
Worm-Hole Gossiping on Meshes*

B e n H .H . J u u r l i n k ~ RS . R a o ~ Jop E S ibeynw

Abstract

Several algorithms for performing gossiping on one- and higher dimensional meshes are
presenled. As a routing model, we assume the practically important worm-hole routing. For
one-dimensional arrays, we give a novel lower bound and an asymptotically optimal gossip-
ing algorithm. For two-dimensional meshes, we present a simple algorithm composed of one-
dimensional phases. For an important range of packet and mesh sizes, it gives clear improve-
ments. The algorithm is analyzed theoretically, but, the achieved improvements are also con-
vincingly demonstrated by simulations and by an implementation on the Paragon. For higher
dimensional meshes, we give algorithms which are based on a generalized notion of a diag-
onal.

1 I n t r o d u c t i o n

Meshes. One of the most thoroughly investigated interconnection schemes for parallel compu_
tation is the n x n mesh, in which n 2 processing units, PUs, are connected by a two-dimensional
grid of communication links. Its immediate generalizations are d-dimensional n x . . . x n meshes.
Numerous parallel machines with mesh topologies have been built.

Gossiping. Gossiping is a fundamental communication problem. It appears in many contexts,
both theoretical and practical. Gossiping is the problem in which each of the N PUs needs to
send data to every other PU. Finally, all PUs must know the complete data of size N . L. This is
a very communication intensive operation.

Gossiping appears as a subroutine in many important problems. For example, if M numbers
are to be sorted on N PUs, then a good approach is to select a set o f m splitters [8, 5] which must
be made available in every PU. This means that we have to perform a gossip in which every PU
contributes r a / N numbers. In this case the amount of data is small and, hence, the gossiping time
can be made negligible with efficient gossiping algorithms, A second application of gossiping
appears in algorithms for solving ordinary differential equations using parallel block predictor-
corrector methods [9]. In each application of the block method, computations corresponding to
the prediction are carried out by different PUs and these values are needed by all other PUs.

Ear l ier Work. A substantial amount of research has been performed on (variants of) the gossip-
ing problem [1, 2, 7]. In some sense, we turn back to basics. Rather than to design an even more
sophisticated algorithm, along the lines of [7], we present a fairly simple algorithm and show that
it actually works in practice. An essential point is that we achieve an optimal trade-off between
start-up and routing time. For relatively large messages, it is not enough to focus on the number
of start-ups only. A non-trivial lower bound shows that our algorithms are close to optimal for all
values of the involved parameters. On two-dimensional meshes, the information is concentrated
on diagonals. For higher dimensional meshes we give an interesting generalization of the notion
of a diagonal, which may be of independent interest.

* Part of this research was performed during a stay of the second author at the Max-Planck-lnstitute
~'Dept. of Computer Science, Leiden University, RO. Box 9512, 2300 RA Leiden, The Netherlands. Email:

benj @cs.LeidenUniv.nl
:~Dept. of Computer Science University of Hyderabad Hyderabad - 500 046, India. Email: psraocs @uohyd.ernet.in
w fiir Informatik, Im Stadtwald, 66123 Saarbrticken, Germany. Email: jopsi@mpi-sb.mpg.de

362

2 P r e l i m i n a r i e s a n d L o w e r B o u n d s

A d-dimensional mesh consists of N = n d processing units, PUs, laid out in a d-dimensional
grid of side length n. Every PU is connected to each of its (at most) 2- d immediate neighbors by
a bidirectional communication link. We assume the full-port model in which a PU can transmit
data to all of its neighbors simultaneously.

For the communication we assume the much considered worm-hole routing model (see [6, 3]
for some recent surveys), In this model a packet consists of flits and has a header which contains
the necessary routing information. The other flits just follow the header. Initially all flits reside
in the source PU, Finally all flits should reside in the destination PU. Furthermore, two or more
flits may reside in the same PU only at the source and the destination. The reasons to consider
worm-hole routing instead of the more traditional store-and-forward routing are of a practical
nature. On modern MIMD computers, the time to issue a packet is considerably larger than the
time needed to traverse a connection. The time to send a packet consisting of I flits over a distance
of c connections is given by

t (d, l) = ts + c . t d + l . t l . (1)

We refer to ts as the start-up time, td as the hop time, and tl as the flit-transfer time. (1) is
correct as long as the paths of various packets do not overlap. Our algorithms are overlap-free.

We start with a trivial but general lower bound.

Lemma 1 For any network of N PUs with degree deg and diameter D, the time Tco,(N , deg, D)
for concentrating all information in a single node satisfies:

Tcon(N, deg, D) >__ max{ N / d e g . I . th D - td, log N/ log(deg + 1). ts}.

Of course, Tcon immediately gives a lower bound for the gossiping problem. A stronger lower
bound is given in the following theorem. The proof of this theorem is given in [4].

Theorem 1 Let r = t s / (l . tt) where r < n / e 2. The time for gossiping on a linear array with n
PUs satisfies

Tgo~ = f~(n . In n / l n (n / r) . I . h) .

3 L i n e a r a n d C i r c u l a r A r r a y s
We analyze gossiping on one-dimensional processor arrays. We assume that the time for routing
a packet is given by (1), as long as the paths of the packets do not overlap. We only present the
algorithms for circular arrays. With minor modifications, all of them carry on for linear arrays.

For gossiping on a circular array consisting ofn PUs, there are two trivial approaches. Each
of them is good in an extreme case.

I. Every PU sends a packet containing its data to the left and right. The packets are sent on

for Ln/2] steps.

2. Recursively concentrate the data into a selected PU. Then, reverse the process to dissem-
inate the information to all other PUs.

Lemma 2 If the packets consist of I flits each, then Approach 1 lakes T1 (n, l) = In/2] �9 (t, +
td + I . tt) time.

Lemma 3 I f the packets consist of l flits each, then the time consumption of Approach 2 can be
estimated on T2(n, 1) ~- logs n . (2. ts + n . 1. tt).

P r o o f : During the concentration phase, the number of 'active' PUs is reduced by a factor of three
in every step, the packets get three times as heavy and the distance over which the packets have

~ o g 3 , ~ - I 3 ~ (td + I. h)) < to be sent increases by a factor of three. This gives Te~nc = ~ i=o (ts + "
log s n . t3 + n]2 . (td + I. h). In all steps of the dissemination phase, the packets consist of n . l

�9 . ~ v-,log s n - i (is + 3 i " td "4- I �9 n - tl) < log3 n" (ts + n . l . h) + h i 2 . t4. flits each, glwng ~tdis = ?__,i=o
Since ta is of the same order as tl, the term n /2 �9 td can be ignored. []

363

\ t, lt', 2 lO so 2so n

40 t 44 664 3264
27 64 104 304 1304

40 (27,-) 100 (3, 1) 318 (3, 1) 1318 (3, 1)
120 440 2040 10040

81 257 319 593 1993
120 (81,-) 239 (5,4) 594 (3, 1) 2013 (3, 1)
364 1332 6172 30372

243 990 1062 1422 3222
337 (4, 8) 565 (7,7) 1251 (3, 2) 3248 (3, 1)

1092 4004 18564 91364
729 3667 3755 4195 6395

936 (10,20) 1377 (13, 17) 2707 (7, 7) 6264 (4, 2)

Table 1 : Comparison of the results obtained for gossiping on a circular arrays with n PUs ap-
plying Approach 1 (top), Approach 2 (middle) and C1RCGOS (bottom). The instances for which
CIRCGOS is better are printed bold. Behind the results for CIRCGOS, the values of the parameters
a and b for which the result was obtained are indicated. The cost unit is t~.

If ts >> I. tt, then for all reasonable values of n, the result of Lemma 3 cannot be improved.
However, note that any ratio t s / (l �9 tt) is possible. For example, if a large sorting problem is
solved on a relatively small system, then the packets consist of many flits. In that case it may
even happen that l �9 tt > ts. For such instances, we propose an approach which has features of
both basic approaches.

We henceforth neglect the distance term, which is of minor importance anyway, and write
t~ = l . tt. The algorithm consists of three phases, and works with parameters a and b.

Algori thm ClRCGOS(a, b)
1. Concentrate n / a data in a evenly interspaced PUs, called bridgeheads or concentration

points.

2. For [a/2J steps, send packets of size n / a among the concentration points in both direc-
tions, such that afterwards all data are known in every concentration point.

3. In [log~ n - 1] further rounds, repeatedly increase the number of bridgeheads by a factor
of a until n. The information is passed to the a - 1 new points between any two existing
bridgeheads in b > [a/2J steps with packets of size n / (2 . b - a + 2).

In Phase 2, the packets are circulated around. The description is pleasant because of the circular
structure. Notice that the algorithm becomes equal to Approach 1 for a = n.

Lemma 4 The three phases o f CIRCGOS(a, b) take

Tcg. l = log3(n /a)- t , + n / (2 - a) - t~,

T<~.2 = La/2J. (t, + n /a . t'~),
Tcg. 3 = (l o g ~ n - 1) . b . (t , + r n / (2 . b _ a + 2)] . t ~) .

The best choices for a and b have been found by a simple computer program. Table 1 lists some
typical results. There are several interesting conclusions that can be derived:

�9 For realistic values o f n and ts/t~, CIRCGOS may be several times faster than Approach 1
and Approach 2. At worst, CIRCGOS is hardly slower than Approach 2 (actually, for a = 3
and b = 1, it becomes equal to Approach 2, except that this knowledge is not exploited).

�9 The range of ts/t~ values for which CIRCGOS is the best increases with n. The best choices
of a and b increase with n and decrease with t~/t~.

364

Theorem 2 Let r = ts/t~ where r < n. The time consumption of ClRCGOS(n/r, n / r) is given
by

Tc , (~ / r , x / r) = O (n . In n/ln(n/~), tl).

Thus, ClRCGOS(n/r, n / r) is asymptotically optimal (cf. Theorem 1), and gives a natural con-
tinuous transition from gossiping times O(n), as achieved by Approach l for r = O(1), to gos-
siping times O(n . log n), as achieved by Approach 2 for r = n.

Coro l l a ry l Le t r = ts / t ' l andO < e < 1. Forallr , logn < r < n e, CIReGOS isabouta
factor of log n faster than Approach 1 and 2.

Proof: For r > log n, Approach I and Approach 2 both take f~(n- log n . t~) time. On the other
hand, for r = n ~, C1RCGOS takes O (n . log n/ log(nl -~) - t~) = O(n . t~) time. [3

4 Two-Dimensional Arrays
The simplest idea for gossiping on two-dimensional (2D) toil is to send the packets first along
the rows and then along the columns, choosing the best of Approach 1 and Approach 2 in each
phase. A factor of two is gained when the packets in PUs (at, y) with x + y even are colored
'white' and 'black' otherwise, and by routing the black packets orthogonally to the white ones.
Let Approach i-j denote the algorithm in which first Approach i is applied and then Approach j ,
and let Ti0 denote the time taken by Approach i-j. Approach 1-2 can be excluded.

Lemma 5 The time consumption of the three gossiping algorithms is given by

T1,1 ~ 3 / 4 . n . t s + n / 4 - (n + l) ' t ~ ,

T2,1 - (2 .1oga(n/2) + n / 2) . t8 + n /2 . (log3(n/2) + n / 2) . t~,

T2,2 -'= (4 . log 3 n - 3) . t S + (2 - 1 o g a n - 2) ' n / 2 ' (n / 2 + l) ' t ~ .

The described approaches are competitive for many choices of n, ts and t[, but a more truly
2D approach gives considerably better results for intermediate r values. The algorithm is a 2D
analogue of C1RCGOS. We may concentrate on the white packets. The black packets are routed
orthogonally to the white ones.

Algori thm TORGOS(a, b, x)
1, Concentrate all white packets in a concentration points of their rows; in row i, the PUs
(i , j) with (j - i) rood (n/a) = 0. After this phase, each concentration point holds n/ (2 . a)
white packets.
2. Route the data in each concentration point in [a/2J steps to all other concentration points

in the same row. Now every concentration point holds n/2 white packets.

3. Route the data in each concentration point in la/2J steps to all other concentration points
in the same column. Now every concentration point holds a. n/2 white packets.

4. Determine suitable b, x and t such that b t = n /a and x _> [b/2J. Perform t rounds of
further concentration. At the beginning of round j , 0 <_ j < t, the concentration points contain
Sj = a . b j . n /2 white packets.

a. Divide the data into packets of size S j / (2 - x - b + 2). Route these for x steps along
the rows, to b - 1 points equally inlerspaced between any two concentration points.

b. Perform [b/2] steps of vertical routing with packets of size Sj.

Phase l is performed by a repeated concentration in loga(n/a) steps. After this phase, all data
are present on each of a diagonals. After Phase 3, all data are present on each section of length
n[a of these diagonals. In Phase 4, new diagonals are created. First the data are copied to them
(4.a), then they are made available in all sections (4.b).

365

27

81

243

729

t,/tt = 8
35t
360
855
444
363 (3, 9, 7)

2146
2155

10188
3424
2162 Q:27,22)

16281
16335

119206
29814
16288 (5, 49,54)

137416
137819

1332416
266398
137398 (3,243,211)

t,/tt = 30
796
761

1053
606
6O5 (3, 3, 2)

3483
3194

10474
3652
2828 (9, 9, 8)

20290
19200

119580
30108
17808 (7, 35, 32)

149445
146074

1332878
266758
141693 (9, 81, 86)

: 1 0 0

2038
1683
1122
1122 (3,3,1)
7736
6501

11384
4378
3982 (3,5,3)

33048
28317

120770
31044
21101 (3, 9'2)

187718
172341

1334348
267904
149888 (15,49,49)

t./tt = 250
5252
4774
3033
2227
2227 (3, 3, t)

16848
13568
13334
5934
5934 (3,3,1)

60386
47853

123320
33049
25477 (3, 9, 7)

269730
228627

1337498
270360
162239 (17,43,37)

Table 2: Comparison of four gossiping algorithms on n x n toil. Results are given for Ap-
proach 1-1 (top rows), Approach 2-1 (second rows) and Approach 2-2 (third rows). In the fourth
rows we give the results for TORGOS(3, 3, 1). In the last rows, we give the results for TORGOS,
with the corresponding optimal choices of a, b and x indicated in brackets. Where these results
are better than any of the others, they are printed bold. The cost unit is t~.

Lemma 6 The phases Of TORGOS(a, b, z) take time

T,g., = 1 o g 3 (, / (2 - a)) . t, + h i (4 . a) . 6 ,
~.2 = [, , /2J. (t, + , , I (2 . a)- t~),
T,g,s = [a /2J - (t. +n/2.t~),

Ttg.,., ~- x . (lOgb(n/a) �9 t , + n2/ (2 . (b - 1)- (2 - x - b + 2))- t~),

Ttg, 4.b = [b/2J- (logb(nla) �9 t , + n21(2 �9 (b - 1)) . tl).

In Table 2 we give some numerical results. Looking at the complete list of results, we see that
Approach 2-1 and Approach 2-2 have become obsolete: in all cases TORGOS performs better.
Only for small r = ts/t~, it may happen that Approach l-1 is the best of all.

5 Higher D i m e n s i o n s

For the success of the two2dimensional algorithm it was essential that the packets were concen-
trated on diagonals at all times. The main problem in the construction of a gossiping algorithm
for d-dimensional meshes is, that it is not clear how to generalize the concept of a diagonal. Once
we have such a 'diagonal' , we can perform an analogue of TORGOS.

The property of a two-dimensional diagonal that must be generalized, is the possibility of
'seeing' a full hyperptane, when looking along any of the coordinate axes. We will try to explain
what this means. In [0, 1] x [0, 1] C R ' , when projecting its diagonal, the set {z + y = 110 <
x, y <_ 1}, perpendicularly on the y-axes, we obtain the set 0 x [0, 1]. When projecting on the ~-
axes, we obtain [0, 11 x O. For algorithm TORGOS, this means that the information from diagonals
in adjacent submeshes can be copied without problem onto each other. Not only in one direction,
but in both directions. This requirement of problem-free copying between diagonals in adjacent
submeshes along all coordinate axes leads us to the following:

Definition 1 A subset of a d-dimensional cube is called a d-dimensional diagonal, i f the follow-
ing two conditions are satisfied:

366

Figure 1: Diagonal of the unit cube; the projection along the z-axis is the set 0 x [0, 1] x [t3, 1].

1. The perpendicular projection of the diagonal of a subcube onto an), of the bounding hy-
perplanes of this cube is surjective.

2. The perpendicular projection of the diagonal of a subcube onto any of the bounding hy-
perplanes of this cube is injective except for subsets of total measure zero.

F o r / = 1 , 2 , . . . , d - 1, let79/ = {z0 ,z l za-llZo--I-.I/: 1 --}-"'" "}- X d _ 1 = i } . For the
unit-cube I a = [0, 1] x . - . x [0, 1], the union of the intersections of the 79i-hyperplanes with I a
gives a diagonal:

d-1 ld" Lemma 7 A diagonal of I d is given by Ui=x Di N

Proof: As the Di are completely symmetric, we can concentrate on the projection along the zoo
axis. Denote the projection of a set S along the x0-axis by I Io(S) . Then, for all 1 < i < d,

Iio(79i) = { z o , x l ,za_llZo = O,i - 1 < .1/:1 + " - + Zd-a < i}.

So, for any i < j ,

(2)

Zd_llzo=O, z l + . . . z a _ x = i } i f j = i + 1 ,
]-I0(~Di) ["11I0 (~)j) --~ ~xo, Xl , i f j > i + 1.

Hence, the projection is almost injective, as required by point 2 of Definition 1. On the other
hand, (2) gives that

d - 1 d--1

U no(V,) = U{:,~o,z,,...,:~d_,l~o = o , i - 1 <_ x, + , . . + za_, <_ i }
i = 1 i = 1

= { z 0 , z l , . . . , z e - a l x 0 = 0 ,0 <.1/:1 + ' - " + za -1 ___ d - i}

Hence, the projection is surjective as well. I:3

So, we successfully defined d-dimensional diagonals. The reader is advised to obtain a full
understanding of the case d = 3, as illustrated in Figure 1. For us it was helpful to construct
a model of paper (cardboard would have been better). Such a model makes it easy to convince
oneself that the required property that looking along a coordinate axis indeed gives a full but non-
overlapping view of the hyperplanes. Though we are not aware of any result in this direction, we
are not sure that we are the first to define this concept. Still, we are very pleased with the utmost
simplicity of the defined diagonal and the elegance of the proof of Lemma 7.

We now describe the algorithm for d-dimensional toil. Each packet is given a color from
{ 0 , 1 , . . . , d - 1}; the packets in PU (-1 / :0 ,z l , . . . , za-a) are given color (~ i z i) mod d. In
this way, there are n / d packets with the same color on any 1-dimensional submesh. The pack-
ets of each color are treated independently by d orthogonally operating gossiping procedures.

3 6 7

Algori thm CUBGOS(n, d)
1. In every PU, compute the nearest intersection of its row with the set of diagonals of all

n/3 x . - . • n /3 subtori. In each row, concentrate all color 0 packets in log z n - 1 steps in the
three computed concentration points. Each concentration point now holds n / (3 . d) color 0
packets.

2. Perform d steps of data spreading: in Step/, 0 < i < d - 1, the color 0 data residing in
a concentration point are routed along axis i to both other concentration points on this same
axis. After Step i, every concentration point holds n / d . 3 i color 0 data.

3. Perform log a n - 1 rounds of further concentration. At the beginning of round j , 1 < j <
log a n - 1, the concentration points all hold n / d . 3 j (d -1) color 0 data. All data are known
within every n / 3 j • -.- • n/3 j subtorus. In round j , two diagonals are added between any
two existing diagonals. Then we perform

a. Route a copy of the color 0 data in each direction along axis 0, from every PU on an
old diagonal to the PUs on the two adjacent new diagonals.

b. Perform d - 1 steps of data spreading: in Step i, 1 < i < d - 1, the color 0 data resid-
ing in a concentration point are routed along axis i to the concentration points on adjacent
diagonals. After Step i, every concentration point holds n / d . 3 j '(a-1)+i color 0 data.

Notice that the situation after Phase 1 is similar to the situation after Phase 3.a, and that Phase 2
is analogous to Phase 3.b. For d = 2, CUBGOS is identical to TORGOS(3, 3, l).

Lemma 8 The phases of CUBGOS(n, d) take time

Tcg. s = (] o g a n - 1) ' t , + n / (6 " d) ' t ~ ,

Tcs. J., = (l o g a n - 1)"G + n d / (d �9 (3 4-1 -- 1))-t~l,

Tcg. 2 +Tcg. S.b = l o g a n . (d - 1). t, + rid~(2 �9 d. (1 - 1 /3d- l)) �9 t~.

Proof: We consider the last equation. Clearly, in Phase 2 and Phase 3.b, log a n rounds of d - 1
steps each are performed. In Step i, 0 < i < d - 1, of Round j , 0 < j < log a n - 1 (where
Round 0 corresponds to Phase 2), the packets have weight n / d . 3 j ' (a-1)+i-1. Summing over i

d-1 3 i_ 1 and j and using the estimate ~ i = l < 3 d-1/2, gives the result. []

Adding all important contributions together gives

Theorem 3 The time consumption of CUBGOS is given by

(3 d-1 + 2) . n d
(d + 1) . l og a n . r e + 2. d . (3 a-1 - 1) " t~.

This is a very strong and general result. The algorithm is close to optimal for all n, ts/t~ and
d > 2 :

Corollary 2 For gossiping on d-dimensional tori, CUBGOS is max{1 + 1/d, (1 + 2~3d-i)~(1 --
1/3d-1) }-optimal.

Proof: Because, for given d and n, d - log a n . ts + ha~(2 �9 d) �9 t~, is a trivial lower bound for
just concentrating all data in a single PU, the worst performance ratio is the maximum over all
r = t,/t~ > 0 o f

(d + 1) - log 3 n . r + (1 + 2 / 3 a - i) / (1 - 1 / 3 d - 1) . n d / (2 .d)

d . l o g a n . r + ha~(2 .d)

Differentiating for r gives that the extremal values are assumed for r = 0 and r = oo. Substi-
tuting these values gives the stated result. []

For d = 2, we have 5~2-optimality, and for large d, CUBGOS almost achieves one-optimality.

368

P r ~ o d

/

ll, pproich 1-I - - . / "

~ , ~ - 2 / . ~ I App-oiK:h 2-I 1 /.':"
, . , . . - / . , / / J

/ , . " /7 t o, I

0,01

0.001

MQIV~WlKI

�9 f" /~. ' / 'z "

. l ipixcich 1 ~ f l / t ~ , ~ : 2 ~ / ' / / / I
T~ ios ~ . I . ."

- , - / J 1 / ' t ' / * ~

. , , , J 1
, . . + , . . 1 l

I I
113'N2 10"3 10 ' 4 10 '~ 10'~2 10~3 10"4 10 '~

llilet,Sa gl i I(Inl l t h m M a ~a l l l l ler~tl~ m

Figure 2: Predicted and measured execution times of the four one-dimensional gossiping algo-
rithms on a 9 • 9 mesh.

6 E x p e r i m e n t s

In this section, we present experimental results collected on an Intel Paragon XP/S 10 configu-
ration of 9 nodes high and 9 nodes wide. A fuller account of the experimental data presented in
this section is provided in [4].

In total eight algorithms were implemented: four one-dimensional (1 D) gossiping algorithms
and four two-dimensional (2D) variations. The 1D algorithms are obtained by first performing
Approach 1 or 2 in the rows, then in the columns. The 2D variants divide the packet initially
residing in each PU into a white packet and a black packet, and route the white packets orthog-
onally to the black ones.

Note that because the experimental platform is a mesh, not a torus, the runtime analysis
slightly changes. For example, the time taken by Approach !-I for the ID case is given by
TI,I : (n - 1) " (ts + t~) + (n - 1) �9 (~8 + n �9 t~). Furthermore, it is necessary to refine
the performance model used in the previous sections. In particular, we need to distinguish be-
tween several basic steps. The reason is that in some steps, a node needs to send or receive one
message, whereas in others it may be required to send or receive multiple messages, introducing
bus conflicts. For example, a 1D-send step in which a node sends a message to its east or south
neighbor (but not simultaneously), takes about 2 .5 .10 -4 + 2.2.10 - s �9 rn seconds, where m is
the message length in bytes. On the other hand, a 2D-concentrate step in which a node receives
data from all its neighbors simultaneously, requires approximately 3.0 �9 10 -4 + 4.8 - 10 -8 �9 m
seconds.

Figure 2 plots the measured and predicted performance of the 1D implementations. The
curves on the left show the predicted execution times. The curves on the right plot the measured
times. For large messages, we find that the implementations run within 20% of the expected
time. The error is probably due to the fact that processors operate asynchronously. However, the
relative performance is quite accurately predicted.

The model predicts that for very small messages Approach 2-2 is the fastest. However, this
is not observed in practice. For messages up to 4 KB, TORGOS(3, 3, 1) is faster than any other
algorithm. For very long vectors (> 16 K.B), Approach 1-1 is the best and Approach 2-2 performs
significantly worse than the other approaches, which is in agreement with the predictions. For
messages of moderate size (4--16 KB), Approach 2-1 is faster.

Figure 2 also compares the performance of our algorithms with the performance of an im-
plementation that uses the global communication routine g e o l • supplied by lntel. Clearly, our
implementations are significantly faster than the g c o l x communication routine. For example,
for messages of 32 KB, the g c o l x routine requires 716 milliseconds, while Approach l-1 re-
quires only 79 milliseconds.

369

P r ~ e d
. . . . /

Apt'oath I-~ - - / " /
Approach 2-2 - - - - ,.,' / . . .
Ap~oaeh 2-1 ~ / . '7

Tcvg~ - - / ..."

/ / / / ~ /

...;;y
/," /:..."

10~2 10A3 10"4 IC/'5
Mess t~ I*n9~ m

I d l a s ~ l , cl
1 / , -

AC~proac:h 2-2 ~ - - / ' . ~ 7 . . "
,l~pcOaCh 2- I o . i

-- ,J

i ~
/"P/S

o.o~ "

IC~'2 10~3 10"4 IO"S
Me~,age k~nS~', m

Figure 3: Predicted and measured execution times of the two-dimensional gossiping algorithms
on a 9 x 9 mesh.

The predicted and measured execution times of the 2D variants are shown in Figure 3. As
expected, these implementations do not outperform the] D algorithms due to bus conflicts. Under
ideal circumstances, the time by each 1D basic step and its corresponding 2D basic step would
be about the same, but this is not observed in practice.

7 Conclusion
We presented gossiping algorithms for meshes of arbitrary dimensions. We optimized the trade-
off between contributions due to start-ups and those due to the bounded capacity of the connec-
tions. This enabled us to reduce the time for gossiping in theory and practice for an important
range of the involved parameters.

Acknowledgment. Computational support was provided by KFA Jiilich, Germany.

References

[1] Barnett, M., R. Littlefield, D.G. Payne, R. van de Geijn, 'Global Combine on Mesh Archi-
tectures with Wormhole Routing,' Proc. 7th IPPS, pp. 13-16, IEEE, 1993.

[2] Fraignaud, P., J.G. Peters, 'Structured Communication in Torus Networks,' Proc. 28th
Hawai Conference on System Science, 1995.

[3] Huang, Y., Ph. K. McKinley, 'An Adaptive Global Reduction Algorithm for Wormhole-
Routed 2D Mesh Networks,' Proc. 7th SPDP, IEEE, 1995.

[4] Juurlink, B., P.S. Rao, J.E Sibeyn, 'Gossiping on Meshes and Tori,' Techn. Rep. MPI-I-96-
1018, Max-Planck Institut fiir Informatik, Saarbriicken, Germany, 1996.

[5] Kaufmann, M., S. Rajasekaran, J.E Sibeyn, 'Matching the Bisection Bound for Routing
and Sorting on the Mesh,' Proc. 4th SPAA, pp. 31--40, ACM, 1992.

[6] Ni, L.M., Ph.K. McKinley, 'A Survey of Wormhole Routing Techniques in Direct Net-
works,' IEEE Computer, 26(2), pp. 62-76, 1993.

[7] Peters, J.G., M. Syska, 'Circuit-Switched Broadcasting in Torus Networks,' IEEE Trans-
actions on Parallel and Distributed Systems, to appear.

[8] Reif, J., L.G. Valiant, 'A Logarithmic Time Sort for Linear Size Networks,' Journal of the
ACM, 34(1), pp. 68-76, 1987.

[9] Rao, P.S., Mouney, G. 'Data Communications in Parallel Block Predictor-Corrector Meth-
ods for solving ODEs,' Techn. Rep., LAAS-CNRS, France, 1995.

