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Abstract 

Several algorithms for performing gossiping on one- and higher dimensional meshes are 
presenled. As a routing model, we assume the practically important worm-hole routing. For 
one-dimensional arrays, we give a novel lower bound and an asymptotically optimal gossip- 
ing algorithm. For two-dimensional meshes, we present a simple algorithm composed of one- 
dimensional phases. For an important range of packet and mesh sizes, it gives clear improve- 
ments. The algorithm is analyzed theoretically, but, the achieved improvements are also con- 
vincingly demonstrated by simulations and by an implementation on the Paragon. For higher 
dimensional meshes, we give algorithms which are based on a generalized notion of a diag- 
onal. 

1 I n t r o d u c t i o n  

Meshes. One of the most thoroughly investigated interconnection schemes for parallel compu_ 
tation is the n x n mesh, in which n 2 processing units, PUs, are connected by a two-dimensional 
grid of communication links. Its immediate generalizations are d-dimensional n x . . .  x n meshes. 
Numerous parallel machines with mesh topologies have been built. 

Gossiping. Gossiping is a fundamental communication problem. It appears in many contexts, 
both theoretical and practical. Gossiping is the problem in which each of the N PUs needs to 
send data to every other PU. Finally, all PUs must know the complete data of size N .  L. This is 
a very communication intensive operation. 

Gossiping appears as a subroutine in many important problems. For example, if M numbers 
are to be sorted on N PUs, then a good approach is to select a set o f m  splitters [8, 5] which must 
be made available in every PU. This means that we have to perform a gossip in which every PU 
contributes r a / N  numbers. In this case the amount of data is small and, hence, the gossiping time 
can be made negligible with efficient gossiping algorithms, A second application of gossiping 
appears in algorithms for solving ordinary differential equations using parallel block predictor- 
corrector methods [9]. In each application of the block method, computations corresponding to 
the prediction are carried out by different PUs and these values are needed by all other PUs. 

Ear l ier  Work. A substantial amount of research has been performed on (variants of) the gossip- 
ing problem [ 1, 2, 7]. In some sense, we turn back to basics. Rather than to design an even more 
sophisticated algorithm, along the lines of [7], we present a fairly simple algorithm and show that 
it actually works in practice. An essential point is that we achieve an optimal trade-off between 
start-up and routing time. For relatively large messages, it is not enough to focus on the number 
of start-ups only. A non-trivial lower bound shows that our algorithms are close to optimal for all 
values of the involved parameters. On two-dimensional meshes, the information is concentrated 
on diagonals. For higher dimensional meshes we give an interesting generalization of the notion 
of a diagonal, which may be of independent interest. 
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2 P r e l i m i n a r i e s  a n d  L o w e r  B o u n d s  

A d-dimensional mesh consists of N = n d processing units, PUs, laid out in a d-dimensional 
grid of side length n. Every PU is connected to each of its (at most) 2- d immediate neighbors by 
a bidirectional communication link. We assume the full-port model in which a PU can transmit 
data to all of its neighbors simultaneously. 

For the communication we assume the much considered worm-hole routing model (see [6, 3] 
for some recent surveys), In this model a packet consists of flits and has a header which contains 
the necessary routing information. The other flits just follow the header. Initially all flits reside 
in the source PU, Finally all flits should reside in the destination PU. Furthermore, two or more 
flits may reside in the same PU only at the source and the destination. The reasons to consider 
worm-hole routing instead of the more traditional store-and-forward routing are of a practical 
nature. On modern MIMD computers, the time to issue a packet is considerably larger than the 
time needed to traverse a connection. The time to send a packet consisting of I flits over a distance 
of c connections is given by 

t (d, l )  = ts + c . t d + l . t l .  (1) 

We refer to ts as the start-up time, td as the hop time, and tl as the flit-transfer time. (1) is 
correct as long as the paths of various packets do not overlap. Our algorithms are overlap-free. 

We start with a trivial but general lower bound. 

Lemma 1 For any network of N PUs with degree deg and diameter D, the time Tco,( N ,  deg, D)  
for concentrating all information in a single node satisfies: 

Tcon(N, deg, D)  >__ max{  N / d e g .  I . th D -  td, log N/ log(deg  + 1). ts}. 

Of course, Tcon immediately gives a lower bound for the gossiping problem. A stronger lower 
bound is given in the following theorem. The proof of this theorem is given in [4]. 

Theorem 1 Let r = t s /  ( l . tt ) where r < n / e 2. The time for gossiping on a linear array with n 
PUs satisfies 

Tgo~ = f~(n . In n / l n ( n / r ) .  I . h) .  

3 L i n e a r  a n d  C i r c u l a r  A r r a y s  
We analyze gossiping on one-dimensional processor arrays. We assume that the time for routing 
a packet is given by (1), as long as the paths of the packets do not overlap. We only present the 
algorithms for circular arrays. With minor modifications, all of them carry on for linear arrays. 

For gossiping on a circular array consisting ofn  PUs, there are two trivial approaches. Each 
of them is good in an extreme case. 

I. Every PU sends a packet containing its data to the left and right. The packets are sent on 

for Ln/2] steps. 

2. Recursively concentrate the data into a selected PU. Then, reverse the process to dissem- 
inate the information to all other PUs. 

Lemma 2 If the packets consist of I flits each, then Approach 1 lakes T1 (n, l) = In/2]  �9 (t, + 
td + I . tt) time. 

Lemma 3 I f  the packets consist of  l flits each, then the time consumption of Approach 2 can be 
estimated on T2(n, 1) ~- logs n .  (2. ts + n . 1. tt). 

P r o o f :  During the concentration phase, the number of 'active' PUs is reduced by a factor of three 
in every step, the packets get three times as heavy and the distance over which the packets have 

~ o g 3 , ~ - I  3 ~ (td + I. h)) < to be sent increases by a factor of three. This gives Te~nc = ~ i=o  (ts + " 
log s n .  t3 + n]2 .  (td + I. h).  In all steps of the dissemination phase, the packets consist of n .  l 

�9 . ~ v-,log s n - i  (is + 3 i " td "4- I �9 n -  tl) < log3 n" (ts + n .  l .  h)  + h i 2 .  t4. flits each, glwng ~tdis = ?__,i=o 
Since ta is of the same order as tl, the term n /2  �9 td can be ignored. [] 
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\ t, lt', 2 lO so 2so n 

40 t 44 664 3264 
27 64 104 304 1304 

40 (27,-) 100 (3, 1) 318 (3, 1) 1318 (3, 1) 
120 440 2040 10040 

81 257 319 593 1993 
120 (81,-) 239 (5,4) 594 (3, 1) 2013 (3, 1) 
364 1332 6172 30372 

243 990 1062 1422 3222 
337 (4, 8) 565 (7,7) 1251 (3, 2) 3248 (3, 1) 

1092 4004 18564 91364 
729 3667 3755 4195 6395 

936 (10,20) 1377 (13, 17) 2707 (7, 7) 6264 (4, 2) 

Table 1 : Comparison of the results obtained for gossiping on a circular arrays with n PUs ap- 
plying Approach 1 (top), Approach 2 (middle) and C1RCGOS (bottom). The instances for which 
CIRCGOS is better are printed bold. Behind the results for CIRCGOS, the values of the parameters 
a and b for which the result was obtained are indicated. The cost unit is t~. 

If ts >> I. tt, then for all reasonable values of n, the result of Lemma 3 cannot be improved. 
However, note that any ratio t s / ( l  �9 tt) is possible. For example, if a large sorting problem is 
solved on a relatively small system, then the packets consist of many flits. In that case it may 
even happen that l �9 tt > ts. For such instances, we propose an approach which has features of 
both basic approaches. 

We henceforth neglect the distance term, which is of minor importance anyway, and write 
t~ = l .  tt. The algorithm consists of three phases, and works with parameters a and b. 

Algori thm ClRCGOS(a, b) 
1. Concentrate n / a  data in a evenly interspaced PUs, called bridgeheads or concentration 

points. 

2. For [a/2J steps, send packets of size n / a  among the concentration points in both direc- 
tions, such that afterwards all data are known in every concentration point. 

3. In [log~ n - 1] further rounds, repeatedly increase the number of bridgeheads by a factor 
of a until n. The information is passed to the a - 1 new points between any two existing 
bridgeheads in b > [a/2J steps with packets of size n / ( 2 .  b - a + 2). 

In Phase 2, the packets are circulated around. The description is pleasant because of the circular 
structure. Notice that the algorithm becomes equal to Approach 1 for a = n. 

Lemma 4 The three phases o f  CIRCGOS(a, b) take 

Tcg. l = log3(n /a  )- t ,  + n / ( 2 - a ) -  t~, 

T<~.2 = La/2J.  (t, + n /a .  t'~), 
Tcg. 3 = ( l o g ~ n - 1 ) . b . ( t , + r n / ( 2 . b _ a + 2 ) ] . t ~ ) .  

The best choices for a and b have been found by a simple computer program. Table 1 lists some 
typical results. There are several interesting conclusions that can be derived: 

�9 For realistic values o f n  and ts/t~, CIRCGOS may be several times faster than Approach 1 
and Approach 2. At worst, CIRCGOS is hardly slower than Approach 2 (actually, for a = 3 
and b = 1, it becomes equal to Approach 2, except that this knowledge is not exploited). 

�9 The range of ts/t~ values for which CIRCGOS is the best increases with n. The best choices 
of a and b increase with n and decrease with t~/t~. 
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Theorem 2 Let r = ts/t~ where r < n. The time consumption of ClRCGOS(n/r, n / r )  is given 
by 

Tc , (~ / r ,  x / r )  = O ( n  . In n/ln(n/~), tl). 

Thus, ClRCGOS(n/r, n / r )  is asymptotically optimal (cf. Theorem 1 ), and gives a natural con- 
tinuous transition from gossiping times O(n), as achieved by Approach l for r = O(1), to gos- 
siping times O(n .  log n), as achieved by Approach 2 for r = n. 

Coro l l a ry l  Le t r  = ts / t '  l andO < e < 1. Forallr ,  logn < r < n e, CIReGOS isabouta 
factor of log n faster than Approach 1 and 2. 

Proof: For r > log n, Approach I and Approach 2 both take f~(n- log n .  t~) time. On the other 
hand, for r = n ~, C1RCGOS takes O ( n .  log n/ log(nl -~)  - t~) = O(n .  t~) time. [3 

4 Two-Dimensional Arrays 
The simplest idea for gossiping on two-dimensional (2D) toil is to send the packets first along 
the rows and then along the columns, choosing the best of Approach 1 and Approach 2 in each 
phase. A factor of two is gained when the packets in PUs (at, y) with x + y even are colored 
'white' and 'black' otherwise, and by routing the black packets orthogonally to the white ones. 
Let Approach i-j  denote the algorithm in which first Approach i is applied and then Approach j ,  
and let Ti0 denote the time taken by Approach i-j. Approach 1-2 can be excluded. 

Lemma 5 The time consumption of  the three gossiping algorithms is given by 

T1,1 ~ 3 / 4 . n . t s + n / 4 - ( n + l ) ' t ~ ,  

T2,1 - (2 .1oga(n/2)  + n / 2 ) .  t8 + n /2 .  (log3(n/2) + n / 2 ) .  t~, 

T2,2 -'= (4 . log  3 n - 3 ) . t S + ( 2 - 1 o g  a n - 2 ) ' n / 2 ' ( n / 2 + l ) ' t ~ .  

The described approaches are competitive for many choices of n, ts and t[, but a more truly 
2D approach gives considerably better results for intermediate r values. The algorithm is a 2D 
analogue of C1RCGOS. We may concentrate on the white packets. The black packets are routed 
orthogonally to the white ones. 

Algori thm TORGOS(a, b, x) 
1, Concentrate all white packets in a concentration points of their rows; in row i, the PUs 
( i , j )  with (j  - i) rood (n/a) = 0. After this phase, each concentration point holds n/ (2 .  a) 
white packets. 
2. Route the data in each concentration point in [a/2J steps to all other concentration points 

in the same row. Now every concentration point holds n/2 white packets. 

3. Route the data in each concentration point in la/2J steps to all other concentration points 
in the same column. Now every concentration point holds a.  n/2  white packets. 

4. Determine suitable b, x and t such that b t = n /a  and x _> [b/2J. Perform t rounds of 
further concentration. At the beginning of round j ,  0 <_ j < t, the concentration points contain 
Sj = a . b j . n /2  white packets. 

a. Divide the data into packets of size S j / ( 2 -  x - b + 2). Route these for x steps along 
the rows, to b - 1 points equally inlerspaced between any two concentration points. 

b. Perform [b/2] steps of vertical routing with packets of size Sj. 

Phase l is performed by a repeated concentration in loga(n/a) steps. After this phase, all data 
are present on each of a diagonals. After Phase 3, all data are present on each section of length 
n[a of these diagonals. In Phase 4, new diagonals are created. First the data are copied to them 
(4.a), then they are made available in all sections (4.b). 
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27 

81 

243 

729 

t,/tt = 8 
35t 
360 
855 
444 
363 (3, 9, 7) 

2146 
2155 

10188 
3424 
2162 Q:27,22) 

16281 
16335 

119206 
29814 
16288 (5, 49,54) 

137416 
137819 

1332416 
266398 
137398 (3,243,211) 

t,/tt = 30 
796 
761 

1053 
606 
6O5 (3, 3, 2) 

3483 
3194 

10474 
3652 
2828 (9, 9, 8) 

20290 
19200 

119580 
30108 
17808 (7, 35, 32) 

149445 
146074 

1332878 
266758 
141693 (9, 81, 86) 

: 1 0 0  

2038 
1683 
1122 
1122 (3,3,1) 
7736 
6501 

11384 
4378 
3982 (3,5,3) 

33048 
28317 

120770 
31044 
21101 (3, 9'2) 

187718 
172341 

1334348 
267904 
149888 (15,49,49) 

t./tt = 250 
5252 
4774 
3033 
2227 
2227 (3, 3, t) 

16848 
13568 
13334 
5934 
5934 (3,3,1) 

60386 
47853 

123320 
33049 
25477 (3, 9, 7) 

269730 
228627 

1337498 
270360 
162239 (17,43,37) 

Table 2: Comparison of four gossiping algorithms on n x n toil. Results are given for Ap- 
proach 1-1 (top rows), Approach 2-1 (second rows) and Approach 2-2 (third rows). In the fourth 
rows we give the results for TORGOS(3, 3, 1). In the last rows, we give the results for TORGOS, 
with the corresponding optimal choices of a, b and x indicated in brackets. Where these results 
are better than any of the others, they are printed bold. The cost unit is t~. 

Lemma 6 The phases Of TORGOS(a, b, z )  take time 

T,g., = 1 o g 3 ( , / ( 2 - a ) ) .  t,  + h i ( 4 .  a ) .  6 ,  
~.2 = [ , , /2J.  (t, + , , I ( 2 .  a)-  t~), 
T,g,s = [a /2J -  (t. +n/2.t~), 

Ttg.,., ~- x .  (lOgb(n/a) �9 t ,  + n2/ (2  . (b - 1)- ( 2 - x  - b + 2))-  t~), 

Ttg, 4.b = [b/2J-  (logb(nla) �9 t ,  + n21(2 �9 ( b -  1)) .  tl). 

In Table 2 we give some numerical results. Looking at the complete list of results, we see that 
Approach 2-1 and Approach 2-2 have become obsolete: in all cases TORGOS performs better. 
Only for small r = ts/t~, it may happen that Approach l-1 is the best of all. 

5 Higher D i m e n s i o n s  

For the success of the two2dimensional algorithm it was essential that the packets were concen- 
trated on diagonals at all times. The main problem in the construction of a gossiping algorithm 
for d-dimensional meshes is, that it is not clear how to generalize the concept of a diagonal. Once 
we have such a 'diagonal' ,  we can perform an analogue of TORGOS. 

The property of a two-dimensional diagonal that must be generalized, is the possibility of 
'seeing' a full hyperptane, when looking along any of the coordinate axes. We will try to explain 
what this means. In [0, 1] x [0, 1] C R ' ,  when projecting its diagonal, the set {z + y = 110 < 
x, y <_ 1}, perpendicularly on the y-axes, we obtain the set 0 x [0, 1]. When projecting on the ~- 
axes, we obtain [0, 11 x O. For algorithm TORGOS, this means that the information from diagonals 
in adjacent submeshes can be copied without problem onto each other. Not only in one direction, 
but in both directions. This requirement of problem-free copying between diagonals in adjacent 
submeshes along all coordinate axes leads us to the following: 

Definition 1 A subset of  a d-dimensional cube is called a d-dimensional diagonal, i f  the follow- 
ing two conditions are satisfied: 
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Figure 1: Diagonal of the unit cube; the projection along the z-axis is the set 0 x [0, 1] x [t3, 1]. 

1. The perpendicular projection of the diagonal of a subcube onto an), of  the bounding hy- 
perplanes of  this cube is surjective. 

2. The perpendicular projection of  the diagonal of a subcube onto any of the bounding hy- 
perplanes of  this cube is injective except for subsets of  total measure zero. 

F o r /  = 1 , 2 , . . . , d -  1, let79/ = {z0 ,z l  . . . . .  za-llZo--I-.I/: 1 --}-"'" "}- X d _  1 = i } .  For the 
unit-cube I a = [0, 1] x . - .  x [0, 1], the union of the intersections of the 79i-hyperplanes with I a 
gives a diagonal: 

d-1 ld" Lemma 7 A diagonal of I d is given by Ui=x Di N 

Proof: As the Di are completely symmetric, we can concentrate on the projection along the zoo 
axis. Denote the projection of a set S along the x0-axis by I Io(S) .  Then, for all 1 < i < d, 

Iio(79i) = { z o , x l  . . . .  ,za_llZo = O,i - 1 < .1/:1 + " -  + Zd-a < i}. 

So, for any i < j ,  

(2) 

Zd_llzo=O, z l + . . . z a _ x = i }  i f j  = i + 1 ,  
]-I0(~Di) ["11I0 (~)j) --~ ~xo, Xl . . . .  , i f j  > i + 1. 

Hence, the projection is almost injective, as required by point 2 of Definition 1. On the other 
hand, (2) gives that 

d - 1  d--1  

U no(V,) = U{:,~o,z,,...,:~d_,l~o = o , i -  1 <_ x,  + , . .  + za_, <_ i }  
i = 1  i = 1  

= { z 0 , z l , . . . , z e - a l x 0  = 0 ,0  <.1/:1 + ' - "  + za -1  ___ d -  i}  

Hence, the projection is surjective as well. I:3 

So, we successfully defined d-dimensional diagonals. The reader is advised to obtain a full 
understanding of the case d = 3, as illustrated in Figure 1. For  us it was helpful to construct 
a model of paper (cardboard would have been better). Such a model makes it easy to convince 
oneself that the required property that looking along a coordinate axis indeed gives a full but non- 
overlapping view of the hyperplanes. Though we are not aware of any result in this direction, we 
are not sure that we are the first to define this concept. Still, we are very pleased with the utmost 
simplicity of the defined diagonal and the elegance of the proof of Lemma 7. 

We now describe the algorithm for d-dimensional toil. Each packet is given a color from 
{ 0 , 1 , . . . ,  d - 1}; the packets in PU ( -1 / :0 ,z l , . . . , za-a)  are given color ( ~ i  z i )  mod  d. In 
this way, there are n / d  packets with the same color on any 1-dimensional submesh. The pack- 
ets of each color are treated independently by d orthogonally operating gossiping procedures. 
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Algori thm CUBGOS(n, d) 
1. In every PU, compute the nearest intersection of its row with the set of diagonals of all 

n/3 x . - .  • n /3  subtori. In each row, concentrate all color 0 packets in log z n - 1 steps in the 
three computed concentration points. Each concentration point now holds n / (3 .  d) color 0 
packets. 

2. Perform d steps of data spreading: in Step/,  0 < i < d - 1, the color 0 data residing in 
a concentration point are routed along axis i to both other concentration points on this same 
axis. After Step i, every concentration point holds n / d .  3 i color 0 data. 

3. Perform log a n - 1 rounds of further concentration. At the beginning of round j ,  1 < j < 
log a n - 1, the concentration points all hold n / d .  3 j (d -1 )  color 0 data. All data are known 
within every n / 3  j • -.- • n/3  j subtorus. In round j ,  two diagonals are added between any 
two existing diagonals. Then we perform 

a. Route a copy of the color 0 data in each direction along axis 0, from every PU on an 
old diagonal to the PUs on the two adjacent new diagonals. 

b. Perform d - 1 steps of data spreading: in Step i, 1 < i < d - 1, the color 0 data resid- 
ing in a concentration point are routed along axis i to the concentration points on adjacent 
diagonals. After Step i, every concentration point holds n / d .  3 j '(a-1)+i color 0 data. 

Notice that the situation after Phase 1 is similar to the situation after Phase 3.a, and that Phase 2 
is analogous to Phase 3.b. For d = 2, CUBGOS is identical to TORGOS(3, 3, l). 

Lemma 8 The phases of CUBGOS(n, d) take time 

Tcg. s = ( ] o g a n - 1 ) ' t , + n / ( 6 " d ) ' t ~ ,  

Tcs. J., = ( l o g a n -  1 )"G + n d / ( d  �9 (3 4-1 -- 1))-t~l, 

Tcg. 2 +Tcg. S.b = l o g a n .  (d - 1).  t, + rid~(2 �9 d.  (1 - 1 /3d- l ) )  �9 t~. 

Proof: We consider the last equation. Clearly, in Phase 2 and Phase 3.b, log a n rounds of d - 1 
steps each are performed. In Step i, 0 < i < d - 1, of Round j ,  0 < j < log a n - 1 (where 
Round 0 corresponds to Phase 2), the packets have weight n / d .  3 j ' (a-1)+i-1.  Summing over i 

d-1  3 i_  1 and j and using the estimate ~ i = l  < 3 d-1/2,  gives the result. [] 

Adding all important contributions together gives 

Theorem 3 The time consumption of  CUBGOS is given by 

(3 d-1 + 2) .  n d 
( d +  1 ) . l og  a n . r e  + 2.  d .  (3 a-1 - 1) " t~. 

This is a very strong and general result. The algorithm is close to optimal for all n, ts/t~ and 
d > 2 :  

Corollary 2 For gossiping on d-dimensional tori, CUBGOS is max{1 + 1/d, (1 + 2~3d-i)~(1 -- 
1/3d-1) }-optimal. 

Proof: Because, for given d and n, d -  log a n .  ts + ha~(2 �9 d) �9 t~, is a trivial lower bound for 
just concentrating all data in a single PU, the worst performance ratio is the maximum over all 
r = t,/t~ > 0 o f  

( d +  1) - log  3 n . r  + (1 + 2 / 3 a - i ) / ( 1  - 1 / 3 d - 1 ) . n d / ( 2  .d) 

d . l o g  a n .  r + ha~(2 .d) 

Differentiating for r gives that the extremal values are assumed for r = 0 and r = oo. Substi- 
tuting these values gives the stated result. [] 

For d = 2, we have 5~2-optimality, and for large d, CUBGOS almost achieves one-optimality. 
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Figure 2: Predicted and measured execution times of the four one-dimensional gossiping algo- 
rithms on a 9 • 9 mesh. 

6 E x p e r i m e n t s  

In this section, we present experimental results collected on an Intel Paragon XP/S 10 configu- 
ration of 9 nodes high and 9 nodes wide. A fuller account of the experimental data presented in 
this section is provided in [4]. 

In total eight algorithms were implemented: four one-dimensional (1 D) gossiping algorithms 
and four two-dimensional (2D) variations. The 1D algorithms are obtained by first performing 
Approach 1 or 2 in the rows, then in the columns. The 2D variants divide the packet initially 
residing in each PU into a white packet and a black packet, and route the white packets orthog- 
onally to the black ones. 

Note that because the experimental platform is a mesh, not a torus, the runtime analysis 
slightly changes. For example, the time taken by Approach !-I for the ID case is given by 
TI,I : (n - 1) " (ts + t~) + (n - 1) �9 (~8 + n �9 t~). Furthermore, it is necessary to refine 
the performance model used in the previous sections. In particular, we need to distinguish be- 
tween several basic steps. The reason is that in some steps, a node needs to send or receive one 
message, whereas in others it may be required to send or receive multiple messages, introducing 
bus conflicts. For example, a 1D-send step in which a node sends a message to its east or south 
neighbor (but not simultaneously), takes about 2 .5 .10 -4 + 2.2.10 - s  �9 rn seconds, where m is 
the message length in bytes. On the other hand, a 2D-concentrate step in which a node receives 
data from all its neighbors simultaneously, requires approximately 3.0 �9 10 -4 + 4.8 - 10 -8 �9 m 
seconds. 

Figure 2 plots the measured and predicted performance of the 1D implementations. The 
curves on the left show the predicted execution times. The curves on the right plot the measured 
times. For large messages, we find that the implementations run within 20% of the expected 
time. The error is probably due to the fact that processors operate asynchronously. However, the 
relative performance is quite accurately predicted. 

The model predicts that for very small messages Approach 2-2 is the fastest. However, this 
is not observed in practice. For messages up to 4 KB, TORGOS(3, 3, 1) is faster than any other 
algorithm. For very long vectors (> 16 K.B), Approach 1-1 is the best and Approach 2-2 performs 
significantly worse than the other approaches, which is in agreement with the predictions. For 
messages of moderate size (4--16 KB), Approach 2-1 is faster. 

Figure 2 also compares the performance of our algorithms with the performance of an im- 
plementation that uses the global communication routine g e o l •  supplied by lntel. Clearly, our 
implementations are significantly faster than the g c o l x  communication routine. For example, 
for messages of 32 KB, the g c o l x  routine requires 716 milliseconds, while Approach l-1 re- 
quires only 79 milliseconds. 
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Figure 3: Predicted and measured execution times of the two-dimensional gossiping algorithms 
on a 9 x 9 mesh. 

The predicted and measured execution times of the 2D variants are shown in Figure 3. As 
expected, these implementations do not outperform the ] D algorithms due to bus conflicts. Under 
ideal circumstances, the time by each 1D basic step and its corresponding 2D basic step would 
be about the same, but this is not observed in practice. 

7 Conclusion 
We presented gossiping algorithms for meshes of arbitrary dimensions. We optimized the trade- 
off between contributions due to start-ups and those due to the bounded capacity of the connec- 
tions. This enabled us to reduce the time for gossiping in theory and practice for an important 
range of the involved parameters. 
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