
The Effect of Flow Control and Routing
Adapt iv i ty on Priority-Driven Traffic in

Multiprocessor Networks

Sh0bana Balakrishnan and Ffisun Ozg/iner

Dept. of Electrical Engineering, The Ohio State University,
Columbus OH 43210-1272, USA

Abstract . We study the impact of two flow control schemes and rout-
ing adaptivity on the performance of priority-driven traffic produced by
real-time applications. The first is wormhole routing (WR) with real-time
extensions [1] and the second is preemptive pipelined circuit switching
(PPCS-RT) [2]. Our simulations show that for a fixed number of virtual
channels (VCs)/link, parallel lanes are more effective than adaptive rout-
ing alone, in reducing the number of messages that miss their deadlines.
PPCS-RT performs better than WR due to the VC preemption protocol
supported by it.

1 I n t r o d u c t i o n

Wormhole routing (WR) [3] is a flit-buffered flow control scheme increasingly
used in multiprocessor point-to-point multi-hop networks, since it provides the
design for low latency networks, and high link bandwidth, at low cost. The
flit buffers with associated control are referred to as virtual channels (VCs).
The commonly used routing algorithm in wormhole routers is the dimension or-
der routing algorithm [3], which is an oblivious shortest path routing scheme.
More recently, a number of adaptive routing algorithms have been proposed [3].
Here, the routing algorithm provides a choice of routing options and a selection
function selects one of the options for routing the header. In order to prevent
deadlocks, the routing algorithm uses routing classes (also called virtual net-
works), implemented by multiple VCs that are demand multiplexed on the link,
with restrictions on the use of the classes [4]. For example, a simple minimal
fully adaptive routing algorithm for meshes proposed in [4] requires two routing
classes. Multiple VCs without any routing restrictions called lanes, were also pro-
posed in [5] to improve the utilization of the physical link bandwidth. The speed
advantage of WI~ using dimension order routing with a single lane, that requires
only one VC/link, and the cost associated with multiple VCs, has resulted in
the prominence of parallel systems with a modest number of VCs/link.

Real-time applications, unlike regular applications, produce tasks that must
be performed before their associated deadlines. These tasks typically read sensor
data and process it periodically. Multiprocessor systems are likely candidates for
running real-time applications, since they offer increased computational power

288

and fault tolerance, at good price points. Real-time applications produce mes-
sages, where a real-time message Mi is characterized by three parameters; namely
period (Pi), deadline (d~), and size (si). Real-time messages are classified as hard
(also called guarantee seeking) and soft deadline (also called best effort) mes-
sages. For a hard deadline message, it is imperative that the communication
model guarantees its timely delivery, while for a soft deadline message, timely
delivery is a desirable feature, although occasional deadline misses can be tol-
erated. Real-time messages have an associated global priority that determines
the importance level of the message. For example, when the message with the
earliest deadline is assigned the highest priority, the assignment scheme is called
Deadline Monotonic Scheduling (DMS) [6]. We shall use this priority assignment
scheme in this paper.

With priority-driven real-time traffic, the priority is used to resolve the com-
petition among messages for shared network resources. In WR, there are two
types of shared resources, namely the VCs and the physical link. A WR message
can compete with any of the messages that share at least one hop on the path of
the message, for the use of the resources. Hence, the global priority order among
all competing messages must be enforced by the communication model, for pre-
dictability. With a limited number of parallel lanes, a global priority ordering
on the usage of the VCs during the course of the application is desirable. Two
real-time extensions to WR have been proposed in [1], namely, priority based VC
allocation and link arbitration. With priority-based VC allocation, the highest
priority message amongst the competing messages at that time is allocated the
output VC at a router. Local priority order on the usage of the link is enforced by
priority based link bandwidth arbitration, instead of the conventional demand
multiplexing, whereby, the physical link is in effect locally preemptable. A higher
priority header arriving at an input VC whose routing request for an output VC
is granted, can preempt a lower priority message using the link. A higher prior-
ity message, if not granted an output VC due to unavailability, cannot in any
way affect lower priority messages occupying the output VCs, since a VC once
Mlocated can only be released by the tail flit of the message. Hence, depending
on the order of arrival of messages, a higher priority message may be blocked by
a lower priority message using a VC, for an unbounded amount of time. Such a
situation is referred to as priority inversion, which was first investigated in the
context of task scheduling. The priority inversion is unbounded, because in WR,
the message delivery time cannot be bounded due to the fact that the header
may be blocked at each hop, depending on the contending messages. The pri-
ority inversion problem is magnified with fewer lanes. Such a WR model with
v lanes, can only enforce a v level priority order, although the priority levels of
the competing messages may be more fine grained. In this paper, we compare a
new flit-buffered communication model that we recently proposed [2] called Pre-
emptive Pipelined Circuit Switching for Real-Time (PPCS-RT) messages with
WR [1]. Both models employ parallel lanes as well as deadlock-free routing. We
evaluate the effectiveness of v parallel lanes under dimension order routing. We
also consider the effect of routing adaptivity i.e., WR using multiple VCs for

289

adaptive routing classes as well as parallel lanes.
In terms of alternative flow control schemes to WR, Pipelined Circuit Switch-

ing (PCS) was proposed by Gaughan and Yalamanchili [7] for achieving fault
tolerance. PCS does not address the problem of real-time message scheduling.
Unlike the nonblocking header in PCS, which requires an extra forward virtual
channel, the header is blocking in PPCS-RT, and backtracks when any of the
VCs acquired by it are requested by a higher priority message. A unified ap-
proach to real-time task and message scheduling has been adopted in [9] for
a single hard deadline periodic input using a scheduled routing method. The
SPIDER [8] network adapter supports mixed mode flow control, namely both
packetized store-and-forward switching and WR, to cater to the conflicting re-
quirements of hard and soft deadline messages, by partitioning the network into
two separate virtual networks, one for hard deadline, and the other for soft dead-
line traffic. We believe that WR is a good choice in massively parallel systems
when the application traffic does not have any deadline constraints. However, for
soft and hard deadline traffic, where priorities of messages are fine grained such
as on the basis of deadline, we argue that WR is inadequate. The rest of this
paper is organized as follows. In Section 2 we describe the basic PPCS-RT model
and the protocol for preemption. In Section 3 we compare the performance of
PPCS-RT and WR with varying number of virtual channels for parallel lanes
and deadlock-free routing.

2 A New Flow Control Model for Real-Time Messages

For completeness, we present in this section a brief description of the PPCS-RT
flow control model proposed in [2, 10]. Additional implementation details may
be found in [2]. The goal of PPCS-RT is to keep the advantages of wormhole
routing such as small flit buffers (that result in single chip, fast, inexpensive
routers) and prevent the unbounded priority inversion problem.

2.1 P P C S - R T

In WR, the delivery time of a message is unpredictable due to the blocking faced
by the header. The basic idea of PPCS-RT is to enforce the global priority order-
ing on the usage of the VCs by supporting preemption during this unpredictable
period when the header is in transit from the source to the destination. For
this purpose, the message delivery is performed in two decoupled phases; Path
Establishment (PE) and Data Delivery (DD). The header flit first establishes
the path similar to circuit switching in the PE phase. If a header cannot receive
the requested output VC, it blocks and holds the VCs acquired so far, as in
WR. All VCs reserved by the header are preemptable in this phase, by higher
priority messages. When a path is successfully established, an acknowledgment
is returned to the source node, that terminates the PE phase and initiates the
DD phase. Data flits are pipelined in the DD phase. In the DD phase, the VCs
occupied by the data flits are not preemptable. However, the duration of the DD

290

phase is bounded and dependent on the message size, and the link bandwidth
only.

For each VC that transfers the flits in the forward direction (denoted as v f) ,
PPCS-FLT requires a reverse VC to transmit control flits in the reverse direction
(denoted as vr). The forward and reverse VCs of adjacent nodes are multiplexed
on the physical link. The header, data, and tail flits use the forward virtual
channel v/ as in WR. A success flit is returned along the reverse path using
virtual channel vr to the source router, when the header reaches the destination
successfully, which then starts the DD phase. A message whose priority is higher
than the owner of a VC can request preemption, if the owner is in the PE phase.
This is done by generating a non-blocking preempt flit at the preemption point
(preempted output channel) which also travels along v] in the forward direction,
until it reaches the channel containing the header to be preempted. If the header
flit is not blocked, a preempt flit may or may not be able to catch up with the
header depending on the preemption point and the position of the header with
respect to the destination. The preempt flit has a router cycle time that is lower
than the header flit since it does not go through the routing logic at each router.
If the header is close to reaching its destination and successfully completes the
PE phase before the preempt flit reaches it, the success flit returning kills the
preempt flit, thereby aborting the preemption request. In this case, the higher
priority message must face a blocking time equal to the DD phase of the lower
priority message, and contend for the VC in priority order again.

When a header is preempted, a / ree flit is produced which backtracks along a
reverse path using v~ and frees all forward VCs held by the preempted message
until the point of preemption. Note that all VCs on the path up to the preemp-
tion point are still held by the preempted message. The header, preempt, free,
and success flits will be referred to as control flits. It was shown that PCS [7]
suffers from larger no-blocking message latency (minimum latency) due to the
overhead of path setup, compared to WR, which is also the case with PPCS-
RT. The experiments conducted in [7] assumed 16 VCs/link when the effect of
blocking due to VC unavailability is negligible. With fewer VCs, by resolving VC
contention based on global priority rather than local priority as in WR, we will
show in the next section, that PPCS-RT results in improved mean latency over
WR for high priority traffic, despite the additional overhead of the PE phase.

2.2 Contro l Flit Format

Figure 1 illustrates the fields in a control flit. Two bits are used to encode the
control flit function. Note that the tail flit is not considered here since its func-
tion is identical to WR. The header flit carries the address of the destination.
The preempt flit carries the address of the node at which the preemption occurs.
This information is recorded in a writable register associated with each channel
along which the preempt flit is propagated downstream. The free flit uses this
information to detect when to stop its reverse path. The free flit carries the ad-
dress of the destination node, which is used by the control logic to generate a new
header when the free flit reaches the preemption point, so that the preempted

291

message can resume from the preemption point. Note that the header and free
flits differ only in the first two bits. The success flit does not carry any address,
and simply follows the reverse path up to the source node. The header and free
flits also carry the priority of the message used to determine which channels are
eligible for preemption by the routing logic.

Header
Sucoess

Preempt Free

Priority

Fig. 1. Control flit format

2.3 P r o t o c o l f o r V i r t u a l C h a n n e l P r e e m p t i o n

In order to support VC preemption, the state of the output virtual channels, and
the priority of the owner must be maintained for each VC. A VC is in the PE
state when the message owning it is in the PE phase. Similarly, a VC is in the
DD state when the message owning it is in the DD phase. A VC is in the preempt
state (PT) when a preemption request has been propagated on that VC. A VC,
if available, is in the AV state. All examples are based on a 2D mesh, and one
VC/link is assumed for simplicity. We first illustrate the header-success paths for
a message originating at node A and destined to node D in Figure 2 (a), using
the bidirectional links at each router. The actual flow of header and success
flits is shown in Figures 2(b) and (c) respectively. At each node we show the
input virtual channel, the state of the output virtual channel, and the crossbar
connection made. Details of the implementation of the forward and reverse paths
are discussed in [2]. The crossbar is a VC to VC crossbar. In this example, the
crossbar is a 5x5 crossbar with inputs numbered zi and outputs numbered xo,
where x denotes the directions 0 - 3 or the node N.

The header flit shown in Figure 2(b) is responsible for switching the output
virtual channel state to PE. The success flit generated at node D returns on the
reverse VC path until it reaches the source node A as shown in Figure 2(c). A
success flit arriving on an input channel j switches the state of output channel
j to DD. At node A, the success flit is propagated to the reverse node channel
No where it terminates, and the DD phase is started thereafter. Although the
header and success flits are shown to exist in several VC FIFOs in the figure,
only a single flit exists in any FIFO of a path, at any given time.

In Figure 3(a) we illustrate the same message from A to D, whose header is
blocked at node C due to the fact that the output channel 30 is in DD state.
While the header is blocked, a higher priority message, occupying channel 0i at

292

. Header path forward vc ~ reverse vc

a~m Success path
A B C H-Header flit

S-Success flit

$a ~ l

(a)

10o

Ni =PE IO=PE [3 O

Io:pE t_ ~ Ni

30=PE

(b)

l z O0

(cl

Fig. 2. PE phase (a) Header-Success paths (b) Header flit path (c) Success flit path

node A (Figure 3(b)) generates a preemption request for output channel lo..~
preemption request is generated if the output channel to be preempted is in th,
PE state, and the owner priority is lower than the requesting message priori D
The preempt flit propagated on an output channel j, changes the state of th
channel to PT. The node address at which the preemption request is generate~
must be recorded at each preempted channel for future preemption requests,
well as for the returning free flit to determine if it has reached the preemptic
point. For this purpose, a writable register Paddr[j] associated with each outpl

293

A B

20 2i mm~Free flit path
0i 0o

li lo 0i 0o
0o

3i 30 __ .

Ni _ _ - - .

i J
lo=PE L J N~N'

Preempting (~ ~ 3 o=DD --~
header "--"

i 0o]Preempt caught up
~ - - with header

'~J-I J ~ 100 i
2i 20 io 0i 0o

3i 3~- 2i Io 0i

Ni o 3i 20 li

N'= Paddr [i] =A [~----------J ~ / ~ L ~ ~'~ ~ ~ 3 ~
Io=PT Paddr { 1] =A I l Nil

Io=PT ---~

(b)

i0 i O0 Oi

Free reached ~ 4 ' ~ : ~ : ' ~ I i~ I I~ lOo F Oi
preemption ----4 i - - ~ i ~ . ~ "T - -
point ~ 30 I II ii~ll ~ 201 I 2i----'~ li

Ni =PE Paddr [1] =A / N~O C
Io=AV Paddr [1] =A [

Preempting IO=AV
header

\ oi oo (c)
. . . .

Preempted
header\

Ni=PE
IO=PE

31 30 H - Header flit" ! D dvo s-s lit
o4 i P - Preempt flit
~i i 1 ~ F - Free f l i t _ Data flit

C ~ ~reempt flit pat~--~-Pree/r~ting header path

0o

L
io

2O

3O

D

0o

L
Io

20

30

D

(d)

Fig. 3. Preempt-free flit paths (a) Header is blocked at node C (b) Preempt flit path
(c) Free flit path (d) Preempting header path

VC j is required. A preempt flit that is propagated on an output VC j, updates
the Paddr[j] register to the preemption address carried by it. In this example,
at nodes A and B, Paddr[1] is set to the address of node A.

A free flit is generated when the preempt flit reaches node C, where the
preempted header is blocked. The free flit shown in Figure 3(c), traverses the
reverse path from node C to node A. At each hop, the free flit is propagated
upstream if the preemption point is not reached. The free flit arriving at input
channel 1 at node A terminates. The free flit arriving on an input channel j,

294

changes the state of the output channel j to AV. At the preemption point, if
the channel preempted is not an injection channel, a new header is generated by
converting the free flit to a header flit, which occupies the channel given by the
forward crossbar mapping, which is the injection channel N i in this example.
The header that preempted the lower priority message can then propagate as
shown in Figure 3(d). The preempted header must once again go through the
routing logic and obtain an outgoing virtual channel at the preemption point.
In this example, the message is preempted at the first VC along its path (lo),
although that need not be the case. A control unit that handles control flit
arrivals is required for each VC. A discussion of the precedence conflicts and
how they are handled by PPCS-RT is presented in [2].

3 C o m p a r i s o n o f W R a n d P P C S - R T

3.1 S imula t ion E n v i r o n m e n t

The simulator is based on the CSIM [11] process oriented language. A flit-
buffered network connected in a k-ary n-cube/mesh topology is simulated. The
network configuration used for these experiments is an 8x8 mesh with 4 injec-
tion and consumption channels. This is the all-port model, where a node can
inject/consume a message on all its ports simultaneously. For comparing the
two models, we considered the dimension order routing algorithm [3]. We also
considered the effect of adaptive routing with WR, with a minimal fully adaptive
routing algorithm that requires two routing classes (r = 2) [4], each routing class
consisting of v lanes. A header can be routed on any VC along any dimension in
the first routing class, or along the highest dimension in the second routing class,
called the dimension order routing class. Hence, rv VCs/link are required, where
r = 1 for dimension order routing, and r = 2 for fully adaptive routing. Two
approaches for implementing the fully adaptive algorithm with v lanes were con-
sidered. In the first (A1), if a header cannot obtain an available VC, the header
waits for a VC from the dimension order class to become available, and does
not contend for VCs in the first routing class. In the second (A2), if a header
cannot obtain an available VC, it contends in round robin fashion until a free
VC becomes available in either routing class. Approach A2 requires a centralized
round robin arbitration scheme.

The timing parameters for the simulated PPCS-RT and WR models are as
follows: Both models assume a physical link bandwidth (B) of 10 MB/s, i.e., it
takes 0.4ps to transfer a data flit across a link where a flit is assumed to be 4
bytes. The header flit in WR takes 1.2#s to propagate one hop. This includes
the routing decision and the flit transfer time. The header flit in PPCS-RT takes
1.6/~s to propagate one hop (tr), due to the added complexity of the PPCS-RT
router. The success flit has a cycle time per hop of 0.4#s. We assume that the
preempt, and free flits propagate without delay. This is a reasonable assumption
since the overhead of preemption is very much smaller than the PE and DD
phases, due to the fact that both the preempt and free flits are non-blocking.

295

The reason for this assumption, is that we used events to simulate preempt and
free conditions thereby simplifying the PPCS-RT programming model. The ideal
PPCS-RT latency Ci is given by:

Ci = hitr + h~/B + (hi + si - 1) /B (1)

where si is the size of message Mi, hi is the number of hops traversed by Mi,
B is the bandwidth of the link, and tr is the header propagation time per hop.
The first term in Eq. 1 is the time for the header to reach the destination, the
second term is the time for the success flit to return, and the last term is the
time taken by the DD phase.

A message generation program generates messages that are periodic with
random source destination pairs. The message size is randomly chosen to be one
of four message sizes (16, 128, 1024, 4096 flits). Depending on the message size,
the period is randomly chosen from 16 values within a range of 2 - 100 ms so
that larger messages are restricted to larger periods. For example, a message of
size 16 flits has a period in the range of 2 - 10 ms while a message of size 4096
flits has a period in the range 20 - 100 ms. This is done so as to represent real-
t ime traffic more realistically, where smaller messages (often critical messages)
occur more frequently than larger messages. Furthermore, we do not want very
large messages to occur with a high frequency thereby saturating the network
very quickly. The deadline of the message is chosen to be less than the period.
Messages are generated until a predefined average link utilization (LU) is reached
ranging from 0.1 - 0.5. The link utilization at a link with k messages, is defined
as the fraction of the link bandwidth utilized by the messages using the link,
i.e., ~ = 1 C~/p~, where Ci is given by Equation 1. Due to the periodic nature
of messages, at a link utilization of 0.5, the number of messages existing in
the network is very large (over 15,000) resulting in long simulation times. The
simulator injects each generated message in the message set into the network
initially at t ime 0. Thereafter, new instances are injected at their respective
periods. Each message instance is a process which creates a header process. The
header process in the case of WR spawns a data process at each node which is
responsible for transferring the flits. In the case of PPCS-RT, the header process
simulates the PE phase and backtracking if preempted.

3.2 R e s u l t s

In Figure 4(a) we compare the performance in terms of Overall Miss Ratio
(O M R %) defined as the ratio of missed messages to total number of messages
delivered, using PPCS-RT and WR with v = 1 and v - 2 under dimension
order routing. In general, PPCS-RT significantly outperforms WR for the same
v, with the difference in performance being more significant at increased link
utilizations. The performance difference between PPCS-RT and WR is greatest
for v -- 1. PPCS-I~T(v -- 1) outperforms WR(v = 2) at high link utilization in
terms of O M R % (Figure 4(a)). Hence, at increased link utilization, a large num-
ber of messages suffer from priority inversion in WR resulting in more deadline

296

misses than PPCS-RT even though WR uses twice the number of lanes used by
PPCS-RT.

70

&
- - PPCS-RT(v=I)

" WR(v~) ..-

o.,~ o.~ ~ o ~ o~ o '~ o'.. o ~
Avg. l,,Ik ut~Iz,~oo A',g. ink ulCzaaon

(a) (b)

' i s wR(v=~

J
14 ppcS--RT(v=2)

i.,2i ,,or / /
I. J i

:::::::::::::::::: : 2 " :: :

~ 0.15 0.2 0.4 0.45 0.5

Fig. 4. WR versus PPCS-RT with dimension order routing(a) OMR% versus average
link utilization (b) Average message latency versus average link utilization

Figure 4(b) shows the average latency of a message using WR and PPCS-RT
for v = 1, and v = 2. PPCS-lZT results in lower average message latency com-
pared to WR for the same v despite the overhead of the PE phase. By resolving
VC contention according to global priority rather than locM priority, PPCS-
RT achieves a lower average blocking time, and hence a lower average latency
compared to WR. Although, PPCS-RT(v = 1) has lower O M R % compared to
WR(v = 2) at increased link utilization, the mean latency of messages using
PPCS-RT(v = 1) is higher than that of WR(v = 2) messages, as seen in Fig-
ure 4 (b). While mean latency is a good indicator of real-time performance with
WR, this is not the case with PPCS-RT. With WlZ, most messages that miss
their deadlines, do so by a small margin, while with PPCS-RT, the low priority
messages miss by a large margin, contributing to the increased average message

latency.
Next, we evMuated the effectiveness of adaptive routing with WlZ using a

variable number of lanes v. Figure 5(a) shows the O M R % with the two imple-
mentations of fully adaptive minimal routing. A2 results in lower O M R % than
A1 at low link utilizations with v = 1 and, for all link utilizations with v = 2.
At high link utilizations and with only one lane (v = 1), the centralized round
robin arbitration scheme performs worse than strict priority-based waiting for a
channel in the dimension order routing class. This is due to the fact that with a
single lane a large number of messages are blocked, and the centralized arbitra-
tion scheme becomes a bottleneck. A1 is also easier to implement in hardware.
Comparing Figures 4(a) and 5(a), fully adaptive routing using A1 results in low-
ering the O M R % as compared to dimension order routing, for the same number
of lanes v. However, the fully adaptive scheme requires twice the number of VCs
compared to dimension order routing for the same v. When v = 1, adaptive

297

routing alone performs marginally better (< 10% difference in O M R %) than di-
mension order routing. This is not the case when v = 2, where the difference in
the O M 1 : t % is over 25%. In meshes, fully adaptive routing alone with no parallel
lanes is not very effective since a large number of messages have only a single
shortest routing path. Fully adaptive routing with parallel lanes effectively dis-
tributes the traffic resulting in good real-time performance. Figure 5(b) compares
the average latency of wormhole routed messages using dimension order routing
and adaptive routing (using A1) that require the same number of total VCs per
link. As also seen from the O M R % , the average latency of a WR message using
adaptive routing is lower than a message using dimension order routing for the
same v. However if the total number of VCs/link is fixed, then parallel lanes are
more effective compared to adaptive routing. For example, WR(v = 2, r -- 1)
performs better than WR(v = 1, r = 2), where both require 2 VCs/link. Note
that with priority-based link bandwidth arbitration, the physical link bandwidth
is not continuously time multiplexed as with demand multiplexing. Hence the
overhead of multiplexing is small as compared to demand multiplexing. We con-
clude that parallel lanes are more effective for priority-based traffic and require
less hardware compared to adaptive routing.

70 - - W R (V . I) - A I . . - " " " ~ '

. . . . WR(v=2)-A2 /

i o

:;:-:

^v~. ~ t q z a ~ n

(a)

14

|1

11

- - w P , (~ . r , . 2) ~ l

. WR(V-4,~,,1) /

. . . . WR('P , ,2 ,~) -A 1 / /
/

I I

I I

11

I I

" , 7 , :
0.2 0 2 5 0.3 0 3 5 0 4 0 4 5 05.

Avg. Enk uBZzatbn

(b)

Fig. 5. Comparison of WR with minimal fully adaptive routing using A1 and A2(a)
O M R % versus average link utilization for two implementations (b) Average latency
versus average link utilization for adaptive and dimension order routing using the same
number of VCs

Finally, PPCS-RT is much better suited than WR for real-time traffic when
only a few VCs per link exist, which is the case in most systems today. For exam-
ple, PPCS-RT(v = 2) employing dimension order routing has a lower O M R %

than WR(v = 2) using fully adaptive minimal routing at a link utilization of 0.5.
Hence, we infer that complex adaptive routing schemes are not really required if
a well suited priority-based flow control scheme exists for real-time messages un-
der heavy traffic conditions. Our simulation experiments did not account for the
overhead of preemption. This overhead, affects the preempting message delivery

298

t ime by a small amount. Although the number of misses is expected to increase
marginally with this overhead, the general trend that low priority messages will
miss with large margins, the enforcement of priority order, and the lower O M R %
of PPCS-RT compared to WR for small v, are expected to remain.

4 C o n c l u s i o n s

In this paper we compared the performance of PPCS-RT, a new flow control
model that we proposed for priority-driven traffic, and WR, in terms of over-
all miss ratio. We also examined the effect of VCs for routing adaptivity and
parallel lanes using WR. Parallel lanes provide better performance compared to
adaptive routing for the same number of VCs/link. An important problem that
we are investigating is a comparison of PPCS-RT and WI~ taking into account
the increased latency due to additional flow control complexity, and routing
complexity, and the transmission times of preempt and free flits.

R e f e r e n c e s

1. Li, J.-P., Mutka, M.W.: Real-time virtual channel flow control. J. Par. Dist. Comp.
32(1996) 49-65

2. Balakrishnan, S., Ozgiiner, F.: A priority-based flow control mechanism to support
real-traffic in pipelined direct networks. To appear Proc. Int. Conf. Par. Proc.
(1996)

3. Ni, L.M., McKinley, P.K.: A survey of wormhole routing techniques in direct net-
works. IEEE Computer (1993) 62-76

4. Duato, 3.: A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Trans. Par. Dist. Sys. 4(12)(1993) 1320-1331

5. Dally, W.:].: Virtual-channel flow control. IEEE Trans. Par. Dist. Sys. 3(2)(1992)

194-205
6. Leung, J.Y.-T., Whitehead, J.: On the complexity of fixed-priority scheduling of

periodic real-time tasks. Performance Evaluation 2(4)(1982) 237-250
7. Gaughan, P.T., Yalamanchili, S.: A family of fault-tolerant routing protocols for

direct multiprocessor networks. IEEE Trans. Par. Dist. Sys. 6(5)(1995) 482-497
8. Dolter, J. et. al.: SPIDER: Flexible and efficient communication support for point-

to-point distributed systems. Proc. Int. Conf. Dist. Comp. Sys.(1995) 574-580
9. Shukla, S.B., Agrawal, D.P.: Scheduling pipelined communication in distributed

memory multiprocessors for real-time applications. Proc. Int. Symp. Comp. Arch.
(1991) 222-231

10. Balakrishnan, S., Ozgiiner, F.: Providing message delivery guarantees in pipelined
flit-buffered multiprocessor networks. To appear Proc. IEEE Real-time Technology
and Applications Symp. (1996)

11. Schwetman, H.: CSIM: A C-based process-oriented simulation language.
Proc.Winter Simulation Conf. (1986) 387-396

