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A b s t r a c t .  In this paper we consider the goss ip ing  p r o b l e m  in bus 
networks in which any subset of vertices (i.e., nodes) of size 1 r _~ l, where 
1 is a given constant greater than or equal to 2, is connected by a shared 
bus of length 1 p. We call such a network c o m p l e t e  bus  ne twork ,  since it 
is a generalization of complete point-to-point network K=. The proposed 
algorithm finishes a gossip in complete bus networks in a short time under 
a feasible and practical communication model. For example, it finishes a 
gossip only in 1.1371og 2 n + O(1) steps for 1 -- 3. 

1 I n t r o d u c t i o n  

A b u s  n e t w o r k  with vertex set V is a communica t ion  network in which vertices 
in V (representing nodes of  a physical network) are connected by a set of  shared 
buses. The  number  of  vertices connected to a bus is called the l e n g t h  of  the bus. 
In recent years, bus networks have received considerable a t tent ion f rom m a n y  
researchers as a versatile communica t ion  topology for parallel processors, since 
it is inherently more  powerful than usual point - to-point  networks. In spite of  a 
lot of  impor t an t  works in this area, there has not been found a general bus net- 
work topology  which is recognized as the "best" one. A criterion of  the goodness 
of  communica t ion  topology is the performance for executing several communi -  
cat ion pa t te rns  which are commonly  used in parallel processing. In this paper,  
we evaluate the performance of  bus networks by focusing on a communica t ion  
pa t t e rn  known as a g o s s i p i n g  in the literature. Note tha t  it requires a lot of  
messages to be t ransmi t ted  for finishing a gossiping. 

In this paper,  the communica t ion  in bus networks is assumed to proceed as 
follows [8]: 

- Communica t ions  proceed step by step, and the transmission of  a message 
along a bus takes one t ime unit  (called a s t e p )  regardless of  the length of  the 
t r ansmi t t ed  message and the length of  the bus. (That  is, we are interested 
here in the total  number  of  steps taken by a gossiping.) 

- A vertex can either send or receive a message t o / f rom at mos t  one bus at a 
given step, even if the vertex is connected to several buses. 
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Given a bus, only one vertex connected with the bus can send a message 
through it at a given step. In addition, all vertices connected with the bus 
can simultaneously receive the t ransmit ted message (i.e., each bus is accessed 
in CREW manner).  

During a step, several message transmissions can occur simultaneously as long 
as all of the above three constraints are satisfied. Note that  if all buses have 
length two, it coincides with the communication in point-to-point  networks (i.e., 
graphs) under the single-port, halt-duplex model, so-called "telegraph model" 
(surveys on communications in graphs can be found in [9, 12]). 

In this paper, we focus on a special class of bus networks defined as follows. 

D e f i n i t i o n 1 .  C o m p l e t e  b u s  n e t w o r k  cbn(n,1), where 2 < I < n, is a bus 
network consisting of n vertices and each bus is of length at most I. For any 
subset of vertices of size l ~ < l, there is a bus of length 1 ~ which connects all 
vertices in the subset. 

For each u E V, let re(u) be the piece of information initially held by vertex 
u. The g o s s i p i n g  p r o b l e m  is the problem of disseminating re(u) to all the 
other vertices in V, for all u E V. This problem in bus networks has been 
studied in the literature [8, 10, 11, 13, 14]; e.g., Fujita and Yamashi ta  [10, 11] 
considered the problem in mesh-bus networks in which all vertices are arranged 
on a two-dimensional array and vertices in each row and vertices in each column, 
respectively, are connected with a bus; Hily and Sotteau [13, 14] extended the 
result on two-dimensional arrays to the case of d-dimensional arrays for d >_ 3; 
and Fraigniaud and Laforest [8] studied bus networks of minimal  size in which a 
gossip finishes in a min imum time. Some other results have been obtained in [1, 
2, 6, 7] concerning the design of particular bus networks and the broadcasting 

operation in them. 
Let g~(n) denote the min imum number of steps necessary to finish a gossip 

in cbn(n, l) under our model 4. In [8], it is shown that  g~(n) >_ [log 2 n] + 1 holds 
for any n > 2. Since g~(n) > g~(n) obviously holds (indeed, one may  use only 
buses of length at most l), we have the following theorem. 

T h e o r e m  2. (Lower Bound) For all 2 < 1 < n, g~(n) > [log 2 n] + 1. 

The  upper  bound we will prove on g~(n) is related to some numbers rt that  are 

defined as follows: 

D e f i n i t i o n 3 .  r~ is the root of greatest modulus of the polynomial  X ~ - X ~-1 - 
. . . .  X - 1. It  has been proved that  r~ is a real and belongs to [1, 2] (see [3] and 

[15], section 5.4.2, ex. 7). 

When l = 2, buses of length 2 are indeed "edges" and our model is equivalent 
to the model so-called half-duplex model for point-to-point networks. In that  case, 

a tight bound has been derived: 

4 gl(n) represents a fundamental lower bound on the number of steps for finishing a 
gossip in bus networks with n vertices and buses of length at most I under our model. 
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T h e o r e m 4 .  g2(n) 1 log 2 n + O(1). 
- -  l o g 2 ( T 2  ) 

A proof of the upper bound was given by Entringer and Slater [4], and the proof 
of the lower bound was independently given by Krumme et al. [16], Sunderam 
and Winkler [18], Even and Monien [5], and Labahn and Warnke [17]. 

The objective of our paper is to find an exact value of gl(n) in terms of n 
for any 1 _> 2. In Section 2, we propose a gossip algorithm for cbn(n, l) to give 
an upper bound on gz(n). It is shown that this upper bound is very close to the 
lower bound given in Theorem 2, and we conjecture that the bound is optimal 
within a constant number of steps. Section 3 concludes the paper with future 
directions of this research. 

2 A n  U p p e r  B o u n d  o n  g l ( n )  

The time of our algorithm will be denoted Tl(n). 

2.1 W h e n  n =  o ( m o d l )  

For simplicity we describe first an algorithm valid when n = ql for some integer 
q. The set of vertices in those networks can be viewed as a rectangle of q columns 
and 1 lines. Vertex of line i and column j will be consequently labeled (i, j )  with 
i E Zz and j E Zq. The set of vertices in line i will be denoted L~ (= {(i , j)  [ 
j C Zq}); in the same way, the set of vertices in column j will be denoted 
Cj (-- {( i , j )  l i c Zz}). 

The algorithm runs in two phases. 

P h a s e  1. A description of Phase 1 is given as follows. 

D e s c r i p t i o n  o f  P h a s e  1 In parallel, in each column Cj for j E Zq, perform a 
gossip. 

Phase 1 takes exactly [ log 21 ] + 1 steps according to the results obtained in [8]. 

Remark. Note that at the end of Phase 1, any vertex (i, j )  in column Cj knows 
the whole information originally contained in column j; i.e., my -= (-Juecj rn (u) .  
For simplicity of notations we will say that  a vertex v knows the information of 
columns [j, jl], if v knows the information originally contained in the consecutives 
columns j , j  + 1,j  + 2 , . . .  , f  remind that addition is performed modulo q). 

P h a s e  2 The second phase is executed only when q > 2. We can refer it abu- 
sively as a "gossip between columns". In what follows, we shall denote by "time 
t" the time after the t th step of Phase 2, that  is phase 2 starts at t ime 0. At the 
beginning of Phase 2, any vertex knows the information of at least one column. 
In particular, vertex (i, j )  knows the information of columns [j, j]. 
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We will describe an algorithm such that at time t each vertex (i, j )  of line Li, 
knows the information of the F~(t) consecutive columns [j, j + Fi(t) - 1], where 
Fi(t) depends only on i and t. This situation can be represented by the vector: 

r( t)  = 

Fo(t) \ 

L;;)/ 
where Fi(t) will be called the a m o u n t  o f  i n f o r m a t i o n  known by line Li. 

D e s c r i p t i o n  o f  P h a s e  2 At time 0, to perform step 1 we choose a line Lio 
and any vertex (i0, j )  of this line sends its information to the vertices of the set 
{ ( i , j  - 1), i r  i0}-So at time 1, each vertex (i ,j)  of a line Li(i ~ io) will know 
the information of columns [j, j + 1]. A vertex (i0, j )  will still know only the 
information of column j.  At time 1, we choose a line Lil(il ~ i0); then during 
step 2, a vertex ( i l , j )  sends its information to {( i , j  - Fi(1)), i r il}. Explicitly 
(il, j )  sends its information to (i0, J - 1) and to (i, j - 2) for i :~ i0, il. 

Let it C Zl be such that Fi~(t) is maximum, that  is Fi~(t) = maxi~z~(Fi(t)). 
Then, at step t + 1 each vertex (it, j) sends its information to the vertices {(i, j -  

r,(t)), # h}. 
For example (see table 1), in the case 1 = 4, at time 3 if we have chosen 

i0 = 0, il = 1, i2 = 2, then the maximum of F/(3) is 8 which is attained for line 
3; so the senders are in line 3. During step 4 a vertex (3, j )  sends its information 
(namely that  of columns [j,j + 7]) to {(0, j  - 7), (1 , j  - 6), (2 , j  - 4)}. 

At time t + 1 a vertex (i,j), i ~ it will know all the information of columns 
[j,j + Fi(t) - 1] (known at t ime t) plus that of columns [j + F~(t),j + F~(t) + 
Fib( t ) -  1] that  is of columns [j,j + Fi( t )+ Fi~( t ) -  1]. Vertices of line it will 
receive no new information. Consequently we obtain the following recurrence 

relations: 

- Vi, El(0) : 1 ;  

- Fi~(t + 1) = Fi,(t); and 
- for i # it, Fi(t + 1) = Fib(t) + Fi(t). 

As during phase 2, at time t, any vertex (i, j )  knows the information of Fi(t) 
consecutive columns; phase 2 completes the gossip at the first t ime T for which 
Vi, Fi(T) >_ q. Note that  according to the previous description the algorithm can 

be implemented under our model in cbn(n, l). 

L e m m a  5. The time of Phase 2 is at most /logr~(q)] + 1. 

Proof. Let G(t) be the vector of values Fi(t) which are sorted in a decreasing or- 

der. We will denote Gi(t) the ith coordinate of G(t), as example rnaxiez, (Fi(t)) = 
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T a b l e  1. The first values of Fi(t) for l = 4. 

t 0 1 2 3  4 5 6 7 8 
Fo(t) 1 1 3 7 15 15 44 100 208 
F~(t) 1 2 2 6 14 29 29 s5 193 
F2(t) 1 2 4 4 1 2  27 56 56 164 
F3(t) 1 2 4 8  8 23 52 108 108 

Fi,(t) = Go(t). Then ,  G(t) clearly satisfies: 

G(O)=  . . and G ( t + l )  = 

Co(t) + a~ (t) 
a0(t) + a~ (t) 
Co(t).+.c~(t) 

Co (t) + a~_l(t) 
co(t) 

The  re la t ion  be tween G(t + 1) and G(t) can be represented  by a usual  l inear  
recurs ion G(t + 1) = QG(t),  where 

1 0 1 . . . 0  

1 0 0 - - - 0  
1 0 0 - . . 0  

One can check t h a t  the  charac te r i s t ic  p o l y n o m i a l  of  Q is up to a sign of  X t - 
X I-1 - X 1-~ . . . .  X - 1. Consequent ly ,  QZ _ Ql -1  _ QZ-2 . . . . .  Q - [  = 0, and  
as for t > 0, G(t + l) = Q1G(t) we have: 

t _ 0, c (1  + ~) = c ( z  § t - 1) + c ( z  + t - 2) + . . .  + a(t). (1) 

Note t ha t  the  smal les t  coord ina te  of  G(t) is Gz-l ( t )  = Go(t - 1), t hough  coor- 
d ina tes  of  G(t) lie in the  in terval  [Go(t - 1), G0(t)].  Consequent ly ,  we will only  
ana lyze  the  behav ior  of  Go(t) value which will be deno ted  M ( t ) .  Phase  2 will  be 
comple t ed  at  t ime  T if and only if  M ( T  - 1) _> q. 

We will not  der ive an exact  eva lua t ion  ~ of  M(t) .  Ins tead  we j u s t  po in t  ou t  
t h a t  M(t )  = 2 t for t < l - 1, moreover  for I _< t, equa t ion  (1) impl ies  tha t :  

M(t )  = M ( t -  1) + M ( t -  2) + . . - +  M ( t - l )  (2) 

Now note  t ha t  the  two sequences M(t)  and U(t) = (rl) t are the  so lu t ions  of 
the  same  l inear  recursion (2). As all the  coefficients of  the  recursion are pos i t ive  
and  as Yt E {0, 1 , . - . , l -  1}, M(t)  = 2 t > (r l)  t (recall  t ha t  rl < 2), we can 
c la im tha t  for any  t ime  t, M( t )  is grea ter  t han  (r~) t. Consequen t ly  we have 
T < [ loG, (q)] + 1. I3 

5 Actually one can shows that  the generating function of M(t) is ~ - ~  and prove 
l__2zJ-z2+l 

1 (~)Z then that  M(t) c t = z(n) +o(t) with cz = 2 - ( t+ l ) (~y  rz > 1. 
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C o r o l l a r y 6 .  gz(ql) < Tz(ql) < [log 2 11 + [logr,(q)] + 2 

Proof. By summing the times of Phases 1 and 2 [] 

2.2 W h e n r t  ~ o  ( m o d l )  

Let n = ql+ r for some 1 < r < l. If  q = 0, since we have n < l, the gossiping 
can be achieved in an opt imal  t ime [log2(n)] + 1 (see [8]). If  q > 1, we have 
to slightly modify the algorithm in such a way to take into account those r 
remaining vertices. In our algorithm, before start ing Phase 1, each of those r 
vertices send their information to a vertex in column Co. Note that  it takes 
only one step since r < 1. At that  point, the whole information of V has been 
concentrated on the first q columns and we can apply the previous algori thm to 
the ql vertices. One additional step is enough for completing the whole gossip 
operation because at the end of Phase 2, ql (>_ r) vertices have known the whole 
information.  So when n = ql + r, the total  t ime to complete the gossiping is at 

most  Tl(qI) + 2. 

2.3 T o t a l  T i m e  

By the previous subsections, the total  execution time 2~(n) of our gossip algo- 

r i thm is bounded above by 

Tz( ) < log2 1 + log2 + O(1) (3) 

It  is worth noting that  for any fixed l, an upper bound on the gossip t ime 
by the algorithm is asymptotical ly given by 5Q(n) < (1/log2 ~-t)log2 n + O(1). 
For comparison, let us consider the performance of the following naive gossip 
algorithm: it first accumulates all the pieces of information into a vertex (i.e., 
an expert) in [log 2 n~steps, then the expert vertex broadcasts the accumulated 
information to all the other vertices in [ log z n ] steps. The asymptot ic  behavior 

of the algorithm is given by {1 + (1/ log2/)}  log2 n. 

Table  2. Coefficients of the log 2 n term. 

II z [ t / log  2 x 
31.839286755 1.137466951 
4 1.927561975 1.056214652 
5 1.965948237 1.025404040 
61.983582843 1.012034454 
7 1.991964197il.005842216 
8 1.996031180 1.002873979 

1 + ( 1 / l o g  2 I) 
1.630929753 
1.500000000 
1.430676558 
1.386852807 
1.356207187 
1.333333333 
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Table 2 shows a numerical result on the asymptotic behavior of the above 
two algorithms; i.e., it compares the numerical approximation of the coeff• 
of the log 2 n term of two algorithms for small l's. Note that  the performance 
of the naive algorithm is worse than that  of an optimal algorithm for complete 
graphs. The readers can verify that 1/ log 2 7-1, the coefficient of our algorithm, 
is smaller than 1 + (1/ log 21), the coefficient of a naive algorithm. According to 

1 is quickly converging to 1. Indeed, this fact is proved in [3] by Table 2, 

the evaluation 1 ,,, 1 + lo (~) e g~ where is the base of the exponential. 

3 C o n c l u d i n g  R e m a r k s  

In this paper, we have proposed a new gossip algorithm for complete bus net- 
works. This implies that  

< - log ( ) 
_ log2(Tz----- ~ + O(1). 

We conjecture that  it is optimal within an additive constant number of steps, 
that  is gz(n) = log~(,~) + O(1) Note that  this conjecture is proved in the case logs (~-t) 
1 = 2 (see theorem 4) , but we have not been able to extend the proof in the 
general case. It would be interesting to prove that the bound is tight at least 
for its order: i.e., gz(n) "~ logs(n) This problem should be essential for analyzing log s (wl)" 
the time complexity of the gossiping in bus networks. Indeed, it would gives a 
generic lower bound valid for any bus network with buses of limited length. 

Another problem we want to solve is to construct bus networks with the 
smallest number of buses of length at most l, for given l, in which a gossip takes 
gz(n) steps. It is the problem of finding minimum gossip bus networks with a 
given parameter l. For that question one can already remark that the algorithm 
presented is valid for a bus network of degree O(log n) obtained by considering 
the network containing only the buses used during the algorithm. 
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