j) and d(i,j) of the matrices C and D in such a
way that c(ij):=c(i,j+D and d(i,j):=d(i,j+l) for 0 < i < n and 0 < j < ~ - 1.

- Delete the last column of the matrices A, B, C ~md D, and set ~ : = ~ - 1.
Assume that vertex a E P{~). Then the triple ht=[i, b(i,j), a(i,j)] corresponds
to one line of P{a}, for c~ = i and for some j - th triple from the list of
triples containing a. Similarly, the triple h2=[i, d(i,j), c(ij)] corresponds to
the second line of P{~}. Thus the pairs of entries {a(i,0), b(i,0)}, {a(ij) , b(i,1)) ,

812

. . . , {a(i,~-l), b(i,~-l)} of the matrices A and B, together with some vertex
a = i, form the triples which represent one line of the partial configuration
P(~}. The second line of P{~} is represented in a similar way, by pairs of
corresponding entries of the rows i in C and D. Note that the lines hi and
h2, containing the j- th pair of entries of the matrices A, B and C, D, forming
P{a} for a = i, 0 _< a < n, cannot be the same.

- For all a(~j), b(i,j), e(i,j) and d(i,j), 0 ~ i < r~ and 0 < j < ~, check if
t(a(,,~),c(i.i)) = t(b(~,~),d(id)). If yes, then without loss of generality the two
other lines, not forming P{a} for a = i, have a common point. Thus we
obtain one representation of the Pasch configuration from Lemma 2. In this
case let N : = N + I and/(Tr):=f(Tr)+l for all points 7r forming the triples
which represent the Pasch configuration.

- Repeat the previous step for all a(ij), b(ij), e(id) and d(ih), 0 <_ i < n and
0 < j < qo, under the condition t(a(~ i),d~i i)) = t(b(i i),c(i ~))' which checks the
second representation of the Pasch connotat ion ~om '~emma 2.

- Repeat the last four steps until qo = 1.
- By Lemma 1, let N : = N / 6 and for each point a of STS(n) , 0 < a < n, let

f (a) :=f(a) /6 . The computation is performed and the algorithm terminates.

T h e o r e m 3. Algorithm i computes the frequency of the Pasch configuration in
an STS(n) in linear time using O(n 2) processors.

3 I m p l e m e n t a t i o n a n d e x p e r i m e n t a l r e s u l t s

As the processors of the Connection Machine CM-2 can be configured as a k-
dimensional grid, we use this computational model for implementing our algo-
rithm. The speedup of the parallel approach becomes significant with the order
of STS greater than 100. For STS(249) we have achieved speedup approximately
30 compared to the best known O(n 3) sequential algorithm running on a Sun
SPARCstation 4 computer. Note that the original algorithm can be optimized
by assuming wrap-around connections among processors in the grid, but this
modification gives only slightly better results.

R e f e r e n c e s

1. Gibbons, P. D.: Comput/ng techniques for the construction and analysis of block
designs, Ph.D. Thesis, University of Toronto, 1976.

2. Grannell, M. J.-Griggs, T. S. and Mendelsohn, E.: A small basis for four-line con-
~Agura~ions in Ste/ner triple systems, Journal of Combinatorial Designs, Vol. 3, No.
1 (1995), p. 51-59.

3. Horak, P.-Phillips, N..Wallis, W. D. and Yucas, J.: Counting frequencies ofconfig-
o.rations in Steiner triple systems, to appear in Jottrnal of Combinatorial Designs.

4. Stinson, D. R.: Hill-climbing algorithms/'or the construction of combinatorial de-
signs, Annals of Discrete Math. 26, (1985), p. 321-334.

5. Urlmad, E.: A linear basis for the 7-line configurations, submitted for publication~
Journal of Comb. Math. and Comb. ComputinE.

